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Unique ergodicity

Definitions

Let G be a Polish group.
We call a continuous G -action on a compact space a G -flow.

Definition

A G -flow is minimal if it admits no proper subflow.

Theorem (Ellis ′69)

There exists a unique minimal G -flow M(G ) that surjects onto any
minimal G -flow.

Definition

G is amenable iff for every minimal action on a compact space X
there is an invariant probability measure on X .
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Unique ergodicity

Unique ergodicity

Definition

G is uniquely ergodic iff for every minimal action on a compact
space X there is a unique invariant probability measure X .

Theorem (Angel, Kechris, Lyons ′12)

G is uniquely ergodic iff there is a unique invariant probability
measure on M(G ).

Examples:

Compact groups.

No known locally compact example.

G = Aut(F) where F is a Fraissé limit ?
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Unique ergodicity

Unique ergodicity and automorphism groups

When G = Aut(F) where F is a Fraissé limit: Angel, Kechris and
Lyons proved that if F is the random graph or the Fraissé limit of
uniform hypergraphs or graphs with forbidden subgraphs (or a
variety of other structures) then G is uniquely ergodic.

They develop a probabilistic method to prove unique ergocity.

Question (Angel, Kechris, Lyons ′12)

If G is amenable and M(G ) is metrizable, is it uniquely ergodic ?
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Unique ergodicity

Directed graphs

Question (Angel, Kechris, Lyons ′12)

If G is amenable and M(G ) is metrizable, is it uniquely ergodic ?

(Pawliuk, Sokic ′15) New instances when F is a directed graph.
For Cherlin’s list of directed graphs amenability implies unique
ergodicity in all cases but one (left open), the semigeneric directed
graph.

Theorem (J.)

The automorphism group of the semigeneric directed graph is
uniquely ergodic.
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The semigeneric directed graph

Let S be the class of finite directed graphs such that:

i) The absence of edge is an equivalence relation ∼.

ii) For any two pairs x ∼ y and x ′ ∼ y ′ the number of (directed)
edges from {x , y} to {x ′, y ′} is even.

It is a Fräıssé class. We write S = Flim(S), the semigeneric
directed graph.

Remark

Given a ∼-equivalence class x∼ and a point y /∈ x∼, we get a
partition of x∼ in two classes x∼y+ and x∼y−. This partition only
depends on the class of y .
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The semigeneric directed graph

UMF of Aut(S)

M(Aut(S))

(Kechris, Pestov, Todorcevic ’05 - Nguyen Van Thé ’13) To find
the UMF of the automorphism group of a Fräıssé structure, it
suffices to find a good Ramsey expansion for the structure.

Jasiński, Laflamme, Nguyen Van Thé and Woodrow found a
suitable Ramsey expansion of the semigeneric directed graph.
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The semigeneric directed graph

UMF of Aut(S)

A Ramsey expansion of the semigeneric directed graph

We extend S to the language {→, <,R} in the following way:

The ordering is total.

The equivalence classes have to be convex for the ordering.
This implies a notion of ordering of the equivalence classes.

Given two equivalence classes x∼ < y∼, we choose one of the
classes x∼y+ and x∼y−, call it x∼y∼ and say R(y ′, x ′) = 1 iff
x ′ ∈ x∼y∼ .

Remark

There are n!2(n2) ways to define the order and define R on n
equivalence classes.

We call S∗ the Fräıssé class of structures obtained this way.
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The semigeneric directed graph

UMF of Aut(S)

We write S∗ = Flim(S∗) = (S, <∗,R∗).

Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow ′14)

M (Aut(S)) = Aut(S) y Aut(S) · (<∗,R∗), where the closure is
taken in the compact space {0, 1}S2 × {0, 1}S2

.
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The semigeneric directed graph

UMF of Aut(S)

Borel sets of M(Aut(S))

The Borel sets of M(Aut(S)) are generated by clopen sets of the
form:

Ux1,...,xn,(ε2
1,...,ε

n
n−1) ∩ V(a1

1,...,a
1
i1

),...,(ak1 ,...,a
k
ik

).

where:
x1, . . . , xn are in different classes in S,
εji ∈ {0, 1} with i < j ≤ n,

U = {(<′,R ′) ∈ M(Aut(S)) | x∼1 <′ · · · <′ x∼n and R(xj , xi )⇔ εji = 1}

and,
aki ∼ akj ∀i , j , k ,

V = {(<′,R ′) ∈ M(Aut(S)) |(a1
1 <
′ · · · <′ a1

i1), . . . , (ak1 <
′ . . . <′ akik )}.
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The semigeneric directed graph

Unique ergodicity of Aut(S)

Theorem (J.)

Aut(S) is uniquely ergodic.

Theorem (Pawliuk, Sokic ′15)

There is an Aut(S)-invariant measure µ0 such that:

µ0

(
Ux1,...,xn,(ε2

1,...,ε
n
n−1) ∩ V(a1

1,...,a
1
i1

),...,(ak1 ,...,a
k
ik

)

)
=

1

n!2(n2)

1
k∏

j=1

ij !

.
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The semigeneric directed graph

Unique ergodicity of Aut(S)

Sketch of Proof

Let µ be an Aut(S)-invariant measure.

Proposition

µ(Ux1,...,xn,(ε2
1,...,ε

n
n−1)) = 1

n!2(n2)

Proposition

µ(V(a1
1,...,a

1
i1

),...,(ak1 ,...,a
k
ik

)) = 1
k∏

j=1

ij !

Proposition

µ (U ∩ V ) = µ (U)µ (V )
for all U = U

x1,...,xn,(ε
j
i )

and V = V(a1
1,...,a

1
i1

),...,(ak1 ,...,a
k
ik

).
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The semigeneric directed graph

Unique ergodicity of Aut(S)

Proposition

µ (U ∩ V ) = µ (U)µ (V )
for all U = U

x1,...,xn,<,(ε
j
i )

and V = V(a1
1,...,a

1
i1

),...,(ak1 ,...,a
k
ik

).

Proof.

Take x1, . . . , xn and U1, . . . ,Um the clopen sets corresponding to
all the way to order their columns and add R.

Define µU(·) = µ(·∩U)
µ(U) , as a measure on LOp, the space of

orderings inside columns.

µ =
∑

µUi
µ(Ui )

There exists H a subgroup of Aut(S) such that:
i) H · Ui = Ui for all i ≤ m.
ii) µ is H-ergodic.
Ergodic measures being extreme points, µ = µUi

∀i ≤ m.
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The semigeneric directed graph

Unique ergodicity of Aut(S)

Other instances where this method works:

Relational quotients (as defined by Sokic in ′13).

Homogeneous metric space with distances 1, 3 and 4.

All those groups are extensions and ”carry” that extension in their
UMFs.

14/15



Unique ergodicity, the semigeneric directed graph and short exact sequences

The semigeneric directed graph

Unique ergodicity of Aut(S)

Other instances where this method works:

Relational quotients (as defined by Sokic in ′13).

Homogeneous metric space with distances 1, 3 and 4.

All those groups are extensions and ”carry” that extension in their
UMFs.

14/15



Unique ergodicity, the semigeneric directed graph and short exact sequences

Short exact sequences

Stability under extension

Let G be a Polish group, H a closed normal subgroup and K such
that

1→ H → G → K → 1

is an exact sequence.

Theorem (J., Zucker)

If M(H) and M(K ) are metrizable then M(G ) is metrizable.
Moreover, under these hypotheses, if H and K are uniquely
ergodic, then G is uniquely ergodic.
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M. Pawliuk and M. Sokić, “Amenability and unique ergodicity of automorphism
groups of countable homogeneous directed graphs,” ArXiv e-prints, Dec. 2017.

M. Sokić, “Relational quotients,” Fund. Math., vol. 221, no. 3, pp. 189–220,
2013.

R. Ellis, Lectures on topological dynamics.
W. A. Benjamin, Inc., New York, 1969.
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