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N
Density associated with a normalized wavefunction of H = /\ L*(R* C)

pu(r) =N (W(r, 19, - ,rn)|*dry- - dry

R?)(N—l)
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N
Density associated with a normalized wavefunction of H y = /\ L*(R* C)

pu(r) =N (W(r, 19, - ,rn)|*dry- - dry
R3(N-1)

Definition. Let V C L%/ 2(R3) — LOO(R3) be a class of local potentials and

:——ZAQ—#Z v(r;) + Z

1<i<y<N

Z—r]\

We will say that the Hohenberg-Kohn theorem is satisfied on ) if two po-
tentials v; and v, in )V giving rise to the same ground-state density p only
differ by an additive constant
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N
Density associated with a normalized wavefunction of H y = /\ L*(R* C)

pu(r) =N (W(r, 19, - ,rn)|*dry- - dry
R3(N-1)

Definition. Let V C L%/ 2(R3) — LOO(R3) be a class of local potentials and

:——ZArZ+Z v(r;) + Z

1<i<y<N

Z_r]‘

We will say that the Hohenberg-Kohn theorem is satisfied on ) if two po-
tentials v; and v, in )V giving rise to the same ground-state density p only
differ by an additive constant

i.e.

if for any v; and v, in V for which Hy(v;) and Hy(v,) admit ground state
wavefunctions V; and UV, respectively such that

Pu = Py,

then v, — v; is constant almost everywhere
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Bright Wilson’s argument for molecular potentials (reported by Lowdin)

Theorem. The Hohenberg-KOhn theorem is satisfied on

* INM .
Y = { Z‘I‘—RH Zk,Rk>1§k§ME(N XR) ,Rk#Rl, lf]{#l}
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Bright Wilson’s argument for molecular potentials (reported by Lowdin)

Theorem. The Hohenberg-KOhn theorem is satisfied on

* INM .
Y = { Z‘I‘—RH Zk,Rk>1§k§ME<N XR) ,Rk#Rl, lf]{#l}

Proof. Let v € V possessing a normalized ground state wavefunction V.
Let p = py. The function p is smooth (actually analytic') away from the
nuclei, and at each nucleus of charge z;, it holds

d [/0] R,
dr

(0) = —2z[p]r, (0), (Kato’s cusp conditions)

1
R, (r) = / /
ki 471'7“2 S<Rk’f,,)

is the average of p over the sphere S(Ry, r) of center R;. of radius r.

where

Therefore, there is a unique v € V with density p.

' —  see Thomas Ostergaard Sorensen’s talk
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Extension to more general potentials

Denoting by F(v) the ground-state energy of H(v), we have

Eu(wn) = (| Hy(wn)] 90) = (Wil Hy(0) )+ [ plor=) 2 Bufwa)+ [ plor—u
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By symmetry, we also have

Ey(v2) > Ep(v1) + /R3 p(va — v1)
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Extension to more general potentials

Denoting by F(v) the ground-state energy of H(v), we have

Eu(wn) = (| Hy(wn)] 90) = (Wil Hy(0) )+ [ plor=) 2 Bufwa)+ [ plor—u

By symmetry, we also have

Ey(v2) > Ep(v1) + /R3 p(va — v1)

Therefore,

Ey(v1) > Ep(va) + /]R3 p(v1 —v2) > Ey(v1)



Eo(or) = (U1 [ Hix(0)] 1) = (0| Hy(un)| 01) + /

1 - Hohenberg-Kohn theorem 6

Extension to more general potentials

Denoting by F(v) the ground-state energy of H(v), we have

p(vy—vg) > Eo(?fz)+/ p(v1—12)

R3 R3

By symmetry, we also have

Ey(v2) > Ep(v1) + /R3 p(va — v1)

Therefore,
Ey(v1) > Ep(va) + /3 p(vr — v2) > Epy(v1)
R
Hence, the above inequalities are in fact equalities, which implies that W,
is a ground state of Hy(v;):

HN<?)1>\IJ2 = E()(Ul)q/g and HN<2)2)\P2 = E()(UQ)\IJQ



1 - Hohenberg-Kohn theorem 6

Extension to more general potentials

Denoting by F(v) the ground-state energy of H(v), we have

Eu(wn) = (| Hy(wn)] 90) = (Wil Hy(0) )+ [ plor=) 2 Bufwa)+ [ plor—u

By symmetry, we also have
Eo(v2) > Ey(v1) +/ p(vy — v1)

R3
Therefore,

Ey(v1) > Ep(va) + /]R3 p(v1 —v2) > Ey(v1)

Hence, the above inequalities are in fact equalities, which implies that W,
is a ground state of Hy(v;):

HN<?)1>\IJ2 = E()(Ul)q/g and HN<2)2)\P2 = E()(UQ)\IJQ
This implies,

N
(Z(vg —v1)(r;) + Eo(vy) — E()(?)Q)) Wy(ry, -+ ,ry) =0 almost everywhere in R*Y
i=1
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In order to infer from

N
(Z(’Ug — 1}1)<I'2') + E()(’U1> — E()(’Ug)) \Ifg(rl, s ,I‘N> = (0 almost everywhere in RSN
1=1
that

N

Z(”UQ —01)(1;) + Eo(v1) — Eo(vs) =0 almost everywhere in R*"
i=1
from which we easily conclude that

E —F
(vy — v1)(r) = o(v2) ~ olv) almost everywhere in R,

we need a unique continuation argument of the form
(Hy(v)¥ = EV and ¥ = 0 on a set of positive measure) = (V¥ =0 a.e. in R*")

—  see Louis Garrigue’s talk
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In order to infer from

N
(Z(Ug — Ul)<r¢) + E()(’U1> — E()(UQ)) \112(1'1, SRR ,I‘N> = (0 almost everywhere in RSN

1=1

that
N

Z(”UQ —01)(1;) + Eo(v1) — Eo(vs) =0 almost everywhere in R*"
i=1
from which we easily conclude that

E —F
(vy — v1)(r) = o(v2) ~ olv) almost everywhere in R,

we need a unique continuation argument of the form
(Hy(v)¥ = EV and ¥ = 0 on a set of positive measure) = (V¥ =0 a.e. in R*")

—  see Louis Garrigue’s talk

Extension of Hohenberg-Kohn theorem to other settings

—  see Andre Laestadius’s talk on HK for current densities
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k
Let H). := /\ L*(R* C), V € Hy such that | V|| = 1,and 1 <p < N
e the p-body (reduced) density matrix (p-RDM) associated with V is

- /
/YP,‘I’<I'17 SRR VRN & PR ,I‘p)
. N \Ij \Ij / / *d d
P p S(N ) (rlj"° 7rp7 rp_i_l’-o- )rN) (rl’Oo- ’rp, rp+17... 7rN> rp+1... I‘N
R —-p

e the p-body reduced density operator (p-RDOQO) associated with U is the
bounded self-adjoint operator on 7, with kernel v, y. It is also denoted
by 7, v and sometimes called density matrix as well;

e the p-body density is

Pp,\If<r1>°“ 7rp) :%,\P(rlv”' y Ipy 1y e o 7rp>
N
- ( p>/3(N )Nj(rla"‘ Ty, Tpits o TN drpy - dry
R3(N—p

o for p =1, vy = V1,9, pu = P10
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Variational formulation of the ground-state energy

N
Ey = inf {{(U|Hy|V), ¥ € Wy}, Wy = {\If c /\L2<R3) N HY (R, [ = 1}

N N
1 1
Hy=—- AI" Vi )
T JEUES SCSRND ppe— -3
o 1=1 ,ooa=1 1N P
T Vae Ve

1
e kinetic energy: (V|T'|y) = Tr (—§AW>

e interaction energy between electrons and nuclei: (V|V,.|¢) = / pyV
R3
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Variational formulation of the ground-state energy

N
Ey = inf {{(U|Hy|V), ¥ € Wy}, Wy = {\If c /\L2<R3> N HY (R, [ = 1}

:_—ZAriJrZVr@ LY Zh«_w

1<Z<]<N

-~

T Vhe ‘/ee

““Usual” splitting of the electronic Hamiltonian
H N — 1+ V;le + ‘/ee .
—— =~
1-body 2-body
Hohenberg-Kohn splitting of the electronic Hamiltonian
H N — I+ ‘/ee =+ Vne
—— =

generic specific (to the molecular system considered)
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Levy-Lieb functional (Levy 79, Lieb ’83, already discussed in previous talks)

— r; —
1<i<y<N

N N
1 1
HN — H}\["‘V;ley Hjl\/' — T—i_%e — _5 E Arﬂ_ 5 ‘ r ‘7 Vne — § V(rz>
i—1 J i—1

Ey = inf {FLL(p) +/ pV, p € RN}
R3

Fir(p) = inf {(V|Hy|¥), U € Wy s.t. py = p},
Ry = {p, JU € Wy s.t. pr = ,0}
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Levy-Lieb functional (Levy 79, Lieb ’83, already discussed in previous talks)

N N
1 1
. 1 1 _ _ E E — E .
1=1 1<i<y<N 1=1

Ey = inf {FLL(p) + / pV, p € RN}
R3

Fir(p) = inf {(V|Hy|¥), U € Wy s.t. py = p},
Ry = {p, JU € Wy s.t. pr = ,0}

Theorem (pure-state /NV-representability of densities)
Ry = {pZO, Vp € H'(R?), / p:N}
R3

Fii(p) is a “universal” functional of the density

Problem: no easy-to-compute expression of [ (p) is known
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Lieb functional (Legendre-Fenchel duality)
For any v € L3/%(R?) + L>(RR?), we can define

Fo(v) = inf {(W|Hy(v)|[W), ¥ € Wy} = inf {@H}V 3 o) 0), U e WN}

1=1

and v — E;(v) is a real-valued, concave, Lipschitz function on L?/?(R?) + L>*(R?)
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Lieb functional (Legendre-Fenchel duality)
For any v € L3/%(R?) + L>(RR?), we can define

Fo(v) = inf {(W|Hy(v)|[W), ¥ € Wy} = inf {@H}V 3 o) 0), U e WN}

1=1

and v — E;(v) is a real-valued, concave, Lipschitz function on L?/?(R?) + L>*(R?)

Theorem (Lieb ’83)
Eo(v) = inf {FL(,O) +/ pv, p € LYRY) N LB(RB)}
R?)

where I} (p) is the convex w-Ls.c. function defined on L!(R3) N L3(R?) by

Filp) = s { ) - [ pu. ve L) + 2w |
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Physical interpretation of F1(p)

Mixed states of /V-electron systems are described by /V-electron density
matrices of the form

+00 N +00
D= palU) (U, U, € \ LA(R?,C), (VW) = G, 0<pp <1, ) pr=1
n=1 n=1

the density of I' being given by

—+00
n=1

+00
[" is of finite energy if Z Pl VVW,]|72 < oo, its energy being then

n=1

r (HyI) = an o Hy|V,) Tr(H}VF)Jr/RgppV.
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Let us denote by Dy the convex set of finite-energy /V-electron density matrices

Theorem (ensemble /V-representation of densities). It holds

{p‘HFEDNS.t.,OF:p}:RN:{pZO, \/EEHI(R?)), / p:N}
R3

Therefore (Valone ’80)
Eo(v) = inf{Tr (Hy(v)I'), I' € Dy}
= inf {Tr (H}VF) —|—/ orv, 1" e DN}
R3

— inf {inf {Tr (HyT'), T € Dy, pr = p} +/ pv, p E RN} .
R3

inf {Tr (H\T'), I € Dy, pr=p}  ifp € Ry,
+00 if p §§ Ry,
and that F7 is the convex hull of 71 on the convex set R

It holds that [7(p) =
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No explicit expressions of the functionals /7, and F7;, are known

Approximations are needed for numerical simulations

Two classes of approximate functionals are available, built from the exact
functionals of simple reference systems:

e orbital-free models: reference system = homogeneous electron gas

orbital-free functionals are cheap but inaccurate except in a few cases

e Kohn-Sham models: reference system = /N non-interacting electrons

Kohn-Sham functionals are much more accurate, but more expensive
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In orbital-free models, the density functional is explicit in p

Examples:

e Thomas-Fermi (TF) model

1 /
gTF(IO> — CTF/ 105/3+/ pv_l__/ / p<r> 10<I/.>drdr/
R3 R3 2 Jps Jgs |r— 1|

B inf {7, p 20, p e PE)NLP®), [ p=n]
]R3

e Thomas-Fermi-von Weizsicker (TFW) model

1 /
gTFW(IO) _ CW/ ‘v\/ﬁ‘Q‘FCTF/ p5/3_|_/ pV+_/ / p(r> /0<I'> dr dr’
R3 R3 R3 2 R3 JR3 |I' — I'll

B it (€Y p2 0, Vre R, [ o=}
R3




3 - Kohn-Sham models



3 - Kohn-Sham models 18

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Lieb

Interacting e Hy Fii(p) FL(p)

Non-interacting e~ HY Tin(p) Ts(p)

HYy = T+Vpe = — Z “Ap At Z

— T
1<2<]<N Ti ]|



3 - Kohn-Sham models

18

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Lieb
Interacting e~ Hy Fir(p) Fi(p)
Non-interacting e~ HY Tin(p) Ts(p)

Hy =T+Vee = — Z A Z

— T
1<2<]<N Li ]|

Can T11(p) be "easily'" computed? No

Al
== 5

1=1

Can Tj(p) be "easily' computed?  Yes! — (extended) Kohn-Sham model
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Kohn-Sham Kinetic energy functional (Levy-Lieb approach for A R[)

Tir(p) = mf{{Y[T[P), U € Wy s.t. py = p}

< inf {(V|T|¥), U € Wy is a Slater determinant s.t. py = p}

N N
, 1
= inf {ZQ/R% Voil?, ¢ € H'(RY), /Rg Gipj = 0ij, Z oi]” = ,0}
i=1 i=1
=: Ti(p) (Kohn & Sham ’65)

A Slater determinant with finite Kinetic energy is a wavefunction V of the form

g1(r1) - - - Pi(ry)

>_L L
SRCERV/ 7 I
on(r1) - - - on(ry)

P(ry,--- ¢i € Hl(R3>7 - Gipj = 0;j
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Kohn-Sham model (’65)

1. For N non interacting electrons, the density functional is (approxima-
tively) given by

N N
, 1
T(p) = inf {ZQ/R3 Voil*, ¢ € H(R’) /RS Gij = 0ij Z 6i]* = ﬂ}
i=1 i=1
2. For a classical charge distribution of density p, the Coulomb interaction

reads .
J(p) et L / / plx)ply) dy
2 Jrs Jrs ’f—y‘

3. Kohn and Sham proposed the following decomposition of Fi,

Fin(p) = Tup) + J(p) + Bxlp) where Ex(p) S (o)~ Talp) - J(p)

E. is called the exchange-correlation functional
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Exchange-correlation functional

Assuming that
o Fi1(p) = . ’inf (U|H | V) has a unique minimizer V) (up to a global phase)
pu=p
o Ti(p) = inf (®|HY|®) has a unique minimizer ¢) (u.t.g.p.)

® Slater det. | pp=p
one can define

e the Kinetic energy and electron-electron energy functionals
T(p) = (UYIT[D),  Veelp) = (V)| Vee| WD)

¢ the exchange energy functional

1 [Yan(r, 1)
Ex(p> = ——/ il dr dr/
2 Jragps | — 1|

e the Kinetic and e-e contributions to the correlation energy functional

Ti(p) =T(p) —Tilp) and  Uclp) = Veelp) — J(p) — Ex(p)
Exc(p) = Ex(p) + Ec(p),  Eclp) = Tu(p) + Uclp)
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Orders of magnitude of the various components of the energy (in a.u.)

System | FEgs | T(pas) | Ts(pas) Te(pas) | Vae(pas) | Veelpas) | J(pas) Ex(pas) Uepgs)

He 2904 | 2904 2867 0.037 | -6.753 | 0.946 | 2.049 -1.025 -0.079
Be |-14.667 | 14.667 | 14.594 0.073 | -33.710 | 4.375 | 7.218 -2.674 -0.169
Ne | -128.94 | 128.94 128.61 0.33 | -311.12 | 53.24 | 66.05 -12.09 -0.39

Ecs =T (pgs) + Vaie(pas) + Vee(pas)
= Ty(pas) + Vne(PGs) + J(pas) + Ex(pas) + Te(pas) + Ue(pas)
could be “easily” computed from g E ( PGs)

In practice, because of error cancellations, it is better to split the energy as
E(p) = Ty(p) + Vae(p) + J(p) + Exc(p) and approximate F..(p)
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Local Density Approximation (LDA)
A possible approximation of F,.(p) (Kohn and Sham ’65) is

EPMp) = [ ewlplo)ds

where e,.(p) is the exchange-correlation energy density in a homogeneous
electron gas of density p

Parametrization of e,. : R, — R: see Part 4: Homogeneous electron gas

Beyond LDA

——  see Kieron’s talk

Beyond-LDA Kohn-Sham models are poorly understood mathematically
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Rewriting the minimization problem in terms of ® = (¢, -, ¢n), One
obtains

Ey ~ inf {EKS’LDA@), O = (g1, ,on) € (H'(R))Y, [ ¢i0; = 6@-}
RS

EKS,LDA Z |v¢2 ‘2 / p(I)V

pa (T
d dr’ < d
// |r_r,‘ " +/ (ps(r)) dr

with V(I‘) = —Z |I'—Rk’ Z’qbz
k=1

Existence of solutions for neutral and positively charged systems for the
Xa model (e,.(p) = —C ng p*/3): Le Bris 93
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Kohn-Sham equations (Euler-Lagrange + gauge invariance + loc. min.)

2

1
_§A¢i +Wspy =ci0; 1 <1< N

3¢z‘¢j=5z‘j 1<, <N
R

\

¢ In the Hartree-Fock model, the potential )V is nonlocal

1 1 al
Wi — (v ¥ pa W) o [ U o), uter) = 3 i)
i=1
while it is local in the Kohn-Sham LDA model
1 dexe
Wy P4 = (V tpoxyt ;p (pq>>) ¢

¢ In the Hartree-Fock model, =1 < ¢y < .- < gy are the lowest |V eigen-
values of —%A + Ws, while it is not known whether this property holds
true for the Kohn-Sham LDA model
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Lieb approach (minimizing over N-body density matrices)

Let] € Dy
+00 N +00
D= pa U (T], W, € NLARY), (U,|0,) =0pn, 0<p, <1, Y pp=1
n=1 n=1
The first order reduced density operator associated with [ is
= Z PV, note that pp(r) = p(r, 1)
It holds
W=, 0<w <1, Tr(y)=N, Tr(HYl)= (——A’yr>

Theorem (ensemble N -representability of 1-RDM)

Cny = {’y ’ HFEDNS.L’YF:’Y}
= {7 e S(L*R%) | 0< v <1, Tr(y) = N, Tr(—Ay) < o}
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Janak functional (Lieb density functional for non-interacting electrons)

Ty(p) = inf {Te(HR}T), T € Dy s.t. pr = p}

1
= inf {Tr (—§A7p) , ' € Dy sdt. pr = ,0}

1
= inf {Tr (—§A7> , ¥ €Cn St. py = ,0} where p.(r) = v(r,r)

DO | —

—+00
:inf{ " / Vol ¢ e H(RY, / bid; = 51
i=1 R R?

+00
0<mn <1, ) nileyl” = p}
1=1
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Extended Kohn-Sham LDA model

inf {€(7), v € S(L*(R?), 0<~ <1, Tr(y) =N, Tr(—Av) < oo}

1
E(y)=Tr (—§M) + / PV + J(py) + / exc(py),  py(r) =(r,T)
R3 R3
The minimization set Cy is convex and any v € Cy can be written as

+00
v = nilé:) (o]
i1

GiQ; = 0ij, 0<mn; <1, n; = N, o, € H' (R’
j j

Existence of solutions for neutral and positively charged systems:
Anantharaman-EC ’09 for LDA and GGA 2e, Gontier ’15 for LSDA
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Extended Kohn-Sham LDA equations

v = an‘!¢i><¢i|

HpO Gi = €iP;

d
Gipj = 0ij o
R3

P

1
Ho:—?ﬁ+v+pmﬂﬂ4+

p(r) = an‘\¢z‘(1‘>|2

n, =1ifg; < EF,
OSnZS 1if€i:€F,
n; = 0ifeg; > EF,

dexc
dp

(0")

R

oA

Z
&

|
REI

i
@)



4 - Homogeneous electron gas

Reference: Dreizler and Gross, Springer-Verlag 1990
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Supercell model (useful for theoretical calculation and numerical simulations)

supercell Q2 = [0, L)%, spin states S = {| 1), )},
periodic lattice R, = LZ?, dual lattice R} = 27 Z°

Electronic Hamiltonian (second quantization formalism)

_ 2 i
Hy = E —|k| akaaka—k— E E E ak+q0ak, .0 V.o 0K o

2
kEREﬂGS q€R;\{0} keR},0€SK'ER] ,0'€S ‘Q‘

— rigorous results on the TL by Lieb & Narnhofer ’75

Remark. This is the jellium model, not clear mathematically that this coin-
cides with the HEG (minimizer of the energy per unit volume at constant
density)

—  see Lewin & Lieb ’15
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Supercell model (useful for theoretical calculation and numerical simulations)

supercell Q2 = [0, L)%, spin states S = {| 1), )},
periodic lattice R, = LZ?, dual lattice R} = 27 Z°

Electronic Hamiltonian (second quantization formalism)

_ E 2 E E E T
Hp = —|k| ak ok, U+— ak+q0ak’ qaak o' o

2
keRj‘;,aes q€R;\{0} keR},0€SK'ER] ,0'€S ‘q‘

Dimensional analysis: for the homogeneous electron gas of density n € R’

K2 3 1/3 Yo
ag = > (Bohr radius), ro=(— (Wigner-Seitz radius), 7r,=—
M€ 41mn ag
2
H - g &a E E g = al al Ak oK/
Lagrs aor2 5 ko oL 3 ’q’2 k+q,0"k/—q,0 koYK o
® \keRj €S q€R} keER} 0eSK'eR o'€S

rs small (high-density regime): Kinetic energy > potential energy
rs large (low-density regime): potential energy > Kinetic energy
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High-density regime (r; < 1)

e leading term in the limit r;, — 0

h? h?
Hy= > kel a, — ——A
2m€ ’ L—o0 2me
keR] ,0€8

The ground-state density matrix is not spin-polarized

FLQ
70 — ]]-(—OO,SF] (

B 2M

A) : er such that Tr(y,) = n

The ground-state energy per particle is given by

C 3h 2~ 3 97\ %3 ¢2
/é{(;ID’()(Ts) — —1r = CTFnQ/g, with Crp = (371‘2)3 : Crp = — (_ﬂ-) 6_

2 10m,
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High-density regime (r, < 1) (continued)

e 1*-order perturbation: let n = n; +n  and ( = .
n
(1B (1= ~ (131 (1= )43
E/I(;ID’()(T’S, <->_|_€/I(;ID,1<T87 C) _ CTF( C) ( C) _CD( C) ( C)

2
21

— rigorous asymptotics when r, — 0 (Graf & Solovej °94)

21,

According to this model, there is a phase transition at r, = rél) ~ 5.45:

— 75 < 5.45: spin-unpolarized
— 1y > 5.45: spin-polarized

According to numerical simulations (see below), the phase transition
occurs at much lower density ' > 5.45)

For valence electrons in real metals, the local Wigner-Seitz radius is typically

1.8 < rg(r) <5.6

— see David Gontier’s talk on the Hartree-Fock approximation for the HEG
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High-density regime (r, < 1) (continued)

e 2" order perturbation: two diagrams contribute

— 2"_grder exchange diagram:

2 2

1 3
’5332(745) — (6 In2— 4—7T2C(3)) Z_o ~ 0.0242—0 (Onsager et al. ’66)

— 2"d_grder ring diagram —  divergent

L Xy by A7
~HD,2 3e / S S (1 = firg)(1 = fivsq) /
\rs) = dk dk’ dq, =1
V) T 6 oo JaPe + W ol (kK b St
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High-density regime (r, < 1) (continued)

e 2" order perturbation: two diagrams contribute

— 2"_grder exchange diagram:

~HD 2< ) 11 9 3 ¢(3) ¢’ 0 02462 (Onsager et al. ’66)
€ (rs)=|=zIn2—-— P |
0,x 6 42 ag a °

— 2"d_grder ring diagram —  divergent

e Random Phase Approximation (RPA) = ring approximation

- 1 —1In2 e’
€po(rs) = <( . ) Inry, —0.071 + 0(1)> - (Gell-Mann & Brueckner °57)
’ s apo
(partial resummation of ring diagrams of any orders)
£y 4y ) ¢
‘%’LW + - *Q:rvwwo + i'



4 - Homogeneous electron gas 34

High-density regime (r, < 1) (continued)

e 2" order perturbation: two diagrams contribute

— 2"_grder exchange diagram:

2 2

1 3
E%{’E’Q(rs) — (6 In2— 4—7T2C(3)) Z_o ~ 0.0242—0 (Onsager et al. ’66)

— 2"d_grder ring diagram —  divergent

e Random Phase Approximation (RPA) = ring approximation

2

- 1 —1In2
€po(rs) = << 2n ) Inry, —0.071 + 0(1)) il (Gell-Mann & Brueckner °57)
’ fA o)

(partial resummation of ring diagrams of any orders)

e Correlation energy per particle in the high-density regime
1 —1In2
é/IO{,]CD (rs) = (< n2)

2
(last two explicit terms by du Bois ’59 and Carr & Maradudin ’65)

2
Inr, —0.048 +0.009r,Inr, — 0.018 r, + 0(7“5)) c
ag

7
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Low-density regime (r, > 1)

e Wigner crystallization in a BCC lattice
(conjecture supported by numerical simulations)

e Energy per particle in the high-density regime
1.792  2.65 0.73 1 e’
~HD I _ — ) ) ==
e = (57w S (3)) o
including

— the BCC lattice energy (first term, Wigner ’34)
— the harmonic lattice vibrations (second term, Wigner ’38)

— the first anharmonic corrections (third term, Carr-Coldwell et al. ’61)

note that there is no consensus on the correctness of this expansion
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Intermediate regime

Numerical approximation of the many-body problem
e coupled-clusters (Freeman ’77)
e quantum Monte Carlo (VMC: Ceperley 78, GFMC: Ceperley & Alder ’80)

Parameterization of the exchange-correlation energy per particle

Two popular parameterizations of ¢.(n, ()
e Vosko, Wilk & Nusain ’80 (VWN)
e Perdew & Zunger ’91 (PZ91)
both using
e the high-density expansion
e the QCM results by Ceperley & Alder 80
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Perdew & Zunger parameterization (PZ91)
e exchange functional
ex(rs, Q) = €x(rs,0) + (€x(n, 1) — &(rs, 0)) f(C)
T+ (1=¢)

ex(rs,0) = & <97T)%)1 <e—2>  Cx(rg, 1) = 21/3€X(r3,0), £(0) = (14 ¢)

Tanr \ 4 ) r \ag
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Perdew & Zunger parameterization (PZ91)

e exchange functional

gX<T87 C) — gX<T87 O) + (gx<n7 1) o gX(TS7 O)) f(C)

1 4 A
_ 3 /97\3 1 (e’ ~ 1403+ (1=0)3 =2
6X<T87 O) — _E (Z) T_ (CL_(]) ’ €X<T87 1) - 21/3€X<T87 O) f(C) - ( )2<2%<_ 1) )
e correlation functional
& (re, Q)=er (ry, 0) + (&%(n, 1) — &%(r, 0)) f(C)
withfor ( =0or( =1
2
% (6 ) forr, > 1
1—|—51C7‘5 —l—ﬁzg’l“s ap

ngQl (7“5, C) —

2

(A¢ Inrs + B + Cerglarg + Dery) (Z—O> for0 <r, <1
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Perdew & Zunger parameterization (PZ91) (continued)

e parameterization of the correlation functional: ( =0Oor ( = 1

2
o 17/62 ; (Z) for r, > 1
+ O1cTs’ + Pocrs \H0
EfZ91<T57 C) _
2
(A¢ Inrg+ Be + Cerglnrg + Derg) (6—> for0 <r, <1
with ag

Yo=—0.1423 10=1.0529 f50=0.3334 Ay=0.0311 By=—0.0480 Cy=0.0020 Dy=—0.011¢
1 =—0.0843 B,1=1.3981 B5,=0.2611 A;=0.0155 B;=—0.0269 C;=0.0007 D;=—0.004¢

- ¢, B, Bacs ¢ = 0, 1t fit of Ceperley-Alder results
— Ap and Bj: first two terms of the high-density expansion (RPA resummation)

— A, and Bj: use the scaling (exact for RPA, valid with a 1% accuracy)

- 1_
ec(rs, 1) = 56(;(7“5/24/3, 0)

— C¢and D¢, ¢ = 0, 1: chosen so that ¢.“"1(n, () is C'! on R*



