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Objective :
@ Existence of an electronic ground state

@ Properties of the ground state
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Introduction Finite systems

Nuclei and electrons in finite systems

Born-Oppenheimer approximation

@ M classical nuclei (z«, R) : nuclear density p

M M °
uzszéRk or M:ZZkX('— R) °
k=1 k=1
[
@ N electrons : one-body density matrix °
v L2(R%) — L3(R®) in . ®
[

Kn={y"=7%0<y<1 Tr(y) =N, Tr(-Av) < oo}
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@ N electrons : one-body density matrix °
v L2(R%) — L3(R®) in . °
[

Kn={y"=7%0<y<1 Tr(y) =N, Tr(-Av) < oo}

Two types of interactions :
@ long-range Coulomb interaction : Wy(x) = ﬁ
e

x|

—mlx|

@ short-range m-Yukawa interaction : Wn(x) =
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Introduction Finite systems

Kohn-Sham model for finite systems

Energy functional
1 1
£ = 3T (-89 = [ g bW =)+ 5 [ (6 ()W (x =)
R3 xR3 R3 xR3

+ Exc(p) + U(1)
where "p~(x) = v(x, x)"

Ground state
Yo = argmin {E.(7), v € Kn}
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Introduction Finite systems

Kohn-Sham model for finite systems

Energy functional

1 1
£ = 3T (-89 = [ g bW =)+ 5 [ (6 ()W (x =)
R3 xR3 R3 xR3

+ Exc(p) + U(p)
where "o, (x) = 7(x, x)"
Ground state
Yo = argmin {€.(7), v € Kn}

reduce Hartree Fock (rHF) model
ErHF —0.

rHF equation (insulators and semiconductors)

Yo =1 (H < ¢F)
r

H— —%A+ v
—AV =47 (pye — 1)

[LiSi'77] Lieb H.E. Simon B. The Hartree-Fock theory for Coulomb systems. CMP. 1977.

Salma LAHBABI (UHII) Disordered crystals January 31st 2019 4/17



Disordered materials Nuclei

Disordered materials
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Disordered materials Nuclei

Typical example

o, x) = Y aew)x(x — k = Re(w))

kezd

® [ ] [ ] ® Ga. (g. ‘g) «©
L] [ ] [ ] L] Q&

c o o o ’@JQ.G'

Perfect crystal Disordered crystal

For example : (g«) and (Rx) i.i.d bounded random variables and x € S(R9).
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Disordered materials Nuclei

General case

@ A probability space (Q, F,P).
@ An ergodic group action 7 = (7k)cza Of 7% on (Q, F,P), i.e.

@ A function f : Q x R — C is stationary if Yk € Z9, a.s. and a.e.
f(1e(w), x) = f(w, k + x).
@ We assume that

L is stationary and p € LNQ, Li,o(R?))
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Disordered materials Electrons

Electronic states

@ Ergodic density matrices (v(w))wea

Nw) =v(w), 0<y9(w) <1, y(T(W))xy) =v(W)(x + ky + k) as.
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Disordered materials Electrons

Electronic states

@ Ergodic density matrices (v(w))wea

Nw) =v(w), 0<y9(w) <1, y(T(W))xy) =v(W)(x + ky + k) as.

@ Number of electrons per unit volume
1 ()= E (T (ar10) =5 ( [ 1 (0) o)
Q

@ Kinetic energy per unit volume
1 3
sIr (-Ay) = > E(Tr (1gPyPile))

=1

@ Interaction energy per unit volume of a charge distribution f

10u.1 = 35 ([ [ oMt 0f)
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Disordered materials Energy and GS

The rHF model for stochastic systems

Set of admissible density matrices

Ky = {fy is an ergodic density matrix, Tr (—Av) < oo,
Tr(v) = (fo u) Din(py — 11,0y — 1) < 00}

Average energy per unit volume

1 1
€u(7) = 5T (=A7) + 5Dm (py = 1 py = 1)
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Disordered materials Energy and GS

The rHF model for stochastic systems

Set of admissible density matrices

Ky = {fy is an ergodic density matrix, Tr (—Av) < oo,
Tr(y) = (fo u) s Dim(py = 1y py — 1) < 00}

Average energy per unit volume

1 1
€u(7) = 5T (=A7) + 5Dm (py = 1 py = 1)

Theorem (CLL'13)

For m > 0, £, admits a minimizer on IC,,.

[CLL'13] E.Canceés, S.L., M.Lewin, J. math. pures appl.
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Disordered materials Energy and GS

Properties of the ground state

Theorem (CLL'13)

For m > 0 and p € L>(Q x R®), £, admits a unique minimizer on K,,, which the
solution of the self-consistent equation

2(w) = 1 (H() < er)
H(w) = —%A + V(w,-) a.s.
—AV(w,") + m2V(w, ) =4m (p“r(w) — m(w, ))

Salma LAHBABI (UHII) Disordered crystals January 31st 2019 10/17



Numerical results on Anderson localization

Anderson localisation
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Anderson Localization

@ Anderson localization : pure point spectrum with exponentially decaying
eigenfunctions
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Numerical results on Anderson localization Localization properties

Anderson Localization

@ Anderson localization : pure point spectrum with exponentially decaying
eigenfunctions

@ Linear model (Anderson-Bernoulli) :
H= —%A +V

with

V(w) =D ar(w)Va(x) + (1 = qe(w)) Va(x)

kezZ
and g ~ B(p)

e if p€{0,1} : no localization
o if p ¢ {0,1} : there is Anderson localization at all energies (DSS'02, GK'13)

[DSS'02] D. Damanik, R. Sims, G. Stolz, Duke Math. J.
[GK'13] F. Germinet, A. Klein, J. Euro. Math. Soc.
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Numerical results on Anderson localization Localization properties

Anderson Localization

@ Anderson localization : pure point spectrum with exponentially decaying
eigenfunctions

@ Linear model (Anderson-Bernoulli) :
H= —%A +V

with

V(w) =D ar(w)Va(x) + (1 = qe(w)) Va(x)

kezZ
and g ~ B(p)

e if p€{0,1} : no localization
o if p ¢ {0,1} : there is Anderson localization at all energies (DSS'02, GK'13)

@ KS model : H = —%A + V solution of the rHF equation. Is there localization 7 ?
@ Partial results by D'18
[DSS'02] D. Damanik, R. Sims, G. Stolz, Duke Math. J.

[GK'13] F. Germinet, A. Klein, J. Euro. Math. Soc.
[D'18] R. Ducatez, Journal of Spectral Theory
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Numerical results on Anderson localization Numerical setting
Settings

One dimensional stochastic alloy

plw,x) = qe(@)pa(x = k) + (1 = qu(w))pa(x — k),

keZ
qkx ~ B(p) 3
1 x— 1) ’
m) = 5o P <(oo2)> |
p2(x) =1 — cos(2mx). K]

o s0 100 150 200 =0 amw

Numerical characterization : variance criterion

v (v) = /OLX2 V() — (/OLX|’(/J(X)|2>2
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Numerical results on Anderson localizat Numerical results

Linear model (p=0)
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Eigenfunction
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Numerical results
Linear model (p=0.5)
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Numerical results
rHF model (p=0.5)
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Nurmerical results
Eigenfunctions in the rHF model (p=0.5)
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Eigenfunction corresponding to the first eigenvalue
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Conclusions and perspectives

Conclusions and perspectives

Conclusions
@ A variational model for stochastic systems with Coulomb and Yukawa interactions
@ Existence of a ground state

@ Numerical study of Anderson localization

Perspectives
@ Derive the rHF equation for Coulomb interacting systems
@ Study the spectral properties of the mean-field Hamiltonian (localization,
transport, ...)
@ Extend to other models (ex : HF, KS with xc)
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