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The Vaught conjecture

Properties of theories and models

Models Y, Y, € Mod, are elementarily equivalent, Y, = Y, iff they have
the same first order properties, i.e.,

Vo € Senty (Yl Ee iff Yy = <p)

A consistent theory 7 is

- k-categorical (for a cardinal k) iff

VY1, Y, € Mod] (k) Y; =Y,

- complete iff

VY, Y, € Mod] Y =Y,

Th(Y) := {p € Sent, : Y |= ¢} is the complete theory of Y
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In the sequel we assume that 7 is a countable complete theory with infinite
models
- I(T,w) denotes the number of non-isomorphic models of 7 of size w, i.e.,

I(T,w) = | Mod] (w)/ =

- Example: I(Th(Q),w) =1
- Example: I(Th((w, <)), w) = ¢ the countable models are isomorphic to

w + Z - 1L, where L is any countable l.o. or ()

- Vaught: /(7 ,w) can be any cardinal from (N \ {2}) U {w, ¢}
Vaught’s conjecture (1961): w < I(7,w) < c¢ is impossible
- Trivially, CH = VC. So, the question is: Is it true that ZFC - VC?
- Morley (1970): I(T,w) > w; = I(T,w) =¢
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The Vaught conjecture

Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

X, < (Ui:iel)

1978 (Shelah) for linearly ordered structures with Skolem functions
1984 (Shelah, Harrington, Makkai) for w-stable theories

1988 (Mayer) for o-minimal theories

(X, <,...)

Several generalizations
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Equivalent definitions

An L-structure Y = (Y, (R} : i € I)) is called

Theorem (Fraissé, for finite L; Pouzet, for arbitrary L)

The f.c.e. for an infinite relational structure Y

n-monomorphic iff all its substructures of size n are isomorphic
monomorphic iff Y is n-monomorphic, for alln € N
chainable if there is a linear order < on Y such that Pa((Y, <)) C Pa(Y)

simply definable in a linear order iff there is a linear order < on Y such that for each
i € I there is a quantifier free Ly-formula ¢;(vo, . . ., v,,—1) defining the relation RY in the
structure (Y, <); that is,

vy € Y" (y eRr’ iff (¥,<)E cp,-[y])

Then we say that the linear order < chains Y.

Y is monomorphic
Y is chainable

Y is simply definable in a linear order.
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Monomorp!

Standard examples of chainable relations

In each linear order X = (X, <) we can define

- the betweeness relation, D, C X 3 defined by the Lj-formula
©Yp = (Vo <v < Vz) vV (Vz < < Vo),

saying: vy is between vg and vy,
- the cyclic relation, D,,, C X, defined by the formula

we:=o<vi<wm) Vi <va<wy) V(2 <vp<v);

- the separation relation, D, C X*, defined by the formula

s = (V0<V1<V2<V3)\/(Vo<V3<V2<V1)V
(V] < vy <v3 <V2)\/(V1 <V2<V3<Vo)\/
(V2<V1 <V0<V3)\/(V2<V3 <V0<V1)\/
(va<wvp<vi <)V (vz<wvy<v <)
saying: vg, vy, v, and vz are different and the pair {vo, v, } separates the pair {v{,v3}.

9730



Monomorphic structures

Constant structures



Monomorphic structures

Constant structures

Fact
The following conditions are equivalent for a Y € Mod,,
- Aut(Y) = Sym(Y)

November 20, 2018

10/30



Monomorphic structures

Constant structures

Fact

The following conditions are equivalent for a Y € Mod,,
- Aut(Y) = Sym(Y)
- Y is definable in ¥ by Ly formulas

November 20, 2018

10/30



Monomorphic structures

Constant structures

Fact

The following conditions are equivalent for a Y € Mod,,
- Aut(Y) = Sym(Y)
- Y is definable in ¥ by Ly formulas
- Each l.o. on Y chains Y

November 20, 2018

10/30



Monomorphic structures

Constant structures

Fact

The following conditions are equivalent for a Y € Mod,,
- Aut(Y) = Sym(Y)
- Y is definable in ¥ by Ly formulas
- Each l.o. on Y chains Y

Such structures are called constant by Fraissé.

November 20, 2018
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Monomorphic theories

Establishing monomorphic theories

Proposition

If L is a relational language (of any size) and 7 a complete L-theory with
infinite models, then the following conditions are equivalent:

(a) All models of 7 are monomorphic (7 is a monomorphic theory),

(b) 7 has a monomorphic model,

(¢) T has a countable monomorphic model.

Proof. (¢) = (b) is trivial.

(b) = (a) If Y |= T is a monomorphic structure,

there is a Iy theory Tage(yy C Th(Y) =T

such that each model Z of T (y) (and, in particular of 7") is monomorphic
and Age(Z) = Age(Y).
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Monomorphic theories

Proposition: (a) = (¢)

Claim

If T is a complete monomorphic L-theory with infinite models and |I| > w,
then 7 has a countable model and there are

- a countable language L; C L and

- a complete monomorphic Ly-theory 7; such that

‘Mod[(w)/ ~ ’ - (Mod[;(w)/ ~ | (1)

Proof. Let Y = (Y, (RY : i € I)) € Mod] and let (¥, <) chain Y.
| Formy,, | = w so there is a partition I = | J;¢, Ij, where |J| < w,

such that, picking i; € I;, we have R?{ = R?jf, foralli € I;. So

T = U {w &) & Ry() i€ b} CTh(¥) =T
jel
LetL; := <R,-j :j € J). To each ¢ € Formy, replacing R; by Rj;, we adjoin ¢y € Formy, and by induction
prove that
VZ € Mod[" V() € Form, V2 € Z (Z = ol  ZILs = i), 2
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Vaught’s conjecture for monomorphic theories

The main result

Theorem
If 7 is a complete monomorphic theory having infinite models, then
I(T,w) € {1,c}.

In addition, /(7 ,w) = 1 iff some countable model of 7 is simply definable by
an w-categorical linear order on its domain.

v
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Proof of Vaught’s conjecture for... Part I: Preliminaries

Reduction to countable L

Let 7 be a complete monomorphic L-theory having infinite models.
By Claim 1, w.1.0.g. we suppose |L| < w; thus Mod] (w) # 0.
We prove that

Mod] (w)/= | € {1,c}.

For Y € Mod] (w) let

Ly :={{w, <) : < € LO, and (w, <) chains Y}

November 20, 2018

17730
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The mapping ¢ :Mod;, (w) — Mod, (w)

Let Yo = (w, <R§Y° i€ l)) € Mod] (w).
Then there is a linear order Xy € Ly, C Mody, (w)
and there are quantifier free L,-formulas ¢;(vo, ..., vy—1), i € I, such that

Vi € W (x RV & X, = @,-[x]). )

Let 7§g0 = ThLb (X())
For X € Mod;, (w) let Yx := (w, <R?{X i €I)) € Modg(w), where, for each
iel,

VE € W (x eR™ & X | @i[x]). )

Let
® : Mody, (w) — Mody (w)
be the mapping defined by

¢ (X) = Yx, for each X € Mody, (w).
] November 20,2018 18/30
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Claim

For all X, X, € Mody, (w) we have
(a) Iso(X,X;) C Iso(Yx,, Yx,)
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Claim

For all X, X, € Mody, (w) we have
(a) Iso(X,X;) C Iso(Yx,, Yx,)
X =X = YXI = sz
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Proof of Vaught’s conjecture for... Part I: Preliminaries

® preserves = and =

Claim

For all X, X, € Mody, (w) we have
(a) Iso(X,X;) C Iso(Yx,, Yx,)
X =X = YXI = sz

(¢) ®[Mod, ™ (w)] C Mod] ()

Proof. (a) If f € Iso(X;, X;), then since f preserves all formulas in both directions,
for each i € I and X € w" we have: x € R?{X‘ iff X = ifx] iff Xo = oiffx] iff

fx € R™. Thusf € Tso(Yx,, Ys,).

(b) For ¢(v) € Form,, let ¢, (¥) € Formy, be obtained from ¢ by replacing of R; by
;. An easy induction shows that

VX € Mody, (w) Ve¢(v) € Formy, Vx € w" (Yx Eelx] e XE e [)’c])7 (6)

which implies: Yx = ¢ iff X = ¢, for all ¢ € Sent;,
©IfXe ModZ?" (w), then X = X and, by (b), ?(X) = Yx =VYx, =Yo 7. O
] November 20,2018 19/30
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The mapping V¥ : ModEf‘) (w)/= — Mod] (w)/ =

Claim
The mapping
7§§O ~ T ~Y
¥ : Mod; *(w)/= — Mod; (w)/=,
given by

W([x]) = [Yx]. for all [X] € Mod, * (w)/ =,

is well defined.

Proof. If X;, X, € ModefO (w) and X = X, then by the previous Claim
YXI = YXZ’ that is [Yxl] = [sz].

O
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A trivial fact

Fact
If Y is monomorphic and Y 2 Z, then otp[Ly] = otp[Lz]. J

Proof. Let f € Iso(Z,Y) and 7 € otp[Ly].

Let X = (Y, <) € Ly, where otp(X) = 7.

Then X; := (Z,f[<]) 2 X; thus, otp(X;) = 7.
Fori € I and z € Z" we have

z € RZiff fz € R} iff X = oi[fz] iff Xy = ¢ilz],

which gives X; € Lz. So, 7 = otp(X;) € otp[Lz]. O
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Size of the fibers of ¥

Claim

For each linear order X € Modfjo (w) we have

o {1l | < |owlLv] N otpMod, (w)]| (+)

Proof. We show that A([Z]) = otp(Z) defines an injection
_ 1-1 Tx
AU 1[{[YX]}] — otp[Lyy] ﬂotp[ModLbO(w)].

For [Z] € U~'[{[Yx]}] we have [Yz] = ¥([Z]) = [Yx],

thatis, Yy & Yx

and, by Fact, otp(Z) € otp[Ly,] = otp[Ly,].

Since Z € Modz_j{" (w) we have otp(Z) € otp[ModZE{0 (w)].

A is an injection: if [Z] # [Z'], then Z % 7/, and, hence, otp(Z) # otp(Z'). m|
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(Cases A,B and Subcases B1,B2)
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Case A: Some Y € Mod] (w) is chained by an w-categorical
linear order

Claim

Then Y is an w-categorical L-structure.
So, | Mod] (w)/=2 | = 1 and we are done.
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Case A: Some Y € Mod] (w) is chained by an w-categorical
linear order

Claim

Then Y is an w-categorical L-structure.
So, | Mod] (w)/=2 | = 1 and we are done.

Proof. By the theorem of Engeler, Ryll-Nardzewski and Svenonius,

the group Aut(X) is oligomorphic;

that is, for each n € N we have |w"/~x , | < w,

where X ~x , y iff fx = y, for some f € Aut(X).

Since Y is definable in X we have Aut(X) C Aut(Y),

which implies that for n € N and each X,y € w" we have

X ~X,n y=x ~Y,n y.

Thus [w"/~y . | < W'/ ~x, | <w,foralln €N,

and, since |L| < w, by the same theorem, Y is w-categorical. O
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Case B: The set UYEModL Ly does not contain

w-categorical linear orders

Then, by Rubin’s theorem

VY € Mod/ (w) VX € Ly Modef (w)/=
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Case B: The set UYEModL Ly does not contain

w-categorical linear orders

Then, by Rubin’s theorem
VY € Mod/ (w) VX € Ly Modef (w)/=

Clearly, there is no constant Y € Mod] (w), that is

VY € Mod] (w) Ly # LO,.
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Case B: The set UYeModL Ly does not contain
w-categorical linear orders

Then, by Rubin’s theorem
YY € Mod] (w) VX € Ly |Mod/*(w)/= | =c.
Clearly, there is no constant Y € Mod] (w), that is
VY € Mod] (w) Ly # LO,.

We prove that
[Mod] (w)/= | =,

distinguishing subcases B1 and B2.
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Subcase B1: For some Y, € Mod/ (w) there is a L.o.

Xo € Ly, with at least one end-point

Then we take such Y and X
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Subcase B1: For some Y, € Mod/ (w) there is a L.o.
Xo € Ly, with at least one end-point

Then we take such Y and X
and recall the general discussion from Part I of the proof.
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Subcase B1: For some Y, € Mod/ (w) there is a L.o.
Xo € Ly, with at least one end-point

Then we take such Y and X
and recall the general discussion from Part I of the proof.
| Mod] (w)/22 | = ¢ will be true if ¥ is at-most-countable-to-one.

That follows from the bound (x) for the size of the fibers of ¥ and the
following claim

Claim

otp[Ly, | N otp[ModZ—f0 (W)]| <w, forall X € ModLTffO (w).
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Subcase B1: For some Y, € Mod/ (w) there is a L.o.
Xo € Ly, with at least one end-point

Then we take such Y and X
and recall the general discussion from Part I of the proof.
| Mod] (w)/22 | = ¢ will be true if ¥ is at-most-countable-to-one.

That follows from the bound (x) for the size of the fibers of ¥ and the
following claim

Claim

otp[Ly, | N otp[ModZ—f0 (W)]| <w, forall X € ModLTffO (w).

In the proof of the Claim we will use the following
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Description of the set Ly (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)

If Y € Mod,(Y) is an infinite monomorphic structure and X = (¥, <) € Ly,
then one of the following holds
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Description of the set Ly (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If Y € Mod,(Y) is an infinite monomorphic structure and X = (¥, <) € Ly,
then one of the following holds
(1) Ly = LOy, that is, each linear order < on Y chains Y,
() Ly = Ug_rox {JF It F*},
(rir) There are finite subsets K and H of Y such that X = K + M + H and
Ly = U sceroe { (K. )+ M {H, <), (H, )"+ M+ (K, <) 2

“The statement follows from Theorem 9 of [3], which is a modification of similar

results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah
in [4].




Proof of Vaught’s conjecture for... Part II: Proof by discussion

Description of the set Ly (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If Y € Mod,(Y) is an infinite monomorphic structure and X = (¥, <) € Ly,
then one of the following holds
(1) Ly = LOy, that is, each linear order < on Y chains Y,
() Ly = Ug_rox {JF It F*},
(rir) There are finite subsets K and H of Y such that X = K + M + H and
Ly = U sceroe { (K. )+ M {H, <), (H, )"+ M+ (K, <) 2

“The statement follows from Theorem 9 of [3], which is a modification of similar

results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah
in [4].

Since we are in Case B, (I) is impossible.



Proof o

Proof of Claim
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Proof of Claim

LetX € ModZig" (w) and 7 := otp(X). Recall that we prove

otp[Ly, ] N otp[ModEgo (W] < w.
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LetX € ModZig" (w) and 7 := otp(X). Recall that we prove

otp[Ly, ] N otp[ModEgo (W] < w.

If Ly, satisfies (111), then otp[Ly, | = {7, 7*} and we are done.
Otherwise, we have Ly, = Jyx_j p{F + 1, I* +F*}.
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Proof of Claim
LetX € Modzzg" (w) and 7 := otp(X). Recall that we prove

otp[Lv,] N otp[Mod,  (w)]| < w.

If Ly, satisfies (111), then otp[Ly, | = {7, 7*} and we are done.
Otherwise, we have Ly, = Jyx_j p{F + 1, I* +F*}.
If {I,F} is a gap in X, then F + I and I* 4 F* are l.o.w.e.p.
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Proof of Claim

LetX € Modzzg" (w) and 7 := otp(X). Recall that we prove

otp[Lv,] N otp[Mod,  (w)]| < w.

If Ly, satisfies (111), then otp[Ly, | = {7, 7*} and we are done.
Otherwise, we have Ly, = Jyx_j p{F + 1, I* +F*}.

If {I,F} is a gap in X, then F + I and I* 4 F* are l.o.w.e.p.
Since we are in Case B1, we have F 4 I, I* + F* # X,
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Proof of Claim

LetX € Mod[f" (w) and 7 := otp(X). Recall that we prove

otp[Lv,] N otp[Mod,  (w)]| < w.

If Ly, satisfies (111), then otp[Ly, | = {7, 7*} and we are done.
Otherwise, we have Ly, = Jyx_j p{F + 1, I* +F*}.

If {I,F} is a gap in X, then F + I and I* 4 F* are l.o.w.e.p.
Since we are in Case B1, we have F + I, I* + F* # X,

and, hence, otp(F + I), otp(I* + F*) ¢ otp[ModeO (w)].

Thus, otp[Ly, | N otp[Modz—i<0 (w)] C ©, where

O = {7, 7 Um0 75, 0x, 05}, Where
Tx = otp((x,00)x + (—00,x]x)
Ox = Otp([xv OO)X + (_OO7X)X)



Proof of Vaught’s conjecture for... Part II: Proof by discussion

Proof of Claim

LetX € Mod[f" (w) and 7 := otp(X). Recall that we prove

otp[Lv,] N otp[Mod,  (w)]| < w.
If Ly, satisfies (111), then otp[Ly, | = {7, 7*} and we are done.
Otherwise, we have Ly, = Jyx_j p{F + 1, I* +F*}.
If {I,F} is a gap in X, then F + I and I* 4 F* are l.o.w.e.p.
Since we are in Case B1, we have F + I, I* + F* # X,
and, hence, otp(F + I), otp(I* + F*) ¢ otp[ModeO (w)].
Thus, otp[Ly, | N otp[Modz—i<0 (w)] C ©, where

O = {7, 7 Um0 75, 0x, 05}, Where
Tx = otp((x,00)x + (—00,x]x)
or = otp([x,00)x + (=00, x)x)
Since |©| = w, the claim is proved. a
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Subcase B2: Each X ¢ UYEModT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
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Subcase B2: Each X € Uy cyoa7 ()
without end points

Ly 1is a linear order

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.
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Subcase B2: Each X € UYeModT
without end points

Ly 1is a linear order

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod&"( ).
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Subcase B2: Each X € UYeModT
without end points

Ly 1is a linear order

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod&"( ).
Letx € w(=X)
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Subcase B2: Each X € UYeModT
without end points

Ly 1is a linear order

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod&"( ).
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
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Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod&"( ).

Letx € w(=X)
Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)
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Subcase B2: Each X ¢ UYEMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.
and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod&"( ).
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)
and has a minimum, which contradicts the assumption of Subcase B2.
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Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.

and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod,
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)

and has a minimum, which contradicts the assumption of Subcase B2.
So, for each X € ModZigO (w) we have

EYX = UZKELOK {<K7 <]K> +M + <H7 <]H>7 <H7 <]H>* +M* + <K7 <]K>*}

73<o

(w)-

HELOY



Proof of Vaught’s conjecture for... Part II: Proof by discussion

Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.

and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod,
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)

and has a minimum, which contradicts the assumption of Subcase B2.
So, for each X € ModZigO (w) we have
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Proof of Vaught’s conjecture for... Part II: Proof by discussion

Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.

and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod,
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)

and has a minimum, which contradicts the assumption of Subcase B2.

So, for each X € ModEfO (w) we have

Ly, = Ujl{éégk {(K, <) + M+ (H, <), (H, <m)* +M* + (K, <1K>*}
Since the elements of Ly, are Lo.w.e.p., wehave K = H = ()

and, hence, Ly, = {X,X*},
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Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.

and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod,
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)

and has a minimum, which contradicts the assumption of Subcase B2.
So, for each X € ModEfO (w) we have

EYX = UquLOK {(K, <]K> + M + <H, <]H>, <H, <]H>* 4+ M* + (K, <]K>*}

<y ELOY
Since the elements of Ly, are l.o.w.e.p., we have K = H = ()

and, hence, Ly, = {X,X*},
which gives | otp[Ly, || < 2.
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Subcase B2: Each X ¢ UYGMOdT Ly is a linear order
without end points

Now, we fix arbitrary Yy € Mod (w) and X, € Ly,.

and recall the general discussion from Part I of the proof.

Suppose that Ly, = Uy_y, p{F + I, I* + F*}, for some X € Mod,
Letx € w(=X)

Since X has no end points we have X = (—o0,x)x + [x, 00)x;
thus, the Lo. [x, 00)x + (—00, x)x chains Yx € Mod] (w)

and has a minimum, which contradicts the assumption of Subcase B2.

So, for each X € ModEfO (w) we have

ﬁyx = UquLOK {(K, <]K> + M + <H, <]H>, <H, <]H>* 4+ M* + (K, <1K>*}

<y ELOY
Since the elements of Ly, are l.o.w.e.p., we have K = H = ()

and, hence, Ly, = {X,X*},
which gives | otp[Ly, || < 2.
Now, as above, we obtain | Mod] (w)/2 | = . O

73{0
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