Finite range decomposition for multimarginal transport
 Mircea Petrache, PUC Chile

Optimal Transport Methods in Density Functional Theory, BIRS, Canada February 2019 (15 min. talk)

Mathematics Computer Science
 Computational Chemistry

Biology

Chemistry

Mathematics
 Computer Science

This
 talk
 Computational
 Chemistry

Biology

Chemistry

Intro: Optimal transport with N marginals

- Fix $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right), \gamma_{N} \in \mathcal{P}\left(\left(\mathbb{R}^{d}\right)^{N}\right)$ and $\mathrm{c}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- $\gamma_{N} \mapsto \mu$ means that γ_{N} has N marginals equal to μ, i.e. $\left(\pi_{j}\right)_{\#} \gamma_{N}=\mu$ for $j=1, \ldots, N$.

Our problem:

- γ_{N} assumed symmetric,
- power-law potential $\mathrm{c}(x, y):=\frac{1}{|x-y|^{s}}\left(\right.$ or $:=\log \frac{1}{|x-y|}$ for $\left.s=0\right)$

$$
\mathrm{OT}_{N, s}(\mu):=\min \left\{\left.\int_{\left(\mathbb{R}^{d}\right)^{N}} \sum_{i \neq j}^{N} \frac{1}{\left|x_{i}-x_{j}\right|^{s}} d \gamma_{N}\left(x_{1}, \ldots, x_{N}\right) \right\rvert\, \begin{array}{l}
\gamma_{N} \in \mathcal{P}_{s y m}\left(\left(\mathbb{R}^{d}\right)^{N}\right), \\
\gamma_{N} \mapsto \mu
\end{array}\right\}
$$

Intro:Density Functional Theory

- Curse of dimensionality:
- Schrödinger equation $H \Psi=E_{0} \Psi$
$\Psi=$ state of N-particle system,
$H=$ operator on $\mathbb{R}^{3 N}$,
$E_{0}=$ ground state energy.
- Chemical behavior \sim energy differences \ll total energy

Cystein molecule simulation, (from Walter Kohn's Nobel prize laudation page)

Intro: HoHEnberg-KOHN-SHAM MODEL

- Hohenberg-Kohn-Sham (HK) model
- (most of you know it better than me).
- Formulated in terms of the normalized one-particle density ρ.
- Computational bottleneck: Given ρ, compute the N-electron minimum energy at fixed one-particle density ρ.
- Second step: Optimize ρ including the interaction with the nuclei.

Intro: DFT and multimarginal OT

- Hohenberg-Kohn functional: energy of N electrons of density ρ

$$
\mathrm{HK}_{N}[\rho]:=\text { Minimize: } \quad\left\langle\Psi_{N},\left(\hbar^{2} \Delta_{\mathbb{R}^{N d}}+E_{N}\right) \Psi_{N}\right\rangle \quad \text { where: }
$$

- "| $\left.\Psi_{N}\right|^{2 "} \in \mathcal{P}\left(\left(\mathbb{R}^{d}\right)^{N}\right)+$ other properties,
- The measure $\left|\Psi_{N}\right|^{2}$ has marginals all equal to ρ,
- $E_{N}\left(x_{1}, . ., x_{N}\right):=\sum_{i \neq j} \frac{1}{x_{i}-\left.x_{j}\right|^{\text {s }}}$ (or take another $c(x, y)$ instead?)
- $\lim _{\hbar \rightarrow 0} \mathrm{HK}_{N}[\rho]=\mathrm{OT}_{N}(\rho)$

To know about this, ask Codina/Gero/Luigi/Mathieu/Ugo (in alphabetical order).

Intro: LEADING ORDER TERM = MEAN FIELD

Theorem (Cotar-Friesecke-Pass '15, Petrache '15)

$$
\begin{aligned}
\mathrm{OT}_{N}(\mu) & =N^{2} \operatorname{MF}(\mu)+o\left(N^{2}\right), \\
\operatorname{MF}(\mu) & :=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \mathrm{c}(x-y) d \mu(x) d \mu(y)
\end{aligned}
$$

if and only if $\mathrm{c}(x-y)$ is balanced positive definite, i.e.

$$
\iint \mathbf{c}(x-y) f(x) f(y) d x d y \geq 0 \quad \text { whenever } \quad \int f=0
$$

- Define $\operatorname{Exc}_{N}(\mu):=\mathrm{OT}_{N}(\mu)-N^{2} \mathrm{MF}(\mu)$.
- Theorem says:

$$
\operatorname{Exc}_{N}(\mu)=o\left(N^{2}\right) \quad \Leftrightarrow \quad \text { c balanced positive definite. }
$$

NEXT-ORDER TERM FOR INVERSE POWER LAWS, $0<s<d$

- $d=1$, general kernels: unpublished note by Di Marino
- $s=1, d=3$: Lewin-Lieb-Seiringer '17, using Graf-Schenker '95
- Improving upon the different strategy Fefferman '85, we get:

Theorem (Cotar-Petrache, Adv. Math. 2019)

Let $d \geq 1, \mathrm{c}(x, y)=|x-y|^{-s}$ with $0<s<d$. Under suitable hypotheses on ρ, as $N \rightarrow \infty$ we have

$$
\operatorname{Exc}_{N}(\rho) \quad=\quad N^{1+\frac{s}{d}}\left(C_{U G}(d, s) \int_{\mathbb{R}^{d}} \rho^{1+\frac{s}{d}}(x) d x+o(1)\right)
$$

where $C_{u G}(d, s)=$ min energy of an "Uniform Riesz Gas" (special case: "Uniform Electron Gas" from DFT, for $s=d-2$).

- In the above Cotar-Petrache '19 we show a bit more, bounding the "third-order term" asymptotic contribution as $N \rightarrow \infty$.

THE PROBLEM OF PRECISE LOCALIZATION

- Idea of proof:
- $\operatorname{split} \operatorname{supp}(\rho)$ into small cubes,
- use scaling (get power $1+s / d$),
- approximate $\int \rho^{1+s / d}(x) d x$ by a Riemann sum.
- Main topic of the talk: get "independence of contributions" coming from disjoint cubes.
- Two linked topics:

1. Kernel decompositions for C (positive definite + finite range pieces: allows superadditivity)
2. Space cut-off of ρ (Ruelle approach to subadditivity, classical tool in Stat. Phys.)

1. FINITE-RANGE DECOMP. AND SUPERADDITIVITY

- Input: $\mathrm{c}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ which is positive definite (e.g. $1 /|x-y|^{s}$ or $e^{-c|x-y|^{2}}$ or $|x-y|^{2}$ or products of these..)
- Output: splitting $\mathrm{c}_{r}, r \in \mathcal{R}$ such that
- C_{r} is positive definite
- C_{r} has finite range $\left(\mathrm{c}_{r}(x, y)=0\right.$ if $\left.|x-y|>2 r\right)$,
- C is completely split $\mathrm{C}=\sum_{r} \mathrm{C}_{r}$.
- Use of this in OT:
- $\operatorname{MF}[\mathrm{c}](\rho)=\sum_{r} \mathrm{MF}\left[\mathrm{c}_{r}\right](\rho)$ (by linearity)
- $\mathrm{OT}_{N}[\mathrm{c}](\rho) \geq \sum_{r} \mathrm{OT}_{N}\left[\mathrm{c}_{r}\right](\rho)$ (by linearity $+\min \sum_{r} P_{r} \geq \sum_{r} \min P_{r}$)

$$
\Rightarrow \quad \operatorname{Exc}_{N}[\mathbf{c}](\rho) \geq \sum_{r} \operatorname{Exc}_{N}\left[\mathbf{c}_{r}\right](\rho) .
$$

..the N^{2}-contribution cancels as $N \rightarrow \infty$, only next-order remains!
(by leading order theo. + positive definiteness of c_{r}).

2. CONVEX ENVELOPE AND SUBADDITIVITY

Rewrite $\operatorname{Exc}_{N}(\mu)=\mathrm{OT}_{N}(\mu)-N^{2} \mathrm{MF}(\mu)$ for $N \in \mathbb{N}$, by new formula:

$$
\operatorname{Exc}(\nu):=\mathrm{OT}_{|\nu|}\left(\frac{\nu}{|\nu|}\right)-\operatorname{MF}(\nu) \quad\left\{\begin{array}{l}
\operatorname{Exc}(\nu)=\operatorname{Exc}_{N}(\mu) \\
\text { if } \nu=N \mu \text { and }|\nu|=N .
\end{array}\right.
$$

- This agrees with Exc_{N} across different $N \in \mathbb{N}$, and it's subadditive:

$$
\operatorname{Exc}\left(\sum_{i} \nu_{i}\right) \leq \sum_{i} \operatorname{Exc}\left(\nu_{i}\right)
$$

(if all above measures have integer mass)

- Exc := (lower) convex envelope of Exc.
- We get a "fractional number of marginals" OT-problem
- Physically, it's the grand-canonical version of Exc.
- The approach is ubiquitous in classical Statistical Mechanics.

3. RANDOM PACKINGS FOR MIXING THE INGREDIENTS

- Localization: split c or ν into local parts:

$$
\begin{align*}
\overline{\operatorname{Exc}}[\mathbf{c}](\nu) & \geq \sum_{r} \overline{\operatorname{Exc}}\left[\mathbf{c}_{r}\right](\nu), \tag{1}\\
\overline{\operatorname{Exc}}[\mathbf{c}]\left(\sum_{i} \nu_{i}\right) & \leq \sum_{i} \overline{\operatorname{Exc}}[\mathbf{c}]\left(\nu_{i}\right) . \tag{2}
\end{align*}
$$

- Can we use both contemporarily?
- Use construction of c_{r} in order to match the two setups

$$
\begin{aligned}
\mathrm{h}_{r}(x-y) & :=1_{B_{r}} * 1_{B_{r}}(x-y) \quad \text { positive definite, } \\
\widetilde{\mathrm{c}}_{r}(x, y) & :=\int\left[1_{B_{r}(p)}(x) 1_{B_{r}(p)}(y) \mathrm{c}(x-y)\right] d p \\
& =\mathrm{h}_{r}(x-y) \mathrm{c}(x-y) \quad \text { positive definite. }
\end{aligned}
$$

- $\widetilde{\mathrm{c}}_{\mathrm{r}}$ fits in (1)
- The integrand gives a cut-off like in (2) on the ball $B_{r}(p)$
- Strategy that worked: cut-off along "random" packings!

Where this seems to be going (personal view)

- We have a simple "averaging" amongst packings:

Via stochastic geometry we can extend this further

- So far we tried "simple/basic" cut-off functions:

Finite-range decomposition theory connects it to PDE-ideas

- We did sharp asymptotics for $N \rightarrow \infty$, oscillation bounds:

What about sharper (randomized) algorithm analysis for "large N optimal transport"?
(I.e. get better complexity bounds with high probability)

- Relate OT complexity-reduction problem to "pure" CS topics: cut decompositions / regularity lemmas / dimensionality reduction

OUR PACKing, $M=2$

PACKING STRATEGY

- "Swiss cheese" lemma Lebowitz-Lieb '72: Cover $[0,1]^{d}$ by balls $\mathcal{F}=\{B\}_{B}$ of radii $0<R_{1}<\cdots<R_{M}$ with
- geometric growth: $R_{i+1}>C_{d} R_{i}$,
- $c_{i}:=$ (volume fraction covered by R_{i}-balls) $=1 / M+O\left(M^{-2}\right)$.

Extend by \mathbb{Z}^{d}-periodicity.

- For $f \in L^{1}$ with compact support, $\langle f\rangle(x, y):=\int_{\mathbb{R}^{d}} f(x+p, y+p) d p$. Then

$$
\sum_{B \in \mathcal{F}}\left\langle 1_{B}(x) 1_{B}(y) c(x-y)\right\rangle=c(x-y) \sum_{i=1}^{M} c_{i} \frac{1_{B_{R_{i}}} * 1_{B_{R_{i}}}(x-y)}{\left|B_{R_{i}}\right|}
$$

POSITIVE DEFINITENESS CRITERION

Lemma (perturbative positive-definiteness criterion)

$$
\begin{gathered}
\left|\partial_{x}^{\beta} g(x)\right| \lesssim|x|^{-s-|\beta|} \text { for all multiindices }|\beta| \leq d . \\
\quad \Rightarrow \\
\qquad|\hat{g}(\xi)| \lesssim|\xi|^{s-d}
\end{gathered}
$$

To use it we further mollify

$$
Q_{i}(x)=\frac{1_{B_{R}} * 1_{B_{R}}(x)}{\left|B_{R}\right|} \mapsto \quad Q_{i, \eta}(x)=\int_{1-\eta}^{1+\eta} \frac{1_{B_{t R}} * 1_{B_{t R}}(x)}{\left|B_{t R}\right|} \rho_{\eta}(t) d t
$$

(can still re-express as averaging over dilated packings)

POSITIVE DEFINITE ERROR TERM

Lemma (perturbative positive-definiteness criterion)

$$
\begin{aligned}
\left|\partial_{x}^{\beta} g(x)\right| & \lesssim|x|^{-s-|\beta|} \text { for all multiindices }|\beta| \leq d . \\
& \left.\Rightarrow||\hat{g}(\xi)| \lesssim| \xi\right|^{-d} .
\end{aligned}
$$

By adding $\epsilon /|x-y|^{s}$, we ensure $\widehat{w}(\xi)=\widehat{e r r}(\xi)+\left.C \epsilon \xi\right|^{s-d}>0$. (Recall that $\hat{w}>0$ implies that w is positive definite.)
Proposition (kernel localization + small error)

$$
\frac{1}{\left|x_{1}-x_{2}\right|^{s}}=\frac{1}{1-\epsilon}\left(\int_{\Omega}\left[\sum_{A \in F_{\omega}} \frac{1_{A}\left(x_{1}\right) 1_{A}\left(x_{2}\right)}{\left|x_{1}-x_{2}\right|^{s}}\right] d \mathbb{P}(\omega)+w\left(x_{1}-x_{2}\right)\right)
$$

where

1. w is positive definite.
2. OT next-order term with kernel wexists and has good bounds.
