A critical equation with Hardy potential

(jointly with N. Ghoussoub, A. Pistoia and G. Vaira)

Pierpaolo Esposito,
Department of Mathematics and Physics,
University of Roma Tre

Let $L_{\gamma}=-\Delta-rac{\gamma}{|x|^2}$, $\gamma<rac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator.

Let $L_{\gamma} = -\Delta - \frac{\gamma}{|\mathbf{x}|^2}$, $\gamma < \frac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator. The Sobolev inequality involving L_{γ} reads as $(N \ge 3)$:

$$S_{\gamma}(\mathbb{R}^{N})\left(\int_{\mathbb{R}^{N}}|U|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}}\leq \int_{\mathbb{R}^{N}}|\nabla U|^{2}-\gamma\int_{\mathbb{R}^{N}}\frac{U^{2}}{|x|^{2}}\quad\forall\;U\in\mathcal{D}^{1,2}(\mathbb{R}^{N})$$

Let $L_{\gamma} = -\Delta - \frac{\gamma}{|\mathbf{y}|^2}$, $\gamma < \frac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator. The Sobolev inequality involving L_{γ} reads as $(N \ge 3)$:

$$S_{\gamma}(\mathbb{R}^{N})\left(\int_{\mathbb{R}^{N}}|U|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}}\leq \int_{\mathbb{R}^{N}}|\nabla U|^{2}-\gamma\int_{\mathbb{R}^{N}}\frac{U^{2}}{|x|^{2}}\quad\forall\ U\in\mathcal{D}^{1,2}(\mathbb{R}^{N})$$

For $\gamma > 0$ H-S extremals exist and satisfy

$$-\Delta U - \gamma \frac{U}{|x|^2} = U^{\frac{N+2}{N-2}} \text{ in } \mathbb{R}^N \setminus \{0\}$$

Let $L_{\gamma} = -\Delta - \frac{\gamma}{|x|^2}$, $\gamma < \frac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator. The Sobolev inequality involving L_{γ} reads as $(N \ge 3)$:

$$S_{\gamma}(\mathbb{R}^{N})\left(\int_{\mathbb{R}^{N}}|U|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}}\leq \int_{\mathbb{R}^{N}}|\nabla U|^{2}-\gamma\int_{\mathbb{R}^{N}}\frac{U^{2}}{|x|^{2}}\quad\forall\ U\in\mathcal{D}^{1,2}(\mathbb{R}^{N})$$

For $\gamma \geq$ 0 H-S extremals exist and satisfy

$$-\Delta U - \gamma \frac{U}{|x|^2} = U^{\frac{N+2}{N-2}} \text{ in } \mathbb{R}^N \setminus \{0\}$$

and have the form

$$U_{\mu}(x) = \frac{\alpha_{N} \mu^{\Gamma}}{|x|^{\beta^{-}} (\mu^{\frac{4\Gamma}{N-2}} + |x|^{\frac{4\Gamma}{N-2}})^{\frac{N-2}{2}}}, \quad \mu > 0$$

Let $L_{\gamma} = -\Delta - \frac{\gamma}{|x|^2}$, $\gamma < \frac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator. The Sobolev inequality involving L_{γ} reads as $(N \ge 3)$:

$$S_{\gamma}(\mathbb{R}^{N})\left(\int_{\mathbb{R}^{N}}|U|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}}\leq\int_{\mathbb{R}^{N}}|\nabla U|^{2}-\gamma\int_{\mathbb{R}^{N}}\frac{U^{2}}{|x|^{2}}\quad\forall\;U\in\mathcal{D}^{1,2}(\mathbb{R}^{N})$$

For $\gamma \geq$ 0 H-S extremals exist and satisfy

$$-\Delta U - \gamma \frac{U}{|x|^2} = U^{\frac{N+2}{N-2}} \text{ in } \mathbb{R}^N \setminus \{0\}$$

and have the form

$$U_{\mu}(x) = \frac{\alpha_{N} \mu^{\Gamma}}{|x|^{\beta^{-}} (\mu^{\frac{4\Gamma}{N-2}} + |x|^{\frac{4\Gamma}{N-2}})^{\frac{N-2}{2}}}, \quad \mu > 0$$

with
$$\Gamma=\sqrt{rac{(N-2)^2}{4}-\gamma}$$
, $eta_\pm=rac{N-2}{2}\pm\Gamma$ and $lpha_N=[rac{4\Gamma^2N}{N-2}]^{rac{N-2}{4}}$

Let $L_{\gamma} = -\Delta - \frac{\gamma}{|\mathbf{y}|^2}$, $\gamma < \frac{(N-2)^2}{4}$, be the Hardy-Schrödinger operator. The Sobolev inequality involving L_{γ} reads as $(N \ge 3)$:

$$S_{\gamma}(\mathbb{R}^{N})\left(\int_{\mathbb{R}^{N}}|U|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}}\leq \int_{\mathbb{R}^{N}}|\nabla U|^{2}-\gamma\int_{\mathbb{R}^{N}}\frac{U^{2}}{|x|^{2}}\quad\forall\ U\in\mathcal{D}^{1,2}(\mathbb{R}^{N})$$

For $\gamma \geq 0$ H-S extremals exist and satisfy

$$-\Delta U - \gamma \frac{U}{|x|^2} = U^{\frac{N+2}{N-2}} \text{ in } \mathbb{R}^N \setminus \{0\}$$

and have the form

$$U_{\mu}(x) = \frac{\alpha_{N} \mu^{\Gamma}}{|x|^{\beta^{-}} (\mu^{\frac{4\Gamma}{N-2}} + |x|^{\frac{4\Gamma}{N-2}})^{\frac{N-2}{2}}}, \quad \mu > 0$$

with
$$\Gamma=\sqrt{\frac{(N-2)^2}{4}-\gamma}$$
, $\beta_\pm=\frac{N-2}{2}\pm\Gamma$ and $\alpha_N=\left[\frac{4\Gamma^2N}{N-2}\right]^{\frac{N-2}{4}}$, see

- F. Catrina, Z.Q. Wang, CPAM 53 (2000)
- S. Terracini, Adv. Differential Equations 2 (1996)

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega)=\inf\{\int_{\Omega}[|\nabla u|^2-\gamma\frac{u^2}{|x|^2}]:\ u\in H^1_0(\Omega)\ \mathrm{s.t.}\ \int_{\Omega}|u|^{\frac{2N}{N-2}}=1\}$$

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega) = \inf\{\int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}]: u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1\}$$

Double criticality: $\frac{u}{|x|^2}$ and $|u|^{\frac{4}{N-2}}u$ have same homogeneity as Δ

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega) = \inf\{\int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}]: u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1\}$$

Double criticality: $\frac{u}{|x|^2}$ and $|u|^{\frac{4}{N-2}}u$ have same homogeneity as Δ

Difficulty: $S_{\gamma}(\Omega) = S_{\gamma}(\mathbb{R}^N)$ is never attained

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega) = \inf\{\int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}]: u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1\}$$

Double criticality: $\frac{u}{|x|^2}$ and $|u|^{\frac{4}{N-2}}u$ have same homogeneity as Δ

Difficulty: $S_{\gamma}(\Omega) = S_{\gamma}(\mathbb{R}^N)$ is never attained

Include a linear perturbation ($\lambda > 0$):

$$S_{\gamma,\lambda}(\Omega) = \inf\{ \int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} - \lambda u^2] : \ u \in H^1_0(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1 \}$$

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega)=\inf\{\int_{\Omega}[|\nabla u|^2-\gamma\frac{u^2}{|x|^2}]:\ u\in H^1_0(\Omega)\ \mathrm{s.t.}\ \int_{\Omega}|u|^{\frac{2N}{N-2}}=1\}$$

Double criticality: $\frac{u}{|x|^2}$ and $|u|^{\frac{4}{N-2}}u$ have same homogeneity as Δ

Difficulty: $S_{\gamma}(\Omega) = S_{\gamma}(\mathbb{R}^N)$ is never attained

Include a linear perturbation $(\lambda > 0)$:

$$S_{\gamma,\lambda}(\Omega) = \inf\{ \int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} - \lambda u^2] : u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1 \}$$

with E-L equation

$$-\Delta u - \gamma \frac{u}{|x|^2} = |u|^{\frac{4}{N-2}} u + \lambda u \text{ in } \Omega \setminus \{0\}, \quad u = 0 \text{ on } \partial \Omega$$

On Ω bdd domain with $0 \in \Omega$ set

$$S_{\gamma}(\Omega) = \inf\{\int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}] : u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1\}$$

Double criticality: $\frac{u}{|x|^2}$ and $|u|^{\frac{4}{N-2}}u$ have same homogeneity as Δ

Difficulty: $S_{\gamma}(\Omega) = S_{\gamma}(\mathbb{R}^N)$ is never attained

Include a linear perturbation ($\lambda > 0$):

$$S_{\gamma,\lambda}(\Omega) = \inf\{ \int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} - \lambda u^2] : u \in H_0^1(\Omega) \text{ s.t. } \int_{\Omega} |u|^{\frac{2N}{N-2}} = 1 \}$$

with E-L equation

$$-\Delta u - \gamma \frac{u}{|x|^2} = |u|^{\frac{4}{N-2}} u + \lambda u \text{ in } \Omega \setminus \{0\}, \quad u = 0 \text{ on } \partial\Omega$$

Remark: no soln's in general for $\lambda \leq 0$ and no positive soln's for

Let
$$\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$$
.

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

• $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

• $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N \ge 4$ and $\lambda > \frac{|\gamma|}{\mathsf{radius}^2(\Omega)}$

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

- $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N \ge 4$ and $\lambda > \frac{|\gamma|}{\text{radius}^2(\Omega)}$
- $0 < \gamma \le \frac{(N-2)^2}{4} 1$

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

- $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N \ge 4$ and $\lambda > \frac{|\gamma|}{\mathsf{radius}^2(\Omega)}$
- $0 < \gamma \le \frac{(N-2)^2}{4} 1$
- $\gamma > \max\{0, \frac{(N-2)^2}{4} 1\}$ and "mass" $m_{\gamma,\lambda} > 0$

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

- $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N \ge 4$ and $\lambda > \frac{|\gamma|}{\mathsf{radius}^2(\Omega)}$
- $0 < \gamma < \frac{(N-2)^2}{4} 1$
- ullet $\gamma > \max\{0, rac{(N-2)^2}{4} 1\}$ and "mass" $m_{\gamma,\lambda} > 0$

Rk: as $\lambda \to 0^+$ ground state exists for $0 \le \gamma \le \frac{(N-2)^2}{4} - 1$

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

- $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N \ge 4$ and $\lambda > \frac{|\gamma|}{\mathsf{radius}^2(\Omega)}$
- $0 < \gamma < \frac{(N-2)^2}{4} 1$
- ullet $\gamma > \max\{0, rac{(N-2)^2}{4} 1\}$ and "mass" $m_{\gamma,\lambda} > 0$

Rk: as $\lambda \to 0^+$ ground state exists for $0 \le \gamma \le \frac{(N-2)^2}{4} - 1$

Completely settled in

- N. Ghoussoub, F. Robert, Calc. Var., to appear
- E. Jannelli, JDE 156 (1999)
- D. Ruiz, M. Willem, JDE 190 (2003)

Let $\sigma(L_{\gamma}) = \{\lambda_k\}_{k \in \mathbb{N}}$. For $0 < \lambda < \lambda_1$ there is a ground state if

- $\gamma \leq 0$ and either N=3 and the "Robin" function $R_{\gamma,\lambda}>0$ somewhere or $N\geq 4$ and $\lambda>\frac{|\gamma|}{\mathsf{radius}^2(\Omega)}$
- $0 < \gamma \le \frac{(N-2)^2}{4} 1$
- ullet $\gamma>\max\{0,rac{({\it N}-2)^2}{4}-1\}$ and "mass" $m_{\gamma,\lambda}>0$

<u>Rk</u>: as $\lambda \to 0^+$ ground state exists for $0 \le \gamma \le \frac{(N-2)^2}{4} - 1$

Completely settled in

- N. Ghoussoub, F. Robert, Calc. Var., to appear
- E. Jannelli, JDE 156 (1999)
- D. Ruiz, M. Willem, JDE 190 (2003)

See also the survey

• N. Ghoussoub, F. Robert, Bull. Math. Sci. 6 (2016)

• If $0 \le \gamma < \frac{(N-2)^2}{4} - 4$ there exist ∞ soln's for $\lambda > 0$

- If $0 \le \gamma < \frac{(N-2)^2}{4} 4$ there exist ∞ soln's for $\lambda > 0$ If $\max\{0, \frac{(N-2)^2}{4} 4\} \le \gamma < \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}$ there exists 1sol. for $\lambda > \lambda_1$

- If $0 \le \gamma < \frac{(N-2)^2}{4} 4$ there exist ∞ soln's for $\lambda > 0$ • If $\max\{0, \frac{(N-2)^2}{4} - 4\} \le \gamma < \frac{(N-2)^2}{4} - \frac{(N+2)^2}{N^2}$ there exists 1
- If $\max\{0,\frac{(N-2)^2}{4}-4\} \le \gamma < \frac{(N-2)^2}{4}-\frac{(N+2)^2}{N^2}$ there exists 1 sol. for $\lambda \ge \lambda_1$
- If $\max\{0, \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}\} \le \gamma \le \frac{(N-2)^2}{4} 1$ there exists 1 sol. for $\lambda \in (\lambda_1, +\infty) \setminus \sigma(L_\gamma)$

- If $0 \le \gamma < \frac{(N-2)^2}{4} 4$ there exist ∞ soln's for $\lambda > 0$
- If $\max\{0, \frac{(N-2)^2}{4} 4\} \le \gamma < \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}$ there exists 1 sol. for $\lambda > \lambda_1$
- If $\max\{0, \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}\} \le \gamma \le \frac{(N-2)^2}{4} 1$ there exists 1 sol. for $\lambda \in (\lambda_1, +\infty) \setminus \sigma(L_{\gamma})$
- If $\gamma \geq 0$ and $\gamma > \frac{(N-2)^2}{4} 1$ there exist n_k soln's for λ in a left open neighborhood of λ_k , $k \geq 2$, n_k being multiplicity of λ_k

- If $0 \le \gamma < \frac{(N-2)^2}{4} 4$ there exist ∞ soln's for $\lambda > 0$
- If $\max\{0, \frac{(N-2)^2}{4} 4\} < \gamma < \frac{(N-2)^2}{4} \frac{(N+2)^2}{4}$ there exists 1 sol. for $\lambda > \lambda_1$
- If $\max\{0, \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}\} \le \gamma \le \frac{(N-2)^2}{4} 1$ there exists 1 sol. for $\lambda \in (\lambda_1, +\infty) \setminus \sigma(L_{\gamma})$
- If $\gamma > 0$ and $\gamma > \frac{(N-2)^2}{4} 1$ there exist n_k soln's for λ in a left open neighborhood of λ_k , $k \geq 2$, n_k being multiplicity of λ_k

Rk: as $\lambda \to 0^+ \infty$ soln's exist for $0 < \gamma < \frac{(N-2)^2}{4} - 4$

- If $0 \le \gamma < \frac{(N-2)^2}{4} 4$ there exist ∞ soln's for $\lambda > 0$
- If $\max\{0,\frac{(N-2)^2}{4}-4\}\leq\gamma<\frac{(N-2)^2}{4}-\frac{(N+2)^2}{N^2}$ there exists 1 sol. for $\lambda\geq\lambda_1$
- If $\max\{0, \frac{(N-2)^2}{4} \frac{(N+2)^2}{N^2}\} \le \gamma \le \frac{(N-2)^2}{4} 1$ there exists 1 sol. for $\lambda \in (\lambda_1, +\infty) \setminus \sigma(L_\gamma)$
- If $\gamma \geq 0$ and $\gamma > \frac{(N-2)^2}{4} 1$ there exist n_k soln's for λ in a left open neighborhood of λ_k , $k \geq 2$, n_k being multiplicity of λ_k

<u>Rk</u>: as $\lambda \to 0^+ \infty$ soln's exist for $0 \le \gamma < \frac{(N-2)^2}{4} - 4$. See

- D. Cao, P. Han, JDE 205 (2004)
- D. Cao, S. Peng, JDE 193 (2003)
- D. Cao, S. Yan, Calc. Var. 38 (2010)
- Z. Chen, W. Zou, JDE 252 (2012)
- A. Ferrero, F. Gazzola, JDE 177 (2001)

For $\gamma = 0$

- H. Brezis, L. Nirenberg, CPAM 36 (1983) (no ground states in Ω and no positive soln's in B when N=3)
- Adimurthi, S.L. Yadava, Nonlinear Anal. 14 (1990) & F.V. Atkinson, H. Brezis, L. Peletier, JDE 85 (1990) (no radial sign-changing soln's in B when N = 3, 4, 5, 6

For $\gamma = 0$

- H. Brezis, L. Nirenberg, CPAM 36 (1983) (no ground states in Ω and no positive soln's in B when N=3)
- Adimurthi, S.L. Yadava, Nonlinear Anal. 14 (1990) & F.V. Atkinson, H. Brezis, L. Peletier, JDE 85 (1990) (no radial sign-changing soln's in B when N = 3, 4, 5, 6

When either $\gamma < 0$ or $\gamma > \frac{(N-2)^2}{4} - 1$

- N. Ghoussoub, F. Robert, Calc. Var. 56 (2017) (no ground states in Ω)
- F. Catrina, R. Lavine, CCM 4 (2002) (no positive radial soln's in B when $\gamma > \frac{(N-2)^2}{4} - 1$

For $\gamma = 0$

- H. Brezis, L. Nirenberg, CPAM 36 (1983) (no ground states in Ω and no positive soln's in B when N=3)
- Adimurthi, S.L. Yadava, Nonlinear Anal. 14 (1990) & F.V. Atkinson, H. Brezis, L. Peletier, JDE 85 (1990) (no radial sign-changing soln's in B when N = 3, 4, 5, 6

When either $\gamma < 0$ or $\gamma > \frac{(N-2)^2}{4} - 1$

- N. Ghoussoub, F. Robert, Calc. Var. 56 (2017) (no ground states in Ω)
- F. Catrina, R. Lavine, CCM 4 (2002) (no positive radial soln's in B when $\gamma > \frac{(N-2)^2}{4} - 1$

Q1: What about positive soln's for $\gamma < 0$?

For $\gamma = 0$

- H. Brezis, L. Nirenberg, CPAM 36 (1983) (no ground states in Ω and no positive soln's in B when N=3)
- Adimurthi, S.L. Yadava, Nonlinear Anal. 14 (1990) & F.V. Atkinson, H. Brezis, L. Peletier, JDE 85 (1990) (no radial sign-changing soln's in B when N = 3, 4, 5, 6)

When either $\gamma < 0$ or $\gamma > \frac{(N-2)^2}{4} - 1$

- N. Ghoussoub, F. Robert, Calc. Var. 56 (2017) (no ground states in Ω)
- F. Catrina, R. Lavine, CCM 4 (2002) (no positive radial soln's in B when $\gamma > \frac{(N-2)^2}{4} 1$)
- Q1: What about positive soln's for $\gamma < 0$?
- <u>Q2</u>: What about sign-changing soln's for $\gamma < 0$ or $\gamma \ge \frac{(N-2)^2}{4} 4$?

Attack existence issues by a perturbative approach for λ small:

Theorem 1

i) $\gamma \leq \frac{(N-2)^2}{4} - 1 \Rightarrow$ positive solution u_{λ} developing a bubble at 0 ii) $\gamma < \frac{(N-2)^2}{4} - 4 \Rightarrow$ sign-changing solution u_{λ} shaped as a tower

of k alternating bubbles centered at 0

Attack existence issues by a perturbative approach for λ small:

Theorem 1

i) $\gamma \leq \frac{(N-2)^2}{4} - 1 \Rightarrow$ positive solution u_{λ} developing a bubble at 0 ii) $\gamma < \frac{(N-2)^2}{4} - 4 \Rightarrow$ sign-changing solution u_{λ} shaped as a tower of k alternating bubbles centered at 0

Remarks: - for $\gamma < 0$ solutions are not minimizers for $S_{\gamma,\lambda}(\Omega)$

Attack existence issues by a perturbative approach for λ small:

Theorem 1

i) $\gamma \leq \frac{(N-2)^2}{4} - 1 \Rightarrow$ positive solution u_{λ} developing a bubble at 0 ii) $\gamma < \frac{(N-2)^2}{4} - 4 \Rightarrow$ sign-changing solution u_{λ} shaped as a tower of k alternating bubbles centered at 0

Remarks: - for $\gamma < 0$ solutions are not minimizers for $S_{\gamma,\lambda}(\Omega)$ - $\Omega = B$ if $\gamma \in \mathcal{R} = \{\frac{(N-2)^2}{4}(1 - \frac{j(N-2+j)}{N-1}): j \in \mathbb{N}\}$, see

E.N. Dancer, F. Gladiali, M. Grossi, PROCA 147 (2017)

Attack existence issues by a perturbative approach for λ small:

Theorem $oldsymbol{1}$

i) $\gamma \leq \frac{(N-2)^2}{4} - 1 \Rightarrow$ positive solution u_{λ} developing a bubble at 0 ii) $\gamma < \frac{(N-2)^2}{4} - 4 \Rightarrow$ sign-changing solution u_λ shaped as a tower of k alternating bubbles centered at 0

Remarks: - for
$$\gamma < 0$$
 solutions are not minimizers for $S_{\gamma,\lambda}(\Omega)$ - $\Omega = B$ if $\gamma \in \mathcal{R} = \{\frac{(N-2)^2}{4}(1-\frac{j(N-2+j)}{N-1}): j \in \mathbb{N}\}$, see

E.N. Dancer, F. Gladiali, M. Grossi, PROCA 147 (2017)

By a fine asymptotic analysis:

Theorem 2

 $\gamma > \frac{(N-2)^2}{4} - 4 \Rightarrow$ no radial sign-chang. soln's in B for $\lambda > 0$ small

A more general result

Set $\sigma_j = \frac{\Gamma}{2(\Gamma-1)} (\frac{\Gamma}{\Gamma-2})^{j-1} - \frac{1}{2}$ with $\Gamma = \sqrt{\frac{(N-2)^2}{4} - \gamma}$. Let u_n be solutions in B with $\lambda_n \to 0^+$. Theorem 2 follows by

Theorem 3

- i) $u_n>0$ then $\gamma\leq \frac{(N-2)^2}{4}-1$ and $u_n\sim U_{\mu_n^1}$ on the scale $\mu_1^n\sim \lambda_n^{\sigma_1}$
- ii) u_n sign-changing, then $\gamma < \frac{(N-2)^2}{4} 4$
- iii) u_n have k-1 shrinking nodes $M_k^n < \cdots < M_2^n \to 0$ then

$$u_n \sim U_{\mu_j^n}$$
 at scale $\mu_j^n \sim \lambda_n^{\sigma_j}$, $M_1^n = 1$ and $M_j^n \sim (\mu_{j-1}^n \mu_j^n)^{rac{2\Gamma}{(N-2)^2}}$

A more general result

Set $\sigma_j = \frac{\Gamma}{2(\Gamma-1)} (\frac{\Gamma}{\Gamma-2})^{j-1} - \frac{1}{2}$ with $\Gamma = \sqrt{\frac{(N-2)^2}{4} - \gamma}$. Let u_n be solutions in B with $\lambda_n \to 0^+$. Theorem 2 follows by

Theorem 3

- i) $u_n > 0$ then $\gamma \leq \frac{(N-2)^2}{4} 1$ and $u_n \sim U_{u^1}$ on the scale $\mu_1^n \sim \lambda_n^{\sigma_1}$
- ii) u_n sign-changing, then $\gamma < \frac{(N-2)^2}{4} 4$
- iii) u_n have k-1 shrinking nodes $M_k^n < \cdots < M_2^n \to 0$ then

$$u_n\sim U_{\mu_j^n}$$
 at scale $\mu_j^n\sim \lambda_n^{\sigma_j}$, $M_1^n=1$ and $M_j^n\sim (\mu_{j-1}^n\mu_j^n)^{rac{2\Gamma}{(N-2)^2}}$

Change of variables:
$$v(r) \sim r^{\frac{(N-2)\beta_{-}}{2\Gamma}} u(r^{\frac{N-2}{2\Gamma}})$$
, $\alpha = \frac{2\beta_{-}}{\Gamma}$, satisfies $-\Delta v = |v|^{\frac{4}{N-2}} v + \lambda |x|^{\alpha} v$ in $B \setminus \{0\}$, $v = 0$ on ∂B $(P)_{\lambda}$

A more general result

Set $\sigma_j = \frac{\Gamma}{2(\Gamma-1)} (\frac{\Gamma}{\Gamma-2})^{j-1} - \frac{1}{2}$ with $\Gamma = \sqrt{\frac{(N-2)^2}{4} - \gamma}$. Let u_n be solutions in B with $\lambda_n \to 0^+$. Theorem 2 follows by

Theorem 3

- i) $u_n > 0$ then $\gamma \leq \frac{(N-2)^2}{4} 1$ and $u_n \sim U_{\mu_n^1}$ on the scale $\mu_1^n \sim \lambda_n^{\sigma_1}$
- ii) u_n sign-changing, then $\gamma < \frac{(N-2)^2}{4} 4$
- iii) u_n have k-1 shrinking nodes $M_k^n < \cdots < M_2^n \to 0$ then

$$u_n\sim U_{\mu_j^n}$$
 at scale $\mu_j^n\sim \lambda_n^{\sigma_j}$, $M_1^n=1$ and $M_j^n\sim (\mu_{j-1}^n\mu_j^n)^{rac{2\Gamma}{(N-2)^2}}$

Change of variables:
$$v(r) \sim r^{\frac{(N-2)\beta_{-}}{2\Gamma}} u(r^{\frac{N-2}{2\Gamma}})$$
, $\alpha = \frac{2\beta_{-}}{\Gamma}$, satisfies $-\Delta v = |v|^{\frac{4}{N-2}} v + \lambda |x|^{\alpha} v$ in $B \setminus \{0\}$, $v = 0$ on ∂B $(P)_{\lambda}$

We recover the non-existence results for $\gamma = 0$, 3 < N < 6 and $\gamma > \frac{(N-2)^2}{4} - 1$ & the asymptotics for $\gamma = 0, \ N \ge 7$ due to

A. lacopetti, Ann. Mat. Pura Appl. 194 (2015)

$$(-1)^j u_j > 0$$
 in (M_{j+1},M_j) and $R_j = M_{k-j+1}^{rac{N-2}{2\Gamma}}$

$$(-1)^j u_j > 0$$
 in (M_{j+1}, M_j) and $R_j = M_{k-j+1}^{\frac{N-2}{2\Gamma}} \Rightarrow (-1)^{k-j+1} v > 0$ in (R_{j-1}, R_j)

$$(-1)^{j}u_{j} > 0$$
 in (M_{j+1}, M_{j}) and $R_{j} = M_{k-j+1}^{\frac{N-2}{2\Gamma}} \Rightarrow (-1)^{k-j+1}v > 0$ in (R_{j-1}, R_{j}) . Define $\delta_{j}^{\frac{2}{N-2}} = |v|(r_{j}) = \max_{[R_{j-1}, R_{j}]} |v|$ and $\mu_{j} \sim \delta_{k+1-j}^{\frac{N-2}{2\Gamma}}$

$$(-1)^{j}u_{j} > 0$$
 in (M_{j+1}, M_{j}) and $R_{j} = M_{k-j+1}^{\frac{N-2}{2\Gamma}} \Rightarrow (-1)^{k-j+1}v > 0$ in (R_{j-1}, R_{j}) . Define $\delta_{j}^{\frac{2}{N-2}} = |v|(r_{j}) = \max_{[R_{j-1}, R_{j}]} |v|$ and $\mu_{j} \sim \delta_{k+1-j}^{\frac{N-2}{2\Gamma}}$

Need to show first

$$V_j = (-1)^{k-j+1} \delta_j^{rac{N-2}{2}} v(\delta_j x) o V, \quad V = (rac{1}{1+rac{|x|^2}{N(N-2)}})^{rac{N-2}{2}}$$

$$(-1)^{j}u_{j} > 0$$
 in (M_{j+1}, M_{j}) and $R_{j} = M_{k-j+1}^{\frac{N-2}{2\Gamma}} \Rightarrow (-1)^{k-j+1}v > 0$ in (R_{j-1}, R_{j}) . Define $\delta_{j}^{\frac{2}{N-2}} = |v|(r_{j}) = \max_{[R_{j-1}, R_{j}]} |v|$ and $\mu_{j} \sim \delta_{k+1-j}^{\frac{N-2}{2\Gamma}}$ Need to show first

$$V_j = (-1)^{k-j+1} \delta_j^{rac{N-2}{2}} v(\delta_j x) o V, \quad V = (rac{1}{1 + rac{|x|^2}{N(N-2)}})^{rac{N-2}{2}}$$

<u>Pb</u>: When $\gamma \neq 0$ or $k \geq 3$ several new difficulties arise

$$(-1)^{j}u_{j} > 0$$
 in (M_{j+1}, M_{j}) and $R_{j} = M_{k-j+1}^{\frac{N-2}{2\Gamma}} \Rightarrow (-1)^{k-j+1}v > 0$ in (R_{j-1}, R_{j}) . Define $\delta_{j}^{\frac{2}{N-2}} = |v|(r_{j}) = \max_{[R_{j-1}, R_{j}]} |v|$ and $\mu_{j} \sim \delta_{k+1-j}^{\frac{N-2}{2\Gamma}}$ Need to show first

$$V_j = (-1)^{k-j+1} \delta_j^{rac{N-2}{2}} v(\delta_j x) o V, \quad V = (rac{1}{1 + rac{|x|^2}{N(N-2)}})^{rac{N-2}{2}}$$

Pb: When $\gamma \neq 0$ or $k \geq 3$ several new difficulties arise

• Bubbles of same sign don't superimpose by Pohozaev identity:

$$\int_{\partial A} \left[|x|(v')^{2} + (N-2)vv' + \frac{N-2}{N}|x||v|^{\frac{2N}{N-2}} + \lambda |x|^{\alpha+1}v^{2} \right]$$

$$= (\alpha+2)\lambda \int_{A} |x|^{\alpha}v^{2} > 0$$

The presence of other bubbles in $[R_{j-1}, R_j]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

The presence of other bubbles in $[R_{j-1}, R_j]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

Claim:
$$\frac{d}{dr}r^{\frac{N-2}{2}}|v|<0$$
 in $(\hat{M}\delta_j,R_j)$, $\hat{M}>>1$

The presence of other bubbles in $[R_{j-1}, R_j]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

$$\underline{\mathsf{Claim}} \colon \, \tfrac{d}{dr} r^{\frac{N-2}{2}} |v| < 0 \, \, \mathsf{in} \, \, \big(\hat{M} \delta_j, R_j \big) \mathsf{,} \, \, \hat{M} >> 1$$

If not, $\exists M$ s.t. $[r^{\frac{N-2}{2}}|v|]' < [r^{\frac{N-2}{2}}|v|]'(M) = 0$ in $(\hat{M}\delta_j, M)$.

The presence of other bubbles in $[R_{i-1}, R_i]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

The presence of other bubbles in $[R_{i-1}, R_i]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

$$\begin{array}{l} \underline{\text{Claim}} \colon \frac{d}{dr} r^{\frac{N-2}{2}} |v| < 0 \text{ in } (\hat{M}\delta_j, R_j), \ \hat{M} >> 1 \\ \\ \text{If not, } \exists \ M \text{ s.t. } [r^{\frac{N-2}{2}} |v|]' < [r^{\frac{N-2}{2}} |v|]'(M) = 0 \text{ in } (\hat{M}\delta_j, M). \ \text{Then} \\ Mv'(M) = -\frac{N-2}{2} v(M) \text{ and by Pohozaev identity in } (0, M) \\ & -\frac{(N-2)^2}{4} + \frac{N-2}{N} M^2 |v(M)|^{\frac{4}{N-2}} + \lambda M^{2+\alpha} > 0 \end{array}$$

A contradiction with $M^{\frac{N-2}{2}}|v|(M) < (\hat{M}\delta_i)^{\frac{N-2}{2}}|v|(\hat{M}\delta_i) << 1$

The presence of other bubbles in $[R_{j-1}, R_j]$ can be detected by the behavior of $r^{\frac{N-2}{2}}|v|$

Claim:
$$\frac{d}{dr}r^{\frac{N-2}{2}}|v| < 0$$
 in $(\hat{M}\delta_j, R_j)$, $\hat{M} >> 1$
If not, $\exists M$ s.t. $[r^{\frac{N-2}{2}}|v|]' < [r^{\frac{N-2}{2}}|v|]'(M) = 0$ in $(\hat{M}\delta_j, M)$. Then

$$Mv'(M) = -\frac{N-2}{2}v(M)$$
 and by Pohozaev identity in $(0, M)$
 $-\frac{(N-2)^2}{4} + \frac{N-2}{N}M^2|v(M)|^{\frac{4}{N-2}} + \lambda M^{2+\alpha} > 0$

A contradiction with $M^{\frac{N-2}{2}}|v|(M) \leq (\hat{M}\delta_j)^{\frac{N-2}{2}}|v|(\hat{M}\delta_j) << 1$

<u>Crucial estimate</u>: as a by-product $|v| \leq CV_{\delta_i}$ in $[R_{j-1}, R_j]$

• The limiting problem has positive radial solutions on annuli

• The limiting problem has positive radial solutions on annuli <u>Claim</u>: none of them can be limit of V_i

• The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_j

Assume $|v| \leq CV_{\delta_j}$ in $[R_{j-1}, R_j]$ and $R_j, R_{j+1} \sim \delta_{j+1}$.

• The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_j

Assume $|v| \leq CV_{\delta_j}$ in $[R_{j-1}, R_j]$ and $R_j, R_{j+1} \sim \delta_{j+1}$. A matching condition on $v'(R_j)$:

$$|v|(r) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{r^{N-2}} \text{ for } r >> R_{j-1} \ \Rightarrow \ |v|'(R_j) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{(R_j)^{N-1}} \text{ (left)}$$

 The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_i

Assume $|v| \leq CV_{\delta_i}$ in $[R_{i-1}, R_i]$ and $R_i, R_{i+1} \sim \delta_{i+1}$. A matching condition on $v'(R_i)$:

$$\begin{split} |v|(r) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{r^{N-2}} \text{ for } r >> R_{j-1} \ \Rightarrow \ |v|'(R_j) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{(R_j)^{N-1}} \text{ (left)} \\ |v|(r) \sim \frac{V_{j+1}(\frac{r}{\delta_{j+1}})}{(\delta_{j+1})^{\frac{N-2}{2}}} \text{ in } [R_j, R_{j+1}] \ \Rightarrow \ |v|'(R_j) \sim (\delta_{j+1})^{-\frac{N}{2}} \text{ (right)} \end{split}$$

 The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_i

Assume $|v| \leq CV_{\delta_i}$ in $[R_{i-1}, R_i]$ and $R_i, R_{i+1} \sim \delta_{i+1}$. A matching condition on $v'(R_i)$:

$$|v|(r) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{r^{N-2}} \text{ for } r >> R_{j-1} \ \Rightarrow \ |v|'(R_j) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{(R_j)^{N-1}} \text{ (left)}$$
 $|v|(r) \sim \frac{V_{j+1}(\frac{r}{\delta_{j+1}})}{(\delta_{j+1})^{\frac{N-2}{2}}} \text{ in } [R_j, R_{j+1}] \ \Rightarrow \ |v|'(R_j) \sim (\delta_{j+1})^{-\frac{N}{2}} \text{ (right)}$

Since
$$(\delta_{j+1})^{-\frac{N}{2}} \sim \frac{(\delta_{j+1})^{\frac{N-2}{2}}}{(R_j)^{N-1}} \Rightarrow \delta_{j+1} \sim \delta_j$$

 The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_i

Assume $|v| \leq CV_{\delta_i}$ in $[R_{i-1}, R_i]$ and $R_i, R_{i+1} \sim \delta_{i+1}$. A matching condition on $v'(R_i)$:

$$|v|(r) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{r^{N-2}} \text{ for } r >> R_{j-1} \ \Rightarrow \ |v|'(R_j) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{(R_j)^{N-1}} \text{ (left)}$$

$$|v|(r) \sim \frac{V_{j+1}(\frac{r}{\delta_{j+1}})}{(\delta_{j+1})^{\frac{N-2}{2}}} \text{ in } [R_j, R_{j+1}] \ \Rightarrow \ |v|'(R_j) \sim (\delta_{j+1})^{-\frac{N}{2}} \text{ (right)}$$

Since $(\delta_{j+1})^{-\frac{N}{2}} \sim \frac{(\delta_{j+1})^{\frac{N-2}{2}}}{(R_i)^{N-1}} \Rightarrow \delta_{j+1} \sim \delta_j$, a contradiction

 The limiting problem has positive radial solutions on annuli Claim: none of them can be limit of V_i

Assume $|v| \leq CV_{\delta_i}$ in $[R_{i-1}, R_i]$ and $R_i, R_{i+1} \sim \delta_{i+1}$. A matching condition on $v'(R_i)$:

$$|v|(r) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{r^{N-2}} \text{ for } r >> R_{j-1} \Rightarrow |v|'(R_j) \sim \frac{(\delta_j)^{\frac{N-2}{2}}}{(R_j)^{N-1}} \text{ (left)}$$
 $|v|(r) \sim \frac{V_{j+1}(\frac{r}{\delta_{j+1}})}{(\delta_{j+1})^{\frac{N-2}{2}}} \text{ in } [R_j, R_{j+1}] \Rightarrow |v|'(R_j) \sim (\delta_{j+1})^{-\frac{N}{2}} \text{ (right)}$

Since $(\delta_{j+1})^{-\frac{N}{2}}\sim rac{(\delta_{j+1})^{\frac{N-2}{2}}}{(R\cdot)^{N-1}} \Rightarrow \delta_{j+1}\sim \delta_j$, a contradiction

• $\delta_i = \delta_i(\lambda)$ follows by Pohozaev identity if $R_i \sim \sqrt{\delta_i \delta_{i+1}}$

Follows by a compatibility condition between $v'(R_i)$ and $v(r_{i+1})$

Follows by a compatibility condition between $v'(R_j)$ and $v(r_{j+1})$

<u>Difficulty</u>: few is known on v(r) for $r \in [R_j, r_{j+1}]$

Follows by a compatibility condition between $v'(R_i)$ and $v(r_{i+1})$

Difficulty: few is known on v(r) for $r \in [R_i, r_{i+1}]$

A simple trick as follows:

$$|v|'(r) = \frac{R_j^{N-1}|v|'(R_j)}{r^{N-1}} - \frac{1}{r^{N-1}} \int_{R_j}^r s^{N-1} (|v|^{\frac{N+2}{N-2}} + \lambda s^{\alpha}|v|) ds$$

$$\sim \frac{\delta_j^{\frac{N-2}{2}}}{r^{N-1}} + O\left(\frac{r}{\delta_{j+1}^{\frac{N+2}{2}}} + \frac{\lambda}{\delta_{j+1}^{\frac{N-2}{2}}} r^{\alpha+1}\right) \& r_{j+1} << \delta_{j+1}$$

Follows by a compatibility condition between $v'(R_i)$ and $v(r_{i+1})$

Difficulty: few is known on v(r) for $r \in [R_i, r_{i+1}]$

A simple trick as follows:

$$|v|'(r) = \frac{R_j^{N-1}|v|'(R_j)}{r^{N-1}} - \frac{1}{r^{N-1}} \int_{R_j}^r s^{N-1} (|v|^{\frac{N+2}{N-2}} + \lambda s^{\alpha}|v|) ds$$

$$\sim \frac{\delta_j^{\frac{N-2}{2}}}{r^{N-1}} + O\left(\frac{r}{\delta_{j+1}^{\frac{N+2}{2}}} + \frac{\lambda}{\delta_{j+1}^{\frac{N-2}{2}}} r^{\alpha+1}\right) \& r_{j+1} << \delta_{j+1}$$

$$\Rightarrow \frac{1}{\delta_{j+1}^{\frac{N-2}{2}}} = \int_{R_j}^{r_{j+1}} |v|' \sim \frac{\delta_j^{\frac{N-2}{2}}}{R_j^{N-2}} + o\left(\frac{1}{\delta_{j+1}^{\frac{N-2}{2}}}\right)$$

A perturbative approach

Ansatz:
$$u = \sum_{j=1}^k (-1)^j P U_{\mu_j} + \phi$$
, where $P: H^1(\Omega) \to H^1_0(\Omega)$ projection, $\phi \in H^1_0(\Omega)$ small, $\mu_k << \cdots << \mu_1$

A perturbative approach

Ansatz:
$$u = \sum_{j=1}^{k} (-1)^{j} P U_{\mu_{j}} + \phi$$
, where $P : H^{1}(\Omega) \to H^{1}_{0}(\Omega)$ projection, $\phi \in H^{1}_{0}(\Omega)$ small, $\mu_{k} << \cdots << \mu_{1}$

$$\underline{\text{Reduced energy: } E = J_{\lambda} \left(\sum_{i=1}^{k} (-1)^{j} P U_{\mu_{j}} + \phi \right) - k A_{N}, \text{ where } A_{N}}$$

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} - \lambda u^2] - \frac{N-2}{2N} \int_{\Omega} |u|^{\frac{2N}{N-2}}$$

A perturbative approach

Ansatz:
$$u = \sum_{j=1}^{k} (-1)^{j} P U_{\mu_{j}} + \phi$$
, where $P : H^{1}(\Omega) \to H^{1}_{0}(\Omega)$

projection, $\phi \in H^1_0(\Omega)$ small, $\mu_k << \cdots << \mu_1$

Reduced energy:
$$E = J_{\lambda} \left(\sum_{j=1}^{k} (-1)^{j} P U_{\mu_{j}} + \phi \right) - k A_{N}$$
, where

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} [|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} - \lambda u^2] - \frac{N-2}{2N} \int_{\Omega} |u|^{\frac{2N}{N-2}}$$

Energy expansion: As $\lambda \to 0^+$

$$E = (B_N | m_{\gamma,0}(\Omega) | \mu_1^{2\Gamma} - \lambda \mu_1^2 f(\mu_1)) + \sum_{j=2}^k [C_N (\frac{\mu_j}{\mu_{j-1}})^{\Gamma} - D_N \lambda \mu_j^2] + \text{h.o.t}$$

where $f(\mu_1) = \log \frac{1}{\mu_1}/1$ if $\Gamma = 1/>1$

Need to require:

$$\mu_1^{2\Gamma} \sim \lambda \mu_1^2 f(\mu_1), \quad (rac{\mu_j}{\mu_{j-1}})^{\Gamma} \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ egin{array}{l} \Gamma \geq 1 & ext{if } k=1 \\ \Gamma > 2 & ext{if } k \geq 2 \end{array}
ight.$$
 with $\mu_1 = \left\{ egin{array}{l} e^{-rac{d_1}{\lambda}} & ext{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} & ext{if } \Gamma > 1 \end{array}
ight.$ and $\mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2$

Need to require:

$$\mu_1^{2\Gamma} \sim \lambda \mu_1^2 f(\mu_1), \quad (\frac{\mu_j}{\mu_{j-1}})^{\Gamma} \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ \begin{array}{l} \Gamma \geq 1 \quad \text{if } k = 1 \\ \Gamma > 2 \quad \text{if } k \geq 2 \end{array} \right.$$
 with $\mu_1 = \left\{ \begin{array}{l} e^{-\frac{d_1}{\lambda}} \quad \text{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} \quad \text{if } \Gamma > 1 \end{array} \right.$ and $\mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2$ Setting $\theta_j = 2\sigma_j + 1$, there holds

Need to require:

$$\mu_1^{2\Gamma} \sim \lambda \mu_1^2 f(\mu_1), \quad (\frac{\mu_j}{\mu_{j-1}})^{\Gamma} \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ \begin{array}{l} \Gamma \geq 1 \quad \text{if } k = 1 \\ \Gamma > 2 \quad \text{if } k \geq 2 \end{array} \right.$$
 with $\mu_1 = \left\{ \begin{array}{l} e^{-\frac{d_1}{\lambda}} \quad \text{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} \quad \text{if } \Gamma > 1 \end{array} \right.$ and $\mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2$ Setting $\theta_j = 2\sigma_j + 1$, there holds
$$E = \lambda^{\theta_1} (B_N | m_{\gamma,0}(\Omega) | d_1^{2\Gamma} - d_1^2) + \sum_{i=2}^k \lambda^{\theta_j} [C_N (\frac{d_j}{d_{j-1}})^{\Gamma} - D_N d_j^2] + o(\lambda^{\theta_1})$$

Need to require:

$$\begin{split} \mu_1^{2\Gamma} &\sim \lambda \mu_1^2 f(\mu_1), \quad (\frac{\mu_j}{\mu_{j-1}})^\Gamma \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ \begin{array}{l} \Gamma \geq 1 \quad \text{if } k = 1 \\ \Gamma > 2 \quad \text{if } k \geq 2 \end{array} \right. \\ \text{with } \mu_1 &= \left\{ \begin{array}{l} e^{-\frac{d_1}{\lambda}} \quad \text{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} \quad \text{if } \Gamma > 1 \end{array} \right. \text{ and } \mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2 \\ \text{Setting } \theta_j &= 2\sigma_j + 1, \text{ there holds} \\ E &= \lambda^{\theta_1} (B_N | m_{\gamma,0}(\Omega) | d_1^{2\Gamma} - d_1^2) + \sum_{k} \lambda^{\theta_j} [C_N (\frac{d_j}{d_{i-1}})^\Gamma - D_N d_j^2] + o(\lambda^{\theta_1}) \end{split}$$

Problem: the error $o(\lambda^{\theta_1})$ is not sufficiently small

Need to require:

$$\begin{split} \mu_1^{2\Gamma} \sim \lambda \mu_1^2 f(\mu_1), \quad & (\frac{\mu_j}{\mu_{j-1}})^\Gamma \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ \begin{array}{l} \Gamma \geq 1 \quad \text{if } k = 1 \\ \Gamma > 2 \quad \text{if } k \geq 2 \end{array} \right. \\ \text{with } \mu_1 = \left\{ \begin{array}{l} e^{-\frac{d_1}{\lambda}} \quad \text{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} \quad \text{if } \Gamma > 1 \end{array} \right. \text{ and } \mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2 \\ \text{Setting } \theta_j = 2\sigma_j + 1, \ \text{there holds} \\ E = \lambda^{\theta_1} (B_N | m_{\gamma,0}(\Omega) | d_1^{2\Gamma} - d_1^2) + \sum_{k} \lambda^{\theta_j} [C_N (\frac{d_j}{d_{i-1}})^\Gamma - D_N d_j^2] + o(\lambda^{\theta_1}) \end{split}$$

<u>Problem</u>: the error $o(\lambda^{\theta_1})$ is not sufficiently small

Key point: split the error as $R_1 + \cdots + R_k$ where

$$\overline{R_j = R_j(d_1, \dots, d_j)}$$
 and $R_j = o(\lambda^{ heta_j})$

Need to require:

$$\begin{split} \mu_1^{2\Gamma} \sim \lambda \mu_1^2 f(\mu_1), \quad & (\frac{\mu_j}{\mu_{j-1}})^\Gamma \sim \lambda \mu_j^2 \quad \Rightarrow \quad \left\{ \begin{array}{l} \Gamma \geq 1 \quad \text{if } k = 1 \\ \Gamma > 2 \quad \text{if } k \geq 2 \end{array} \right. \\ \text{with } \mu_1 = \left\{ \begin{array}{l} e^{-\frac{d_1}{\lambda}} \quad \text{if } \Gamma = 1 \\ d_1 \lambda^{\sigma_1} \quad \text{if } \Gamma > 1 \end{array} \right. \text{ and } \mu_j = d_j \lambda^{\sigma_j}, \ j \geq 2 \\ \text{Setting } \theta_j = 2\sigma_j + 1, \ \text{there holds} \\ E = \lambda^{\theta_1} (B_N | m_{\gamma,0}(\Omega) | d_1^{2\Gamma} - d_1^2) + \sum_{k} \lambda^{\theta_j} [C_N (\frac{d_j}{d_{i-1}})^\Gamma - D_N d_j^2] + o(\lambda^{\theta_1}) \end{split}$$

<u>Problem</u>: the error $o(\lambda^{\theta_1})$ is not sufficiently small

Key point: split the error as $R_1 + \cdots + R_k$ where $R_j = R_j(d_1, \ldots, d_j)$ and $R_j = o(\lambda^{\theta_j})$, see

- A. Iacopetti, G. Vaira, CCM 18 (2016)
- F. Morabito, A. Pistoia, G. Vaira, Potential Anal. (2016)

Thanks for your attention