Unique ergodicity, the semigeneric directed graph and short exact sequences

Colin Jahel - Université Paris Diderot

joint work with Andy Zucker

November 23, 2018

Definitions

Let G be a Polish group.

We call a continuous G-action on a compact space a G-flow.

Definition

A G-flow is minimal if it admits no proper subflow.

Definitions

Let G be a Polish group.

We call a continuous G-action on a compact space a G-flow.

Definition

A G-flow is minimal if it admits no proper subflow.

Theorem (Ellis '69)

There exists a unique minimal G-flow M(G) that surjects onto any minimal G-flow.

Definitions

Let G be a Polish group.

We call a continuous G-action on a compact space a G-flow.

Definition

A G-flow is minimal if it admits no proper subflow.

Theorem (Ellis '69)

There exists a unique minimal G-flow M(G) that surjects onto any minimal G-flow.

Definition

G is amenable iff for every minimal action on a compact space X there is an invariant probability measure on X.

Unique ergodicity

Definition

G is uniquely ergodic iff for every minimal action on a compact space X there is a unique invariant probability measure X.

Unique ergodicity

Definition

G is uniquely ergodic iff for every minimal action on a compact space X there is a unique invariant probability measure X.

Theorem (Angel, Kechris, Lyons '12)

G is uniquely ergodic iff there is a unique invariant probability measure on M(G).

Unique ergodicity

Definition

G is uniquely ergodic iff for every minimal action on a compact space X there is a unique invariant probability measure X.

Theorem (Angel, Kechris, Lyons '12)

G is uniquely ergodic iff there is a unique invariant probability measure on M(G).

Examples:

- Compact groups.
- No known locally compact example.
- $G = \operatorname{Aut}(\mathbb{F})$ where \mathbb{F} is a Fraissé limit ?

Unique ergodicity and automorphism groups

When $G = \operatorname{Aut}(\mathbb{F})$ where \mathbb{F} is a Fraissé limit: Angel, Kechris and Lyons proved that if \mathbb{F} is the random graph or the Fraissé limit of uniform hypergraphs or graphs with forbidden subgraphs (or a variety of other structures) then G is uniquely ergodic.

Unique ergodicity and automorphism groups

When $G = \operatorname{Aut}(\mathbb{F})$ where \mathbb{F} is a Fraissé limit: Angel, Kechris and Lyons proved that if \mathbb{F} is the random graph or the Fraissé limit of uniform hypergraphs or graphs with forbidden subgraphs (or a variety of other structures) then G is uniquely ergodic. They develop a probabilistic method to prove unique ergocity.

Unique ergodicity and automorphism groups

When $G = \operatorname{Aut}(\mathbb{F})$ where \mathbb{F} is a Fraissé limit: Angel, Kechris and Lyons proved that if \mathbb{F} is the random graph or the Fraissé limit of uniform hypergraphs or graphs with forbidden subgraphs (or a variety of other structures) then G is uniquely ergodic. They develop a probabilistic method to prove unique ergocity.

Question (Angel, Kechris, Lyons '12)

If G is amenable and M(G) is metrizable, is it uniquely ergodic?

Directed graphs

Question (Angel, Kechris, Lyons '12)

If G is amenable and M(G) is metrizable, is it uniquely ergodic?

(Pawliuk, Sokic '15) New instances when $\mathbb F$ is a directed graph. For Cherlin's list of directed graphs amenability implies unique ergodicity in all cases but one (left open), the semigeneric directed graph.

Directed graphs

Question (Angel, Kechris, Lyons '12)

If G is amenable and M(G) is metrizable, is it uniquely ergodic?

(Pawliuk, Sokic '15) New instances when \mathbb{F} is a directed graph. For Cherlin's list of directed graphs amenability implies unique ergodicity in all cases but one (left open), the semigeneric directed graph.

Theorem (J.)

The automorphism group of the semigeneric directed graph is uniquely ergodic.

The semigeneric directed graph

Let $\mathcal S$ be the class of finite directed graphs such that:

- i) The absence of edge is an equivalence relation \sim .
- ii) For any two pairs $x \sim y$ and $x' \sim y'$ the number of (directed) edges from $\{x,y\}$ to $\{x',y'\}$ is even.

It is a Fraissé class. We write $\mathbb{S} = Flim(\mathcal{S})$, the semigeneric directed graph.

The semigeneric directed graph

Let S be the class of finite directed graphs such that:

- i) The absence of edge is an equivalence relation \sim .
- ii) For any two pairs $x \sim y$ and $x' \sim y'$ the number of (directed) edges from $\{x, y\}$ to $\{x', y'\}$ is even.

It is a Fraissé class. We write $\mathbb{S} = Flim(\mathcal{S})$, the semigeneric directed graph.

Remark

Given a \sim -equivalence class x^{\sim} and a point $y \notin x^{\sim}$, we get a partition of x^{\sim} in two classes x_{y+}^{\sim} and x_{y-}^{\sim} . This partition only depends on the class of y.

UMF of Aut(S)

M(Aut(S))

(Kechris, Pestov, Todorcevic '05 - Nguyen Van Thé '13) To find the UMF of the automorphism group of a Fraïssé structure, it suffices to find a good Ramsey expansion for the structure.

Jasiński, Laflamme, Nguyen Van Thé and Woodrow found a suitable Ramsey expansion of the semigeneric directed graph.

We extend S to the language $\{\rightarrow, <, R\}$ in the following way:

• The ordering is total.

We extend S to the language $\{\rightarrow, <, R\}$ in the following way:

- The ordering is total.
- The equivalence classes have to be convex for the ordering. This implies a notion of ordering of the equivalence classes.

We extend S to the language $\{\rightarrow, <, R\}$ in the following way:

- The ordering is total.
- The equivalence classes have to be convex for the ordering. This implies a notion of ordering of the equivalence classes.
- Given two equivalence classes $x^{\sim} < y^{\sim}$, we choose one of the classes x_{y+}^{\sim} and x_{y-}^{\sim} , call it x_{y-}^{\sim} and say R(y',x')=1 iff $x' \in x_{y-}^{\sim}$.

We extend S to the language $\{\rightarrow, <, R\}$ in the following way:

- The ordering is total.
- The equivalence classes have to be convex for the ordering. This implies a notion of ordering of the equivalence classes.
- Given two equivalence classes $x^{\sim} < y^{\sim}$, we choose one of the classes x_{y+}^{\sim} and x_{y-}^{\sim} , call it x_{y-}^{\sim} and say R(y',x')=1 iff $x' \in x_{y-}^{\sim}$.

Remark

There are $n!2^{\binom{n}{2}}$ ways to define the order and define R on n equivalence classes.

We extend S to the language $\{\rightarrow, <, R\}$ in the following way:

- The ordering is total.
- The equivalence classes have to be convex for the ordering. This implies a notion of ordering of the equivalence classes.
- Given two equivalence classes $x^{\sim} < y^{\sim}$, we choose one of the classes x_{y+}^{\sim} and x_{y-}^{\sim} , call it x_{y-}^{\sim} and say R(y',x')=1 iff $x' \in x_{y-}^{\sim}$.

Remark

There are $n!2^{\binom{n}{2}}$ ways to define the order and define R on n equivalence classes.

We call S^* the Fraissé class of structures obtained this way.

We write
$$\mathbb{S}^* = Flim(\mathcal{S}^*) = (\mathbb{S}, <^*, R^*).$$

Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow '14)

 $\mathrm{M}\left(\mathrm{Aut}(\mathbb{S})\right) = \mathrm{Aut}(\mathbb{S}) \curvearrowright \overline{\mathrm{Aut}(\mathbb{S}) \cdot (<^*, R^*)} \text{, where the closure is taken in the compact space } \{0,1\}^{\mathbb{S}^2} \times \{0,1\}^{\mathbb{S}^2}.$

Borel sets of M(Aut(S))

The Borel sets of M(Aut(S)) are generated by clopen sets of the form:

$$U_{x_1,...,x_n,(\varepsilon_1^2,...,\varepsilon_{n-1}^n)} \cap V_{(a_1^1,...,a_{i_1}^1),...,(a_1^k,...,a_{i_k}^k)}.$$

Borel sets of M(Aut(S))

The Borel sets of $M(\operatorname{Aut}(\mathbb{S}))$ are generated by clopen sets of the form:

$$U_{x_1,...,x_n,(\varepsilon_1^2,...,\varepsilon_{n-1}^n)} \cap V_{(a_1^1,...,a_{i_1}^1),...,(a_1^k,...,a_{i_k}^k)}.$$

where:

 x_1, \ldots, x_n are in different classes in \mathbb{S} , $\varepsilon_i^j \in \{0, 1\}$ with $i < j \le n$,

$$U = \{(<',R') \in \mathrm{M}(\mathrm{Aut}(\mathbb{S})) \mid x_1^{\sim} <' \cdots <' x_n^{\sim} \text{ and } R(x_j,x_i) \Leftrightarrow \varepsilon_i^j = 1\}$$

Borel sets of M(Aut(S))

The Borel sets of $M(\operatorname{Aut}(\mathbb{S}))$ are generated by clopen sets of the form:

$$U_{x_1,...,x_n,(\varepsilon_1^2,...,\varepsilon_{n-1}^n)} \cap V_{(a_1^1,...,a_{i_1}^1),...,(a_1^k,...,a_{i_k}^k)}.$$

where:

 x_1, \ldots, x_n are in different classes in \mathbb{S} , $\varepsilon_i^j \in \{0,1\}$ with $i < j \le n$,

$$U = \{(<', R') \in \mathcal{M}(\mathrm{Aut}(\mathbb{S})) \mid x_1^{\sim} <' \cdots <' x_n^{\sim} \text{ and } R(x_j, x_i) \Leftrightarrow \varepsilon_i^j = 1\}$$

and,

$$a_i^k \sim a_j^k \; \forall i,j,k$$
 ,

$$V = \{(<',R') \in \mathrm{M}(\mathrm{Aut}(\mathbb{S})) \, | (a_1^1 <' \cdots <' a_{i_1}^1), \ldots, (a_1^k <' \ldots <' a_{i_k}^k) \}.$$

Unique ergodicity, the semigeneric directed graph and short exact sequences

The semigeneric directed graph

he semigeneric directed graph
Unique ergodicity of Aut(S)

Theorem (J.)

 $\operatorname{Aut}(\mathbb{S})$ is uniquely ergodic.

Theorem (J.)

Aut(S) is uniquely ergodic.

Theorem (Pawliuk, Sokic '15)

There is an Aut(S)-invariant measure μ_0 such that:

$$\mu_0\left(U_{x_1,...,x_n,(\varepsilon_1^2,...,\varepsilon_{n-1}^n)}\cap V_{(a_1^1,...,a_{i_1}^1),...,(a_1^k,...,a_{i_k}^k)}\right) = \frac{1}{n!2^{\binom{n}{2}}}\frac{1}{\prod\limits_{i=1}^k i_i!}.$$

Sketch of Proof

Let μ be an $\operatorname{Aut}(\mathbb{S})$ -invariant measure.

Proposition

$$\mu(U_{x_1,\ldots,x_n,(\varepsilon_1^2,\ldots,\varepsilon_{n-1}^n)}) = \frac{1}{n!2^{\binom{n}{2}}}$$

Sketch of Proof

Let μ be an Aut(S)-invariant measure.

Proposition

$$\mu(U_{x_1,\ldots,x_n,(\varepsilon_1^2,\ldots,\varepsilon_{n-1}^n)}) = \frac{1}{n!2^{\binom{n}{2}}}$$

Proposition

$$\mu(V_{(a_1^1,...,a_{i_1}^1),...,(a_1^k,...,a_{i_k}^k)}) = \frac{1}{\prod\limits_{j=1}^k i_j!}$$

Sketch of Proof

Let μ be an Aut(S)-invariant measure.

Proposition

$$\mu(U_{\mathsf{x}_1,\ldots,\mathsf{x}_n,(\varepsilon_1^2,\ldots,\varepsilon_{n-1}^n)}) = \frac{1}{n!2^{\binom{n}{2}}}$$

Proposition

$$\mu(V_{(a_1^1,\dots,a_{i_1}^1),\dots,(a_1^k,\dots,a_{i_k}^k)}) = \frac{1}{\prod\limits_{i=1}^k i_i!}$$

Proposition

$$\begin{array}{l} \mu\left(U\cap V\right) = \mu\left(U\right)\mu\left(V\right) \\ \text{for all } U = U_{x_{1},...,x_{n},\left(\varepsilon_{i}^{j}\right)} \text{ and } V = V_{\left(a_{1}^{1},...,a_{h}^{1}\right),...,\left(a_{1}^{k},...,a_{h}^{k}\right)}. \end{array}$$

$$\mu\left(U\cap V\right)=\mu\left(U\right)\mu\left(V\right)$$
 for all $U=U_{x_{1},...,x_{n},<,(arepsilon_{i}^{j})}$ and $V=V_{\left(a_{1}^{1},...,a_{i_{1}}^{1}\right),...,\left(a_{1}^{k},...,a_{i_{k}}^{k}\right)}$.

Proof.

Take x_1, \ldots, x_n and U_1, \ldots, U_m the clopen sets corresponding to all the way to order their columns and add R.

$$\mu\left(U\cap V\right) = \mu\left(U\right)\mu\left(V\right)$$
 for all $U = U_{x_{1},...,x_{n},<,(arepsilon_{i}^{j})}$ and $V = V_{(a_{1}^{1},...,a_{i_{1}}^{1}),...,(a_{1}^{k},...,a_{i_{k}}^{k})}$.

Proof.

Take x_1, \ldots, x_n and U_1, \ldots, U_m the clopen sets corresponding to all the way to order their columns and add R.

Define $\mu_U(\cdot) = \frac{\mu(\cdot \cap U)}{\mu(U)}$, as a measure on LO_p , the space of orderings inside columns.

$$\mu = \sum \mu_{U_i} \mu(U_i)$$

$$\mu\left(U\cap V\right) = \mu\left(U\right)\mu\left(V\right)$$
 for all $U = U_{x_{1},...,x_{n},<,(arepsilon_{i}^{j})}$ and $V = V_{(a_{1}^{1},...,a_{i_{1}}^{1}),...,(a_{1}^{k},...,a_{i_{k}}^{k})}$.

Proof.

Take x_1, \ldots, x_n and U_1, \ldots, U_m the clopen sets corresponding to all the way to order their columns and add R.

Define $\mu_U(\cdot) = \frac{\mu(\cdot \cap U)}{\mu(U)}$, as a measure on LO_p , the space of orderings inside columns.

$$\mu = \sum \mu_{U_i} \mu(U_i)$$

There exists H a subgroup of Aut(S) such that:

i)
$$H \cdot U_i = U_i$$
 for all $i \leq m$.

$$\mu\left(U\cap V\right)=\mu\left(U\right)\mu\left(V\right)$$
 for all $U=U_{x_{1},...,x_{n},<,(arepsilon_{i}^{j})}$ and $V=V_{\left(a_{1}^{1},...,a_{i_{1}}^{1}\right),...,\left(a_{1}^{k},...,a_{i_{k}}^{k}\right)}$.

Proof.

Take x_1, \ldots, x_n and U_1, \ldots, U_m the clopen sets corresponding to all the way to order their columns and add R.

Define $\mu_U(\cdot) = \frac{\mu(\cdot \cap U)}{\mu(U)}$, as a measure on LO_p , the space of orderings inside columns.

$$\mu = \sum \mu_{U_i} \mu(U_i)$$

There exists H a subgroup of Aut(S) such that:

- i) $H \cdot U_i = U_i$ for all $i \leq m$.
- ii) μ is H-ergodic.

Ergodic measures being extreme points, $\mu = \mu_{U_i} \ \forall i \leq m$.

Other instances where this method works:

- Relational quotients (as defined by Sokic in '13).
- Homogeneous metric space with distances 1, 3 and 4.

Other instances where this method works:

- Relational quotients (as defined by Sokic in '13).
- Homogeneous metric space with distances 1, 3 and 4.

All those groups are extensions and "carry" that extension in their UMFs.

Stability under extension

Let G be a Polish group, H a closed normal subgroup and K such that

$$1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$$

is an exact sequence.

Theorem (J., Zucker)

If M(H) and M(K) are metrizable then M(G) is metrizable. Moreover, under these hypotheses, if H and K are uniquely ergodic, then G is uniquely ergodic.

O. Angel, A. S. Kechris, and R. Lyons, "Random orderings and unique ergodicity of automorphism groups," *J. Eur. Math. Soc. (JEMS)*, vol. 16, no. 10, pp. 2059–2095, 2012.

A. S. Kechris, V. G. Pestov, and S. Todorcevic, "Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups," *Geom. Funct. Anal.*, vol. 15, no. 1, pp. 106–189, 2005.

J. Jasiński, C. Laflamme, L. Nguyen Van Thé, and R. Woodrow, "Ramsey precompact expansions of hom. directed graphs," *Electron. J. Combin.*, vol. 21, no. 4, pp. Paper 4.42, 31, 2014.

M. Pawliuk and M. Sokić, "Amenability and unique ergodicity of automorphism groups of countable homogeneous directed graphs," *ArXiv e-prints*, Dec. 2017.

M. Sokić, "Relational quotients," *Fund. Math.*, vol. 221, no. 3, pp. 189–220, 2013.

R. Ellis, *Lectures on topological dynamics*. W. A. Benjamin, Inc., New York, 1969.

L. Nguyen Van Thé, "More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions," *Fund. Math.*, vol. 222, no. 1, pp. 19–47, 2013.