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We consider a surface S homeomorphic to the sphere and equipped

with a Riemannian metric of constant curvature 1 with finitely

many conic singularities with angles α1, . . . , αn.

We measure angles in turns: 1 half= 2π radians.

The question is: What angles are possible?

Necessary conditions:

n∑

j=1

(αj − 1) + 2 > 0 (Gauss–Bonnet),

d1(Z
n
o , α− 1) ≥ 1 (Closure condition).

Here α = (α1, . . . , αn), Zn
o is the set of integer lattice points with

odd sums of coordinates, and d1 is the ℓ1 distance.



The standard metric (of area 1) on the sphere is

ρ0(z)|dz| =
|dz|√

π(1 + |z|2).

Then our metric ρ(z)|dz| has density exp(v/2) with respect to

ρ0, where

∆ρ0v +2ev − 8π = 4π
n∑

j=1

(αj − 1)δaj .

Our problem is to find out for which αj this equation is solvable,

with some aj.



Necessity of the Closure condition is due to Mondello and Panov

(2016). They also proved that the Gauss–Bonnet and the Clo-

sure condition with strict inequality are sufficient.

Developing map is a multi-valued function

S\{singularities} → C,

where C is the sphere equipped with the standard spherical metric

(of curvature 1), and f is a local isometry away from the singu-

larities. So f is analytic with respect to the conformal structure

on S induced by the metric, and the monodromy group of f

consists of rotations of C.

The monodromy is called co-axial if it is a subgroup of SO(2).

Mondello and Panov proved that if the Closure condition holds

with equality, then the monodromy must be co-axial.



α is called admissible if a co-axial metric with such angles exists.

Theorem 1. Suppose that α1, . . . αm are not integers, while

αm+1, . . . , αn are integers. For α to be admissible it is necessary

that there exist ǫj ∈ {±1} and integer k′ such that:

m∑

j=1

ǫjαj = k′ ≥ 0, and the number

k′′ :=
n∑

j=m+1

αj − n− k′ +2 is non-negative and even.

If the coordinates of the vector c := (α1, . . . , αm, 1, . . . ,1
︸ ︷︷ ︸

k′+k′′ times

) are

incommensurable then these two conditions are also sufficient.



If c = ηb where coordinates of b are integers whose g.c.d. is 1,

then there is an additional necessary condition

2 max
m+1≤j≤n

αj ≤
q
∑

j=1

|bj|, q = m+ k′ + k′′,

and all these three conditions together are sufficient.

This generalizes the previous results: for n = 2 (Troyanov,

1989), for n = 3 (Eremenko, 2004) and for m = 2 (Eremenko,

Gabrielov, Tarasov, 2014), and completes the description of pos-

sible angles.



As the monodromy is co-axial, we have df/f = Rdz, where R is

a rational function. The singularities are among zeros and poles

(whose residues are not ±1) of this function. One can show that

for admissible α R can be always taken in the form

R(z) =
m∑

j=1

ǫjαj

z − aj
−

k′∑

j=1

1

z − bj
+

k′+k′′
∑

j=k′+1

(−1)j

z − bj
,

the condition that k′′ is even comes from the residue theorem.

Notice that we can introduce any number of poles with residues

±1; they are not singularities of the metric.

Zeros of R are singularities with integer angles: their multiplici-

ties are αj − 1. Since all residues in this formula are determined

by the angles, the question is whether one can construct such a

function with prescribed residues and prescribed multiplicities of

zeros.



We restate the problem: For a given a vector (c1, . . . , cq) with
∑

j cj = 0 and a given partition of q − 2 =
∑s

j=1 ℓj, does there

exist a function

R(z) =
q
∑

j=1

cj

z − zj

with zeros of multiplicities ℓj ?

Theorem 2. If the cj are incommensurable, such an R exists.

If cj = ηjbj with mutually prime integers bj, then the necessary

and sufficient condition for existence of R is

2

(

1+ max
1≤j≤s

ℓj

)

≤
q
∑

j=1

|bj|.



Commensurable case. R = ηg,

g(z) =
q
∑

j=1

bk
z − ak

, bj are mutually prime integers.

Then g = h′/h, h is rational, and we are looking for a rational

function with prescribed multiplicities of zeros, poles and critical

points other than zeros and poles. We have degh = (1/2)
∑

j |bj|
and the necessary condition ℓj + 1 ≤ degh is evident. Song and

Yu (2016) proved that this is also sufficient.

This is a special case of the Hurwitz problem: when there ex-

ist a rational function with given number of critical values and

prescribed multiplicities of their preimages. There is no simple

general criterion, but the special case that we need is known.



General case. Consider the real projective space RP
q−2 con-

sisting of q-tuples c = (c1, . . . , cq) with zero sum, modulo pro-

portionality. Let Z be the union of the coordinate hyperplanes

cj = 0. Let P be a partition of q − 2. We say that a point

c ∈ RP
q−2 is P -admissible if there exists g(z) with residues c and

multiplicities of zeros P . Otherwise c is P -exceptional. A point

c is called rational if its coordinates are commensurable.

Proposition. For every q and P , the set of rational P -exceptional

points in RP
q−2 is finite.

Indeed, they satisfy
∑q

j=1 |bj| ≤ 2(max ℓj+1), and bj are integers.



Now we try to construct a rational function R = f ′/f with pre-

scribed residues and multiplicities of zeros. Consider a flat metric

ρ on S∗ = S\{singularities} with developing map log f . The met-

ric space (S∗, ρ) breaks into flat cylinders by the critical level

lines of u = log |f |. Semi-infinite cylinders are neighborhoods of

the punctures, and the cylinder surrounding a puncture zj has

“waist” 2πcj. There are also finite cylinders, and all cylinders

are pasted together along certain boundary arcs. To construct

such a surface, one chooses a scheme of the boundary identi-

fications, and prescribes waists to all cylinders, and the lengths

of the boundary arcs which are to be identified. Once such a

flat surface is constructed, f is recovered by the uniformization

theorem.



Example. q = 4. The residues are a, b,−c,−d and we want a

single critical point of multiplicity 3. The pattern in the figure

consists of 4 infinite cylinders whose waists are known. One only

need to determine the length of x. We have to find a positive

solution to

a = x+ d, c = x+ b.

Such an x exists iff a− d+ b− d = 0 and x > 0 if a > d and c > b.



The possibility of the construction that we outlined depends on

the ability to choose the waists of all cylinders and the lengths of

the arcs to be pasted together. The waists of the semi-infinite

cylinders are prescribed. This leads to a set of equations and

inequalities of the form

Aj(c1, . . . , cq) = 0, Bj(c1, . . . , cq) > 0

with some linear functions Aj, Bj with integer coefficients. We

conclude that the set of P -exceptional points c is a rational

polyhedron in RP
q−2. But we know from the consideration of

the commensurable case that this rational polyhedron contains

only finitely many rational points.

A rational polyhedron containing finitely many rational points

must be finite and must consist of only rational points!

This completes the proof in the general case.
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