Systole growth on arithmetic locally symmetric spaces

Plinio G. P. Murillo

BIRS Workshop on
Discrete Subgroups of Lie Groups
Banff. December 11, 2019

A geometric invariant

A geometric invariant

Systole $=$ length of a shortest non-contractible closed geodesic in M.

Denoted by $\operatorname{sys}_{1}(M)$.

A topological result

Theorem (Belolipetsky 2013)
Let M be a compact hyperbolic n-manifold with $\pi_{1}\left(S_{g}\right) \subset \pi_{1}(M)$.

Copyright: MFO

A topological result

Theorem (Belolipetsky 2013)
Let M be a compact hyperbolic n-manifold with $\pi_{1}\left(S_{g}\right) \subset \pi_{1}(M)$.
Then, for any $\epsilon>0$

$$
g \geq e^{\left(\frac{1}{2}-\epsilon\right) \mathrm{sys}_{1}(M)}
$$

Copyright: MFO

A topological result

Copyright: MFO

Theorem (Belolipetsky 2013)
Let M be a compact hyperbolic n-manifold with $\pi_{1}\left(S_{g}\right) \subset \pi_{1}(M)$.
Then, for any $\epsilon>0$

$$
g \geq e^{\left(\frac{1}{2}-\epsilon\right) \operatorname{sys}_{1}(M)}
$$

whenever $\operatorname{sys}_{1}(M)$ is large enough.

A topological result

Theorem (Belolipetsky 2013) Let M be a compact hyperbolic n-manifold with $\pi_{1}\left(S_{g}\right) \subset \pi_{1}(M)$.
Then, for any $\epsilon>0$

$$
g \geq e^{\left(\frac{1}{2}-\epsilon\right) \operatorname{sys}_{1}(M)}
$$

whenever $\operatorname{sys}_{1}(M)$ is large enough.
Copyright: MFO

How to construct M with large systole?

The first event

P. Buser and P. Sarnak (1994):

Let $\Gamma \subset S_{2}(\mathbb{R})$ be a cocompact arithmetic subgroup defined over \mathbb{Q}, and let $\Gamma(p)$ be a principal congruence subgroup.

For $S_{p}=\Gamma(p) \backslash \mathbb{H}^{2}$ we have

$$
\operatorname{sys}_{1}\left(S_{p}\right) \geq \frac{4}{3} \log \left(\operatorname{area}\left(S_{p}\right)\right)-c,
$$

where c is some constant
 independent of p.

Systole of congruence coverings

Mikhail Katz, Mary Schaps e Uzi Vishne (2007): Principal congruence subgroups $\Gamma(I)$ of any cocompact arithmetic group $\Gamma \subset \mathrm{SL}_{2}(\mathbb{C})$

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{2}{3} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c_{1}
$$

$M_{I}=\Gamma(I) \backslash \mathbb{H}^{3}$ and c_{1} is a constant.

Systole of congruence coverings

Mikhail Katz, Mary Schaps e Uzi Vishne (2007): Principal congruence subgroups $\Gamma(I)$ of any cocompact arithmetic group $\Gamma \subset \mathrm{SL}_{2}(\mathbb{C})$

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{2}{3} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c_{1}
$$

$M_{I}=\Gamma(I) \backslash \mathbb{H}^{3}$ and c_{1} is a constant.
S. Makisumi (2013): $\frac{4}{3}$ is sharp in dimension 2.

Congruence coverings

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- Spin $_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- Spin $_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- Spin $_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- Spin $_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$
Let $I<\mathcal{O}_{k}$ be an ideal.

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- $\mathrm{Spin}_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$
Let $I<\mathcal{O}_{k}$ be an ideal.
$\Gamma(I)=\left\{A \in \Gamma \mid A \equiv I_{d} \bmod I\right\} \unlhd_{f . i} \Gamma$.

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- $\mathrm{Spin}_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$
Let $I<\mathcal{O}_{k}$ be an ideal.
$\Gamma(I)=\left\{A \in \Gamma \mid A \equiv I_{d} \bmod I\right\} \unlhd_{f . i} \Gamma$.

$$
M_{I}=\Gamma(I) \backslash \mathbb{H}^{n} \longrightarrow M=\Gamma \backslash \mathbb{H}^{n}
$$

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- $\mathrm{Spin}_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$
Let $I<\mathcal{O}_{k}$ be an ideal.
$\Gamma(I)=\left\{A \in \Gamma \mid A \equiv I_{d} \bmod I\right\} \unlhd_{f . i} \Gamma$.
$M_{I}=\Gamma(I) \backslash \mathbb{H}^{n} \longrightarrow M=\Gamma \backslash \mathbb{H}^{n}$

$$
\operatorname{vol}\left(M_{l}\right) \approx \mathrm{N}(I)^{\frac{n(n+1)}{2}}, \quad \mathrm{~N}(I):=\left|\mathcal{O}_{k} / I\right|
$$

Congruence coverings

- Let k be a totally real number field (e.g $k=\mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature $(n, 1)$ over \mathbb{R}, and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \rightarrow \mathbb{R}$ $\left(e . g f=-\sqrt{2} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}\right)$.
- $\mathrm{Spin}_{f} \rightarrow \mathrm{SO}_{f}$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_{f}(\mathbb{R}) /\{1,-1\} \simeq \mathrm{SO}_{f}^{\circ}(\mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$
$\Gamma=\operatorname{Spin}_{f}\left(\mathcal{O}_{k}\right)$
Let $I<\mathcal{O}_{k}$ be an ideal.
$\Gamma(I)=\left\{A \in \Gamma \mid A \equiv I_{d} \bmod I\right\} \unlhd_{f . i} \Gamma$.
$M_{I}=\Gamma(I) \backslash \mathbb{H}^{n} \longrightarrow M=\Gamma \backslash \mathbb{H}^{n}$

$$
\operatorname{vol}\left(M_{l}\right) \approx \mathrm{N}(I)^{\frac{n(n+1)}{2}}, \quad \mathrm{~N}(I):=\left|\mathcal{O}_{k} / I\right| .
$$

M_{I} is the congruence covering of M associated to I.

Systole of congruence coverings

Theorem (M. 2019)
Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_{I} its congruence coverings. Then

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{8}{n(n+1)} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c_{2}
$$

where c_{2} is a constant.

Systole of congruence coverings

Theorem (M. 2019)
Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_{I} its congruence coverings. Then

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{8}{n(n+1)} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c_{2}
$$

where c_{2} is a constant.

Theorem (With C. Dória. 2019)
The constant $\frac{8}{n(n+1)}$ is sharp.

A topological result

Theorem (Belolipetsky 2013) Let M be a compact hyperbolic n-manifold with $\pi_{1}\left(S_{g}\right) \subset \pi_{1}(M)$. Then, for any $\epsilon>0$

$$
g \geq e^{\left(\frac{1}{2}-\epsilon\right) \operatorname{sys}_{1}(M)}
$$

whenever $\operatorname{sys}_{1}(M)$ is large enough.

Proposition (Bel. 2013)
Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_{I} its congruence coverings. If $\pi_{1}\left(S_{g_{\text {min }}}\right) \subset \pi_{1}\left(M_{l}\right)$, then

$$
g_{\min } \leq \operatorname{vol}\left(M_{l}\right)^{\frac{6}{n(n+1)}}
$$

A topological result

Copyright: MFO

Proposition (Bel. 2013, M. 2019)
Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_{I} its congruence coverings. If $\pi_{1}\left(S_{g_{\text {min }}}\right) \subset \pi_{1}\left(M_{l}\right)$, then

$$
\operatorname{vol}\left(M_{l}\right)^{\frac{4}{n(n+1)}-\epsilon} \leq g_{\min } \leq \operatorname{vol}\left(M_{l}\right)^{\frac{6}{n(n+1)}}
$$

Other applications

Limitation of parameters of error correcting codes constructed by L. Guth and A. Lubotzky in 2013.

Other applications

Construction of a special type of Einstein manifolds by J. Fine and B. Premoselli (2018).

Systole of congruence coverings (Rank >1)

Sara Lapan, Benjamin Linowitz and Jeffrey Meyer (2018): Congruence subgroups $\Gamma(I)$ of non-cocompact arithmetic subgroups $\Gamma \subset S L_{n}(\mathbb{R})$ such that

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{2 \sqrt{2}}{n\left(n^{2}-1\right)} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c_{3} .
$$

$M_{I}=\Gamma(I) \backslash X, X=\operatorname{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$ and c_{3} is a constant.

Systole of congruence coverings (Rank $=1$)

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq C \log \left(\operatorname{vol}\left(M_{l}\right)\right)-d
$$

d is a constant.

$$
C= \begin{cases}\frac{2 \sqrt{2}}{n(n+1)^{2}} & \mathrm{M} \text { real hyperbolic } \\ \frac{1}{n(n+1)(n+2)} & \mathrm{M} \text { complex hyperbolic } \\ \frac{1}{2 \sqrt{2}(n+1)^{2}(2 n+3)} & \mathrm{M} \text { quaternionic hyperbolic }\end{cases}
$$

Theorem (With V. Emery and I. Kim)
Let M be a compact quaternionic hyperbolic n-orbifold, and M_{I} its congruence coverings. Then

$$
\operatorname{sys}_{1}\left(M_{l}\right) \geq \frac{4}{(n+1)(2 n+3)} \log \left(\operatorname{vol}\left(M_{l}\right)\right)-c
$$

where c is a constant. Also, $\frac{4}{(n+1)(2 n+3)}$ is sharp.

"A rare photo of Long and Reid".
Taken from Reid's homepage.

Theorem (Long and Reid, 2019)
There exists a sequence of congruence subgroups in $\mathrm{SL}_{3}(\mathbb{R})$ all containing a genus 3 surface group.

Thank you very much!

