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INTRO: OPTIMAL TRANSPORT WITH N MARGINALS

» Fix u € P(RY), 7y € P(R)N)and c: RY x R — R.

» ~n — p means that vy has N marginals equal to p, i.e.
(7(']’)#"}/]\] = [LfOI‘j = 1, ce ,N.

Our problem:

> 7y assumed symmetric,

» power-law potential ¢(x,y) :=

[x—y[* [x—yl
~ 1 M € Paym( (RON)
OTy.s(pt) := min / ———dyn(xp, .. xy) | NS T Ty
, (RN xi — xj[* N



INTRO:DENSITY FUNCTIONAL THEORY

» Curse of dimensionality:
» Schrodinger equation HV = EgW

¥ = state of N-particle system,
H = operator on RV,
Eo = ground state energy.

» Chemical behavior ~ energy differences < total energy

Cystein molecule simulation,
(from Walter Kohn’s Nobel prize laudation page)



INTRO: HOHENBERG-KOHN-SHAM MODEL
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Hohenberg-Kohn-Sham (HK) model
(most of you know it better than me).
Formulated in terms of the normalized one-particle density p.

Computational bottleneck: Given p, compute the N-electron
minimum energy at fixed one-particle density p.

Second step: Optimize p including the interaction with the
nuclei.



INTRO: DFT AND MULTIMARGINAL OT

» Hohenberg-Kohn functional: energy of N electrons of density p

HKy|[p] := Minimize: (Uy, (F*Agn + EN)¥y)  where:

> [Ty 27 € P((RY)N) + other properties,
» The measure |¥y|* has marginals all equal to p,

> En(x1,.,xn) 1= X0y ﬁ (or take another c(x, y) instead?)
» limy; 0 HKy[p] = OTn(p)

To know about this, ask Codina/Gero/Luigi/Mathieu/Ugo
(in alphabetical order).



INTRO: LEADING ORDER TERM = MEAN FIELD

Theorem (Cotar-Friesecke-Pass 15, Petrache '15)

OTn(p)

N*MF () 4 o(N?),

/w/w x = y)dp(x)du(y)

if and only if c(x — y) is balanced positive definite, i.e

MF (1)

// X—y (y)dxdy >0 whenever /f:O.

» Define Excy/(p) := OTy(1) — N*MF(p).

» Theorem says:

Excy(p) =o(N?) <& cbalanced positive definite.



NEXT-ORDER TERM FOR INVERSE POWER LAWS,
0<s<d

» d =1, general kernels: unpublished note by Di Marino

» s =1,d = 3: Lewin-Lieb-Seiringer 17, using Graf-Schenker ‘95

» Improving upon the different strategy Fefferman ‘85, we get:
Theorem (Cotar-Petrache, Adv. Math. 2019)

Letd > 1,c(x,y) = |x —y|~° with 0 < s < d. Under suitable hypotheses
on p, as N — oo we have

Excn(p) = N (cuc (d,s) /R ) P\ (x)dx + 0(1)> ,

where Cyc(d,s) = min energy of an “Uniform Riesz Gas” (special case:
“Uniform Electron Gas” from DFT, for s = d — 2).

» In the above Cotar-Petrache ‘19 we show a bit more, bounding the
“third-order term” asymptotic contribution as N — oo.



THE PROBLEM OF PRECISE LOCALIZATION

» Idea of proof:
> split supp(p) into small cubes,
> use scaling (get power 1 + 5/d),
> approximate [ p'*/ 4(x)dx by a Riemann sum.

» Main topic of the talk:
get “independence of contributions” coming from disjoint cubes.

» Two linked topics:

1. Kernel decompositions for ¢
(positive definite + finite range pieces: allows superadditivity)

2. Space cut-off of p
(Ruelle approach to subadditivity, classical tool in Stat. Phys.)



1. FINITE-RANGE DECOMP. AND SUPERADDITIVITY

» Input: ¢ : R? x R? — R which is positive definite
(e.g. 1/|x —y|° or e=cl=v” or |x — y|? or products of these..)
» Output: splitting c,, r € R such that
» c, is positive definite
» ¢, has finite range (¢, (x,y) = 0if [x —y| > 2r),
» cis completely splitc = ", C;.
» Use of this in OT:

> MF[c](p) = 3, MF[c/](p) (by linearity)
> OTy(cl(p) > 3, OTw(c/](p) (by linearity +min )" P, > > min P;)

= Excnlc](p) > > Excn[c](p).

..the N2-contribution cancels as N — oo, only next-order remains!

(by leading order theo. + positive definiteness of c,).



2. CONVEX ENVELOPE AND SUBADDITIVITY

Rewrite Excy(u) = OTn(1) — N?MF(p) for N € N, by new formula:

B v\ Exc(v) = Excy(u)
Exc(v) := QT <u|> MF(») { if v = Npand |v| = N.

» This agrees with Excy across different N € N, and it’s

subadditive:
Exc <Z V,) <> Exc(u)
(if all above measures have integer mass)

» Exc := (lower) convex envelope of Exc.

> We get a “fractional number of marginals” OT-problem
» Physically, it’s the grand-canonical version of Exc.

» The approach is ubiquitous in classical Statistical Mechanics.



3. RANDOM PACKINGS FOR MIXING THE
INGREDIENTS

» Localization: split ¢ or v into local parts:
Bxeldl() > Y Exele]w), 0
Excle]() w) < > Exclc](w). )
» Can we use both contemporarily?
» Use construction of C, in order to match the two setups
h(x—y) := 1p *1p(x—y) positive definite,
sy = [ [0t~ v)] dp

= h(x—y)c(x—y) positive definite.
> ¢, fits in (1)
» The integrand gives a cut-off like in (2) on the ball B, (p)

» Strategy that worked: cut-off along “random” packings!



WHERE THIS SEEMS TO BE GOING (PERSONAL VIEW)

» We have a simple “averaging” amongst packings:
Via stochastic geometry we can extend this further

» So far we tried “simple/basic” cut-off functions:
Finite-range decomposition theory connects it to PDE-ideas

» We did sharp asymptotics for N — oo, oscillation bounds:

What about sharper (randomized) algorithm analysis
for “large N optimal transport”?

(Le. get better complexity bounds with high probability)
» Relate OT complexity-reduction problem to “pure” CS topics:

cut decompositions / regularity lemmas / dimensionality
reduction
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OUR PACKING, M =2
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PACKING STRATEGY

> “Swiss cheese” lemma Lebowitz-Lieb '72: Cover [0, 1]? by balls
F ={B}pofradii0 < Ry < --- < Ry with

> geometric growth: Ri11 > CiR;,
> ; :=(volume fraction covered by R;-balls) = 1/M + O(M~2).

Extend by Z?-periodicity.

» Forf € L' with compact support, (f)(x,y) := [p.f(x+p,y+p)dp
Then

Z<1B(x)13(y)c( clx—y ZCIW'

BeF



POSITIVE DEFINITENESS CRITERION

Lemma (perturbative positive-definiteness criterion)

02¢(x)| < |x| 75717 for all multiindices |8| < d.
=

) < lefF.

To use it we further mollify

1BR * 1BR (x) t 1BtR * 1BtR (x)

|BR‘ — Qi.ﬂ(x) = \/1\77 ‘BtR‘

(can still re-express as averaging over dilated packings)

Qi(x) = py(b)dt.



POSITIVE DEFINITE ERROR TERM

Lemma (perturbative positive-definiteness criterion)
102¢(x)| < |x| =717 for all multiindices |8 < d.
= RIS I

By adding ¢/|x — yf, we ensure @(&) = &77(&) + Ce/&f~ > 0.
(Recall that w > 0 implies that w is positive definite.)

Proposition (kernel localization + small error)

1 _ 1A X1 1A Xz) _
o —xff  1-— (/ |_A |x1 — x2® ] () + wl xz)> ’

where

1. w is positive definite.

2. OT next-order term with kernel w exists and has good bounds.



	

