Coxeter groups, quiver mutations and hyperbolic manifolds

Anna Felikson

(joint with Pavel Tumarkin)
"Discrete Subgroups of Lie Groups"
Banff, December 10, 2019

1. Coxeter group: $\quad G=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle$.
2. Coxeter group: $\quad G=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle$.
3. Quiver mutation:
4. Coxeter group: $\quad G=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle$.
5. Quiver mutation:

- Quiver is an oriented graph without loops and 2-cycles.

Agreement: $\bullet \stackrel{p}{>} \quad=\bullet \leqslant^{-p} \bullet$

1. Coxeter group: $\quad G=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle$.
2. Quiver mutation:

- Quiver is an oriented graph without loops and 2-cycles.

- Mutation μ_{k} of quivers:
- reverse all arrows incident to k;
- for every oriented path through k do

1. Coxeter group: $\quad G=\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle$.
2. Quiver mutation:

Plan:
Quiver $Q \longrightarrow$
\longrightarrow (Quotient of) Coxeter group $G \longrightarrow$
\longrightarrow Action of G on $X \longrightarrow$
Hyperbolic manifold X / G with symmetry group G
3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.
3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.

Let Q be a quiver of finite type,
i.e. mutation-equivalent to an orientation of A_{n}, D_{n} or E_{6}, E_{7}, E_{8} :

3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.

Let Q be a quiver of finite type,
i.e. mutation-equivalent to an orientation of A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

- Generators of G - nodes of Q.
- Relations of $G-(\mathrm{R} 1) s_{i}^{2}=e$ (R2) $\left(s_{i} s_{j}\right)^{m_{i j}}=e$,

$$
m_{i j}= \begin{cases}2, & \bullet \\ 3, & \bullet- \\ \infty, & \text { otherwise }\end{cases}
$$

(R3) Cycle relation:
for each chordless cycle $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$

$$
\left(s_{1} s_{2} s_{3} \ldots s_{n} \ldots s_{3} s_{2}\right)^{2}=e
$$

3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.

Let Q be a quiver of finite type,
i.e. mutation-equivalent to an orientation of A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, $G(Q)$ is invariant under mutations of Q, i.e. $G(Q)=G\left(\mu_{k}(Q)\right)$.

3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.

Let Q be a quiver of finite type,
i.e. mutation-equivalent to an orientation of A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, $G(Q)$ is invariant under mutations of Q, i.e. $G(Q)=G\left(\mu_{k}(Q)\right)$.

- In particular, $G(Q)$ is a finite Coxeter group.

3. Construction by Barot - Marsh: quiver $Q \longrightarrow$ group $G(Q)$.

Let Q be a quiver of finite type, i.e. mutation-equivalent to an orientation of A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, $G(Q)$ is invariant under mutations of Q, i.e. $G(Q)=G\left(\mu_{k}(Q)\right)$.

- In particular, $G(Q)$ is a finite Coxeter group.
- If $Q_{2}=\mu_{k}\left(Q_{1}\right), s_{i}$ - generators of $G\left(Q_{1}\right), t_{i}$ generators of $G\left(Q_{2}\right)$, then

$$
t_{i}= \begin{cases}s_{k} s_{i} s_{k}, & i \quad-k \text { in } Q_{1} \\ s_{i}, & \text { otherwise }\end{cases}
$$

4. Geometric interpretation.

Example: $Q_{1}=A_{3}=0^{1} \longrightarrow 0^{2} \longrightarrow 0^{3} \xrightarrow{\mu_{2}}$
4. Geometric interpretation.

$$
G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle
$$

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements:

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\left\langle t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\right\rangle$

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$

$$
\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=?
$$

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$.

$\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=?$

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$.

$\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=$?
$t_{1} t_{2} t_{3} t_{2}$ - translation by 2 levels

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.

$$
G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0}-\text { affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle
$$

$\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=$?
$t_{1} t_{2} t_{3} t_{2}$ - translation by 2 levels
$\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}$ - translation by 4 levels

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$.

$\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e=$ transl. by 4 levels - Identify!

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$.

$$
\begin{aligned}
& \left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e=\text { transl. by } 4 \text { levels - Identify! } \\
& G=G_{0} / N C l\left(\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}\right) \text { - Identify! Identify! }
\end{aligned}
$$

4. Geometric interpretation.

$G\left(Q_{1}\right)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{2}\right)^{2}=e\right\rangle$
finite Coxeter group A_{3}, acts on S^{2} by reflections, 24 elements.
$G\left(Q_{2}\right)=\langle\underbrace{t_{1}, t_{2}, t_{3} \mid t_{i}^{2}=\left(t_{i} t_{j}\right)^{3}}_{G_{0} \text { - affine Coxeter group } \widetilde{A}_{2} \text {, acts on } \mathbb{E}^{2} \text { by reflections. }}=\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e\rangle$.

$$
\begin{aligned}
& \left(t_{1} t_{2} t_{3} t_{2}\right)^{2}=e=\text { transl. by } 4 \text { levels - Identify! } \\
& G=G_{0} / N C l\left(\left(t_{1} t_{2} t_{3} t_{2}\right)^{2}\right) \text { - Identify! Identify! } \\
& G=G\left(Q_{2}\right) \text { acts on a torus } T^{2} .
\end{aligned}
$$

5. More generally:

- $G_{0}=$ a Coxeter group defined by (R1) and (R2).

5. More generally:

- $G_{0}=$ a Coxeter group defined by (R1) and (R2).
- Each Coxeter group G_{0} acts on its Davis complex $\Sigma\left(G_{0}\right)$ (contractible, piecewise Euclidean, with $C A T(0)$ metric).

5. More generally:

- $G_{0}=$ a Coxeter group defined by (R1) and (R2).
- Each Coxeter group G_{0} acts on its Davis complex $\Sigma\left(G_{0}\right)$ (contractible, piecewise Euclidean, with $C A T(0)$ metric).
- Take its quotient by cycle relations:

Denote $G_{r e l}:=N C l(R 3)$, consider $X=\Sigma\left(G_{0}\right) / G_{r e l}$, then $G: X$.

5. More generally:

- $G_{0}=$ a Coxeter group defined by (R1) and (R2).
- Each Coxeter group G_{0} acts on its Davis complex $\Sigma\left(G_{0}\right)$ (contractible, piecewise Euclidean, with $C A T(0)$ metric).
- Take its quotient by cycle relations:

Denote $G_{r e l}:=N C l(R 3)$,
consider $X=\Sigma\left(G_{0}\right) / G_{r e l}$, then $G: X$.

Theorem 2 [F-Tumarkin'14] (Manifold property)
The group $G_{r e l}$ is torsion free,
i.e. if $\Sigma\left(G_{0}\right)$ is a manifold then X is a manifold.

Taking the quotient, we are not introducing any new singularities!

5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

Example:

diagram of hyperbolic simplex
\Rightarrow Hyperbolic 3-manifold with action of the group A_{4}.

5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

Another example:

$$
D_{n}: S^{n}
$$

$$
\widetilde{A}_{n-1}: \mathbb{E}^{n-1}
$$

$$
G_{r e l}=\operatorname{NCl}\left(\left(\begin{array}{lll}
s_{1} & s_{2} s_{3} \ldots s_{n} \ldots s_{3} s_{2}
\end{array}\right)^{2}\right)
$$

$\mathbb{E}^{n-1} /(n$ translations $)=\mathbb{T}^{n-1}$ tiled by simplices

5. More generally:

More hyperbolic examples:

Table 5.1. Actions on hyperbolic manifolds.

pyramids
aver product of 2 simplices

TABLE 7.1. Actions on hyperbolic manifolds, non-simply-laced case.

W	\mathcal{G}	\mathcal{G}_{1}	$\|W\|$	$\operatorname{dim}(X)$	${ }^{v}$ vol X approx.	number of cusps	$\begin{gathered} \chi(X) \\ (\operatorname{dim} X \text { even }) \end{gathered}$
B_{3}	$2 \ldots$	${ }_{2}^{2}{ }^{2}$	$2^{3} \cdot 3!$	2	8π	compact	-4
B_{4}	\bullet 2.	-2	$2^{4} \cdot 4!$	3	$\|W\| \cdot 0.271446$	16	
F_{4}	2.	$20_{0}{ }^{2}$	$2^{7} \cdot 3^{2}$	3	$\|W\| \cdot 0.222228$	compact	

6. Beyond finite type:

- Q is of finite mutation type if

$$
\sharp\left|Q^{\prime} \sim_{\mu} Q\right|<\infty .
$$

6. Beyond finite type:

- Q is of finite mutation type if $\quad \sharp\left|Q^{\prime} \sim_{\mu} Q\right|<\infty$.

Classification [F, P.Tumarkin, M.Shapiro'2008]:
Connected quiver is of finite mutation type iff
(a) Q has 2 vertices, or
(b) Q arises from a triangulated surface, or
(c) Q is mutation-equivalent to one of 11 exceptional quivers:

6. Beyond finite type:

- Q is of finite mutation type if $\quad \sharp\left|Q^{\prime} \sim_{\mu} Q\right|<\infty$.

Classification [F, P.Tumarkin, M.Shapiro'2008]:
Connected quiver is of finite mutation type iff
(a) Q has 2 vertices, or
(b) Q arises from a triangulated surface, or
(c) Q is mutation-equivalent to one of 11 exceptional quivers:

6. Beyond finite type:

- Q is of finite mutation type if $\quad \sharp\left|Q^{\prime} \sim_{\mu} Q\right|<\infty$.

Classification [F, P.Tumarkin, M.Shapiro'2008]:
Connected quiver is of finite mutation type iff
(a) Q has 2 vertices, or
(b) Q arises from a triangulated surface, or
(c) Q is mutation-equivalent to one of 11 exceptional quivers.

Groups $G(Q)$ for them:
(a) trivial
(b) ?????
(c) can construct (with some additional relations).
7. Quivers from triangulated surfaces:

7. Quivers from triangulated surfaces

7. Quivers from triangulated surfaces

Triangulated surface $\quad \longrightarrow \quad$ Quiver

7. Quivers from triangulated surfaces

Triangulated surface	\longrightarrow	Quiver
edge of triangulation	vertex of quiver	
two edges of one triangle	arrow of quiver	

7. Quivers from triangulated surfaces

Triangulated surface	\longrightarrow	Quiver
edge of triangulation	vertex of quiver	
two edges of one triangle	arrow of quiver	

flip of triangulation $Z-\triangle$

7. Quivers from triangulated surfaces

Triangulated surface	\longrightarrow	Quiver
edge of triangulation	vertex of quiver	
two edges of one triangle	arrow of quiver	
flip of triangulation $Z-\Sigma$	mutation of quiver	

7. Quivers from triangulated surfaces

Triangulated surface	\longrightarrow
edge of triangulation	vertex of quiver
two edges of one triangle	arrow of quiver
flip of triangulation $Z-\Sigma$	mutation of quiver

Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

7. Quivers from triangulated surfaces

Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class $Q(T)$, i.e. G for every surface.

7. Quivers from triangulated surfaces

Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class $Q(T)$, i.e. G for every surface.
Construction of $G(Q)$ for unpunctured surfaces:

- Generators of $G \leftrightarrow$ arcs of the triangulation of Q.
- Relations of G :
(R1) $s_{i}=e$
(R4) \widetilde{A}_{2}-relations:

$\left(s_{1} s_{2} s_{3} s_{4} s_{3} s_{2}\right)^{2}=e$

$$
\left(s_{1} s_{2} s_{3} s_{4} s_{5} s_{4} s_{3} s_{2}\right)^{2}=e
$$

$$
\left(s_{1} s_{4} s_{3} s_{2} s_{5} s_{2} s_{3} s_{4}\right)^{2}=e
$$

7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, T triangulation of S,
$Q=Q(T), G=G(Q)$, then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.

7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, T triangulation of S,
$Q=Q(T), G=G(Q)$, then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.
Remark. - Now, G may be not a Coxeter group, but a quotient.

7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, T triangulation of S,
$Q=Q(T), G=G(Q)$, then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.
Remark. - Now, G may be not a Coxeter group, but a quotient.

- Now, we do not know manifold property.

7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, T triangulation of S,
$Q=Q(T), G=G(Q)$, then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.
Remark. - Now, G may be not a Coxeter group, but a quotient.

- Now, we do not know manifold property.
- We do not know much about this group!

7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, T triangulation of S,
$Q=Q(T), G=G(Q)$, then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.
Remark. - Now, G may be not a Coxeter group, but a quotient.

- Now, we do not know manifold property.
- We do not know much about this group!

Proposition. - G does not depend on the distribution of marked points along boundary components.

- There is a surjective homomorphism of G to an extended affine Weyl group of type A.

