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The Vaught conjecture

Notation

We consider

- A relational language

L = 〈Ri : i ∈ I〉, where ar(Ri) = ni, i ∈ N
- L-structures: Y = 〈Y, 〈RY

i : i ∈ I〉〉 ∈ ModL(Y), RY
i ⊂ Yni

- L-sentences: ϕ ∈ SentL and theories T ⊂ SentL
- The binary language Lb = 〈R〉, ar(R) = 2
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The Vaught conjecture

Properties of theories and models

Models Y1,Y2 ∈ ModL are elementarily equivalent, Y1 ≡ Y2, iff they have
the same first order properties, i.e.,

∀ϕ ∈ SentL
(
Y1 |= ϕ iff Y2 |= ϕ

)
A consistent theory T is

- κ-categorical (for a cardinal κ) iff

∀Y1,Y2 ∈ ModTL (κ) Y1 ∼= Y2

- complete iff
∀Y1,Y2 ∈ ModTL Y1 ≡ Y2

Th(Y) := {ϕ ∈ SentL : Y |= ϕ} is the complete theory of Y
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The Vaught conjecture

The Vaught conjecture

In the sequel we assume that T is a countable complete theory with infinite
models
- I(T , ω) denotes the number of non-isomorphic models of T of size ω, i.e.,

I(T , ω) :=
∣∣∣ModTL (ω)/ ∼=

∣∣∣
- Example: I(Th(Q), ω) = 1
- Example: I(Th(〈ω,<〉), ω) = c the countable models are isomorphic to

ω + Z · L, where L is any countable l.o. or ∅

- Vaught: I(T , ω) can be any cardinal from (N \ {2}) ∪ {ω, c}
Vaught’s conjecture (1961): ω < I(T , ω) < c is impossible
- Trivially, CH⇒ VC. So, the question is: Is it true that ZFC ` VC?
- Morley (1970): I(T , ω) > ω1 ⇒ I(T , ω) = c
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The Vaught conjecture

Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

〈X, <, 〈Ui : i ∈ I〉〉

- 1978 (Shelah) for linearly ordered structures with Skolem functions

- 1984 (Shelah, Harrington, Makkai) for ω-stable theories

- 1988 (Mayer) for o-minimal theories

〈X, <, . . .〉

- Several generalizations
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MONOMORPHIC STRUCTURES
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Monomorphic structures

Equivalent definitions

An L-structure Y = 〈Y, 〈RY
i : i ∈ I〉〉 is called

- n-monomorphic iff all its substructures of size n are isomorphic
- monomorphic iff Y is n-monomorphic, for all n ∈ N
- chainable if there is a linear order < on Y such that Pa(〈Y, <〉) ⊂ Pa(Y)

- simply definable in a linear order iff there is a linear order < on Y such that for each
i ∈ I there is a quantifier free Lb-formula ϕi(v0, . . . , vni−1) defining the relation RY

i in the
structure 〈Y, <〉; that is,

∀ȳ ∈ Yni
(

ȳ ∈ RY
i iff 〈Y, <〉 |= ϕi[ȳ]

)
Then we say that the linear order < chains Y.

Theorem (Fraı̈ssé, for finite L; Pouzet, for arbitrary L)

The f.c.e. for an infinite relational structure Y
- Y is monomorphic

- Y is chainable

- Y is simply definable in a linear order.
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Monomorphic structures

Standard examples of chainable relations

In each linear order X = 〈X, <〉 we can define

- the betweeness relation, Dϕb ⊂ X3, defined by the Lb-formula

ϕb := (v0 < v1 < v2) ∨ (v2 < v1 < v0),

saying: v1 is between v0 and v2,

- the cyclic relation, Dϕc ⊂ X3, defined by the formula

ϕc := (v0 < v1 < v2) ∨ (v1 < v2 < v0) ∨ (v2 < v0 < v1);

- the separation relation, Dϕs ⊂ X4, defined by the formula

ϕs := (v0 < v1 < v2 < v3) ∨ (v0 < v3 < v2 < v1) ∨
(v1 < v0 < v3 < v2) ∨ (v1 < v2 < v3 < v0) ∨
(v2 < v1 < v0 < v3) ∨ (v2 < v3 < v0 < v1) ∨
(v3 < v0 < v1 < v2) ∨ (v3 < v2 < v1 < v0).

saying: v0, v1, v2 and v3 are different and the pair {v0, v2} separates the pair {v1, v3}.
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Monomorphic structures

Constant structures

Fact
The following conditions are equivalent for a Y ∈ ModL

- Aut(Y) = Sym(Y)

- Y is definable in Y by L∅ formulas

- Each l.o. on Y chains Y

Such structures are called constant by Fraı̈ssé.
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Monomorphic theories

Establishing monomorphic theories

Proposition

If L is a relational language (of any size) and T a complete L-theory with
infinite models, then the following conditions are equivalent:

(a) All models of T are monomorphic (T is a monomorphic theory),

(b) T has a monomorphic model,

(c) T has a countable monomorphic model.

Proof. (c)⇒ (b) is trivial.
(b)⇒ (a) If Y |= T is a monomorphic structure,
there is a Π1 theory TAge(Y) ⊂ Th(Y) = T
such that each model Z of TAge(Y) (and, in particular of T ) is monomorphic
and Age(Z) = Age(Y).
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Monomorphic theories

Proposition: (a)⇒ (c)

Claim

If T is a complete monomorphic L-theory with infinite models and |I| > ω,
then T has a countable model and there are
- a countable language LJ ⊂ L and
- a complete monomorphic LJ-theory TJ such that∣∣∣ModTL (ω)/ ∼=

∣∣∣ =
∣∣∣ModTJ

LJ
(ω)/ ∼=

∣∣∣. (1)

Proof. Let Y = 〈Y, 〈RY
i : i ∈ I〉〉 ∈ ModTL and let 〈Y, <〉 chain Y.

| FormLb | = ω so there is a partition I =
⋃

j∈J Ij, where |J| ≤ ω,
such that, picking ij ∈ Ij, we have RY

i = RY
ij

, for all i ∈ Ij. So

Tη :=
⋃
j∈J

{
∀v̄ (Ri(v̄)⇔ Rij (v̄)) : i ∈ Ij

}
⊂ ThL(Y) = T

Let LJ := 〈Rij : j ∈ J〉. To each ϕ ∈ FormL, replacing Ri by Rij , we adjoin ϕJ ∈ FormLJ and by induction
prove that

∀Z ∈ ModTηL ∀ϕ(v̄) ∈ FormL ∀z̄ ∈ Z
(
Z |= ϕ[̄z]⇔ Z|LJ |= ϕJ [̄z]

)
. (2)

Using that, it is easy to show that for each Z1,Z2 ∈ ModTηL we have

Z1 ∼= Z2 ⇔ Z1|LJ ∼= Z2|LJ and Z1 ≡L Z2 ⇔ Z1|LJ ≡LJ Z2|LJ . (3)

Let TJ := ThLJ (Y|LJ). Using (3) we easily prove that the mapping

Λ : ModTL → ModTJ
LJ

, given by Λ(Z) = Z|LJ ,

is a bijection. Clearly, Λ[ModTL (ω)] = ModTJ
LJ

(ω).

By the Löwenheim-Skolem theorem there is X ∈ ModTJ
LJ

(ω)

so, Λ−1(X) ∈ ModTL (ω) is a countable model of T .
Y|LJ is monomorphic so, as above, the theory TJ is monomorphic.

By (3), the mapping Λ preserves ∼= and (1) is true. 2
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Vaught’s conjecture for monomorphic theories

VAUGHT’S CONJECTURE

FOR MONOMORPHIC THEORIES
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Vaught’s conjecture for monomorphic theories

The main result

Theorem

If T is a complete monomorphic theory having infinite models, then

I(T , ω) ∈ {1, c}.

In addition, I(T , ω) = 1 iff some countable model of T is simply definable by
an ω-categorical linear order on its domain.
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Proof of Vaught’s conjecture for... Part I: Preliminaries

PROOF OF VAUGHT’S CONJECTURE
Part I: Preliminaries
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Proof of Vaught’s conjecture for... Part I: Preliminaries

Reduction to countable L

Let T be a complete monomorphic L-theory having infinite models.
By Claim 1, w.l.o.g. we suppose |L| ≤ ω; thus ModTL (ω) 6= ∅.
We prove that ∣∣∣ModTL (ω)/∼=

∣∣∣ ∈ {1, c}.
For Y ∈ ModTL (ω) let

LY := {〈ω,C〉 : C ∈ LOω and 〈ω,C〉 chains Y}
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Proof of Vaught’s conjecture for... Part I: Preliminaries

The mapping Φ:ModLb(ω)→ ModL(ω)

Let Y0 = 〈ω, 〈RY0
i : i ∈ I〉〉 ∈ ModTL (ω).

Then there is a linear order X0 ∈ LY0 ⊂ ModLb(ω)
and there are quantifier free Lb-formulas ϕi(v0, . . . , vni−1), i ∈ I, such that

∀x̄ ∈ ωni
(

x̄ ∈ RY0
i ⇔ X0 |= ϕi[x̄]

)
. (4)

Let TX0 := ThLb(X0).
For X ∈ ModLb(ω) let YX := 〈ω, 〈RYX

i : i ∈ I〉〉 ∈ ModL(ω), where, for each
i ∈ I,

∀x̄ ∈ ωni
(

x̄ ∈ RYX
i ⇔ X |= ϕi[x̄]

)
. (5)

Let
Φ : ModLb(ω)→ ModL(ω)

be the mapping defined by

Φ(X) = YX, for each X ∈ ModLb(ω).
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Proof of Vaught’s conjecture for... Part I: Preliminaries

Φ preserves ∼= and ≡

Claim
For all X1,X2 ∈ ModLb(ω) we have
(a) Iso(X1,X2) ⊂ Iso(YX1 ,YX2)
(b) X1 ≡ X2 ⇒ YX1 ≡ YX2

(c) Φ[Mod
TX0
Lb

(ω)] ⊂ ModTL (ω)

Proof. (a) If f ∈ Iso(X1,X2), then since f preserves all formulas in both directions,
for each i ∈ I and x̄ ∈ ωni we have: x̄ ∈ R

YX1
i iff X1 |= ϕi[x̄] iff X2 |= ϕi[f x̄] iff

f x̄ ∈ R
YX2
i . Thus f ∈ Iso(YX1 ,YX2).

(b) For ϕ(v̄) ∈ FormL let ϕb(v̄) ∈ FormLb be obtained from ϕ by replacing of Ri by
ϕi. An easy induction shows that

∀X ∈ ModLb(ω) ∀ϕ(v̄) ∈ FormL ∀x̄ ∈ ωn
(
YX |= ϕ[x̄]⇔ X |= ϕb[x̄]

)
, (6)

which implies: YX |= ϕ iff X |= ϕb, for all ϕ ∈ SentL
(c) If X ∈ Mod

TX0
Lb

(ω), then X ≡ X0 and, by (b), Φ(X) = YX ≡ YX0 = Y0 |= T . 2
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Proof of Vaught’s conjecture for... Part I: Preliminaries

The mapping Ψ : Mod
TX0
Lb

(ω)/∼= −→ ModTL (ω)/∼=

Claim

The mapping
Ψ : Mod

TX0
Lb

(ω)/∼=→ ModTL (ω)/∼=,

given by

Ψ([X]) = [YX], for all [X] ∈ Mod
TX0
Lb

(ω)/∼=,

is well defined.

Proof. If X1,X2 ∈ Mod
TX0
Lb

(ω) and X1 ∼= X2, then by the previous Claim
YX1
∼= YX2 , that is [YX1 ] = [YX2 ]. 2
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Proof of Vaught’s conjecture for... Part I: Preliminaries

A trivial fact

Fact

If Y is monomorphic and Y ∼= Z, then otp[LY] = otp[LZ].

Proof. Let f ∈ Iso(Z,Y) and τ ∈ otp[LY].
Let X = 〈Y, <〉 ∈ LY, where otp(X) = τ .
Then X1 := 〈Z, f−1[<]〉 ∼=f X; thus, otp(X1) = τ .
For i ∈ I and z̄ ∈ Zni we have

z̄ ∈ RZ
i iff f z̄ ∈ RY

i iff X |= ϕi[f z̄] iff X1 |= ϕi [̄z],

which gives X1 ∈ LZ. So, τ = otp(X1) ∈ otp[LZ]. 2
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Proof of Vaught’s conjecture for... Part I: Preliminaries

Size of the fibers of Ψ

Claim

For each linear order X ∈ Mod
TX0
Lb

(ω) we have∣∣∣Ψ−1
[
{[YX]}

]∣∣∣ ≤ ∣∣∣ otp[LYX ] ∩ otp[Mod
TX0
Lb

(ω)]
∣∣∣. (∗)

Proof. We show that Λ([Z]) = otp(Z) defines an injection

Λ : Ψ−1[{[YX]}] 1−1−→ otp[LYX ] ∩ otp[Mod
TX0
Lb

(ω)].

For [Z] ∈ Ψ−1[{[YX]}] we have [YZ] = Ψ([Z]) = [YX],
that is, YZ ∼= YX
and, by Fact, otp(Z) ∈ otp[LYZ ] = otp[LYX ].
Since Z ∈ Mod

TX0
Lb

(ω) we have otp(Z) ∈ otp[Mod
TX0
Lb

(ω)].
Λ is an injection: if [Z] 6= [Z′], then Z 6∼= Z′, and, hence, otp(Z) 6= otp(Z′). 2
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PROOF OF VAUGHT’S CONJECTURE
Part II: Proof by discussion

(Cases A,B and Subcases B1,B2)

November 20, 2018 23 / 30



Proof of Vaught’s conjecture for... Part II: Proof by discussion

Case A: Some Y∈ ModTL (ω) is chained by an ω-categorical
linear order

Claim

Then Y is an ω-categorical L-structure.
So, |ModTL (ω)/∼= | = 1 and we are done.

Proof. By the theorem of Engeler, Ryll-Nardzewski and Svenonius,
the group Aut(X) is oligomorphic;
that is, for each n ∈ N we have |ωn/∼X,n | < ω,
where x̄ ∼X,n ȳ iff f x̄ = ȳ, for some f ∈ Aut(X).
Since Y is definable in X we have Aut(X) ⊂ Aut(Y),
which implies that for n ∈ N and each x̄, ȳ ∈ ωn we have
x̄ ∼X,n ȳ⇒ x̄ ∼Y,n ȳ.
Thus |ωn/∼Y,n | ≤ |ωn/∼X,n | < ω, for all n ∈ N,
and, since |L| ≤ ω, by the same theorem, Y is ω-categorical. 2
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Case B: The set
⋃

Y∈ModTL (ω)LY does not contain
ω-categorical linear orders

Then, by Rubin’s theorem

∀Y∈ ModTL (ω) ∀X ∈ LY
∣∣∣ModTXLb

(ω)/∼=
∣∣∣ = c.

Clearly, there is no constant Y ∈ ModTL (ω), that is

∀Y ∈ ModTL (ω) LY 6= LOω.

We prove that
|ModTL (ω)/∼= | = c,

distinguishing subcases B1 and B2.
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Subcase B1: For some Y0 ∈ ModTL (ω) there is a l.o.
X0 ∈ LY0 with at least one end-point

Then we take such Y0 and X0
and recall the general discussion from Part I of the proof.
|ModTL (ω)/∼= | = c will be true if Ψ is at-most-countable-to-one.
That follows from the bound (∗) for the size of the fibers of Ψ and the
following claim

Claim∣∣∣ otp[LYX ] ∩ otp[Mod
TX0
Lb

(ω)]
∣∣∣ ≤ ω, for all X ∈ Mod

TX0
Lb

(ω).

In the proof of the Claim we will use the following
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Description of the set LY (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)

If Y ∈ ModL(Y) is an infinite monomorphic structure and X = 〈Y, <〉 ∈ LY,
then one of the following holds

(I) LY = LOY , that is, each linear order C on Y chains Y,

(II) LY =
⋃

X=I+F

{
F + I, I∗ + F∗

}
,

(III) There are finite subsets K and H of Y such that X = K + M + H and
LY =

⋃
CK∈LOK
CH∈LOH

{
〈K,CK〉+M+〈H,CH〉, 〈H,CH〉∗+M∗+〈K,CK〉∗

}
.a

aThe statement follows from Theorem 9 of [3], which is a modification of similar
results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah
in [4].

Since we are in Case B, (I) is impossible.
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{
〈K,CK〉+M+〈H,CH〉, 〈H,CH〉∗+M∗+〈K,CK〉∗

}
.a

aThe statement follows from Theorem 9 of [3], which is a modification of similar
results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah
in [4].

Since we are in Case B, (I) is impossible.
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Proof of Claim

Let X ∈ Mod
TX0
Lb

(ω) and τ := otp(X). Recall that we prove∣∣∣ otp[LYX ] ∩ otp[Mod
TX0
Lb

(ω)]
∣∣∣ ≤ ω.

If LYX satisfies (III), then otp[LYX ] = {τ, τ∗} and we are done.
Otherwise, we have LYX =

⋃
X=I+F{F + I, I∗ + F∗}.

If {I,F} is a gap in X, then F + I and I∗ + F∗ are l.o.w.e.p.
Since we are in Case B1, we have F + I, I∗ + F∗ 6≡ X0

and, hence, otp(F + I), otp(I∗ + F∗) 6∈ otp[Mod
TX0
Lb

(ω)].

Thus, otp[LYX ] ∩ otp[Mod
TX0
Lb

(ω)] ⊂ Θ, where

Θ := {τ, τ∗} ∪
⋃

x∈ω{τx, τ
∗
x , σx, σ

∗
x}, where

τx := otp((x,∞)X + (−∞, x]X)

σx := otp([x,∞)X + (−∞, x)X)

Since |Θ| = ω, the claim is proved. 2
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Subcase B2: Each X ∈
⋃

Y∈ModTL (ω)LY is a linear order
without end points

Now, we fix arbitrary Y0 ∈ ModTL (ω) and X0 ∈ LY0 .
and recall the general discussion from Part I of the proof.
Suppose that LYX =

⋃
X=I+F{F + I, I∗ + F∗}, for some X ∈ Mod

TX0
Lb

(ω).
Let x ∈ ω(= X)
Since X has no end points we have X = (−∞, x)X + [x,∞)X;
thus, the l.o. [x,∞)X + (−∞, x)X chains YX ∈ ModTL (ω)
and has a minimum, which contradicts the assumption of Subcase B2.
So, for each X ∈ Mod

TX0
Lb

(ω) we have

LYX =
⋃

CK∈LOK
CH∈LOH

{
〈K,CK〉+ M + 〈H,CH〉, 〈H,CH〉∗ + M∗ + 〈K,CK〉∗

}
Since the elements of LYX are l.o.w.e.p., we have K = H = ∅
and, hence, LYX = {X,X∗},
which gives | otp[LYX ]| ≤ 2.
Now, as above, we obtain |ModTL (ω)/∼= | = c. 2
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C. Frasnay, Quelques problémes combinatoires concernant les ordres totaux et les relations monomorphes, Ann. Inst. Fourier
(Grenoble) 15,2 (1965) 415–524.

P. C. Gibson, M. Pouzet, R. E. Woodrow, Relational structures having finitely many full-cardinality restrictions, Discrete Math.
291,1-3 (2005) 115134.

W. Hodges, A. H. Lachlan, S. Shelah, Possible orderings of an indiscernible sequence, Bull. London Math. Soc. 9,2 (1977) 212–215.

L. L. Mayer, Vaught’s conjecture for o-minimal theories, J. Symbolic Logic 53, 1 (1988) 146–159.

M. D. Morley, The number of countable models, J. Symbolic Logic 35 (1970) 14–18.
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