Systole growth on arithmetic locally symmetric spaces

Plinio G. P. Murillo

BIRS Workshop on Discrete Subgroups of Lie Groups

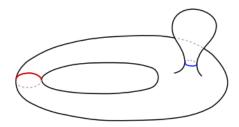
Banff. December 11, 2019

Plinio G. P. Murillo (KIAS)

Systole growth on locally symmetric spaces Banff

Banff. December 11, 2019

A geometric invariant



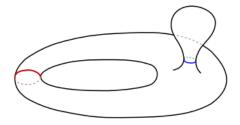
Plinio G. P. Murillo (KIAS)

イロト イポト イヨト イヨト Banff. December 11, 2019

æ

A geometric invariant

Systole = length of a shortest non-contractible closed geodesic in M.



Denoted by $sys_1(M)$.

э

4 3 5 4 3 5 5

Copyright: MFO

Theorem (Belolipetsky 2013)

Let *M* be a compact hyperbolic *n*-manifold with $\pi_1(S_g) \subset \pi_1(M)$.

Copyright: MFO

Theorem (Belolipetsky 2013)

Let *M* be a compact hyperbolic n-manifold with $\pi_1(S_g) \subset \pi_1(M)$. Then, for any $\epsilon > 0$

$$g \geq e^{(\frac{1}{2}-\epsilon)\mathrm{sys}_1(M)}$$

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic n-manifold with $\pi_1(S_g) \subset \pi_1(M)$. Then, for any $\epsilon > 0$

$$g \geq e^{(rac{1}{2}-\epsilon)\mathrm{sys}_1(M)}$$

whenever $sys_1(M)$ is large enough.

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic *n*-manifold with $\pi_1(S_g) \subset \pi_1(M)$. Then, for any $\epsilon > 0$

$$g \geq e^{(\frac{1}{2}-\epsilon)\mathrm{sys}_1(M)}$$

whenever $sys_1(M)$ is large enough.

< A IN

How to construct *M* with large systole?

Plinio G. P. Murillo (KIAS)

Systole growth on locally symmetric spaces

A B > A B > Banff. December 11, 2019

The first event

P. Buser and **P. Sarnak** (1994): Let $\Gamma \subset SL_2(\mathbb{R})$ be a cocompact arithmetic subgroup defined over \bigcirc and let $\Gamma(n)$ be a

subgroup defined over \mathbb{Q} , and let $\Gamma(p)$ be a principal congruence subgroup.

For
$$S_p = \Gamma(p) \setminus \mathbb{H}^2$$
 we have $\mathrm{sys}_1(S_p) \geq rac{4}{3} \log(\mathrm{area}(S_p)) - c,$

where c is some constant independent of p.

Systole of congruence coverings

Mikhail Katz, **Mary Schaps** e **Uzi Vishne** (2007): Principal congruence subgroups $\Gamma(I)$ of any cocompact arithmetic group $\Gamma \subset SL_2(\mathbb{C})$

$$\operatorname{sys}_1(M_I) \geq \frac{2}{3} \log(\operatorname{vol}(M_I)) - c_1.$$

 $M_I = \Gamma(I) \setminus \mathbb{H}^3$ and c_1 is a constant.

Systole of congruence coverings

Mikhail Katz, **Mary Schaps** e **Uzi Vishne** (2007): Principal congruence subgroups $\Gamma(I)$ of any cocompact arithmetic group $\Gamma \subset SL_2(\mathbb{C})$

$$\operatorname{sys}_1(M_l) \geq \frac{2}{3} \log(\operatorname{vol}(M_l)) - c_1.$$

 $M_I = \Gamma(I) \setminus \mathbb{H}^3$ and c_1 is a constant.

S. Makisumi (2013): $\frac{4}{3}$ is sharp in dimension 2.

Plinio G. P. Murillo (KIAS) Systole growth on locally symmetric spaces Banff. December 11, 2019

- E

6/15

• Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).

< □ > < □ > < □ > < □ > < □ > < □ >

3

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).

4 1 1 4 1 4 1 4

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- Spin_f \rightarrow SO_f simply-connected cover as linear algebraic k-groups.

イモトイモト

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- $Spin_f \rightarrow SO_f$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \operatorname{SO}_f^o(\mathbb{R}) \simeq \operatorname{Isom}^+(\mathbb{H}^n)$

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- $Spin_f \rightarrow SO_f$ simply-connected cover as linear algebraic k-groups.
- $\mathsf{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \mathsf{SO}_f^o(\mathbb{R}) \simeq \mathsf{Isom}^+(\mathbb{H}^n)$
- $\Gamma = {\rm Spin}_f(\mathcal{O}_k)$

- Let k be a totally real number field $(e.g \ k = \mathbb{Q}(\sqrt{2}))$.
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- $Spin_f \rightarrow SO_f$ simply-connected cover as linear algebraic k-groups.
- $\operatorname{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \operatorname{SO}_f^o(\mathbb{R}) \simeq \operatorname{Isom}^+(\mathbb{H}^n)$
- $\Gamma = {\rm Spin}_f(\mathcal{O}_k)$

Let $I < \mathcal{O}_k$ be an ideal.

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- $Spin_f \rightarrow SO_f$ simply-connected cover as linear algebraic k-groups.
- $\mathsf{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \mathsf{SO}_f^o(\mathbb{R}) \simeq \mathsf{Isom}^+(\mathbb{H}^n)$

 $\Gamma = {\rm Spin}_f(\mathcal{O}_k)$

Let
$$I < \mathcal{O}_k$$
 be an ideal.
 $\Gamma(I) = \left\{ A \in \Gamma \mid A \equiv I_d \mod I \right\} \trianglelefteq_{f.i} \Gamma.$

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- Spin_f \rightarrow SO_f simply-connected cover as linear algebraic k-groups.

•
$$\operatorname{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \operatorname{SO}_f^o(\mathbb{R}) \simeq \operatorname{Isom}^+(\mathbb{H}^n)$$

 $\Gamma = \operatorname{Spin}_f(\mathcal{O}_k)$

Let
$$I < \mathcal{O}_k$$
 be an ideal.
 $\Gamma(I) = \left\{ A \in \Gamma \mid A \equiv I_d \mod I \right\} \leq_{f.i} \Gamma.$
 $M_I = \Gamma(I) \setminus \mathbb{H}^n \longrightarrow M = \Gamma \setminus \mathbb{H}^n$

4 1 1 4 1 4 1 4

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- Spin_f \rightarrow SO_f simply-connected cover as linear algebraic k-groups.

•
$$\mathsf{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \mathsf{SO}_f^o(\mathbb{R}) \simeq \mathsf{Isom}^+(\mathbb{H}^n)$$

 $\Gamma = \operatorname{Spin}_f(\mathcal{O}_k)$

Let
$$I < \mathcal{O}_k$$
 be an ideal.
 $\Gamma(I) = \left\{ A \in \Gamma \mid A \equiv I_d \mod I \right\} \leq_{f.i} \Gamma.$
 $M_I = \Gamma(I) \setminus \mathbb{H}^n \longrightarrow M = \Gamma \setminus \mathbb{H}^n$
 $\operatorname{vol}(M_I) \approx \operatorname{N}(I)^{\frac{n(n+1)}{2}}, \quad \operatorname{N}(I) := |\mathcal{O}_k/I|$

- Let k be a totally real number field (e.g $k = \mathbb{Q}(\sqrt{2})$).
- Let f be a quadratic form defined over k, with signature (n, 1) over \mathbb{R} , and f^{σ} is positive definite for any non-trivial embedding $\sigma: k \to \mathbb{R}$ (e.g $f = -\sqrt{2}x_1^2 + x_2^2 + \cdots + x_{n+1}^2$).
- $Spin_f \rightarrow SO_f$ simply-connected cover as linear algebraic k-groups.
- $\mathsf{Spin}_f(\mathbb{R})/\{1,-1\} \simeq \mathsf{SO}_f^o(\mathbb{R}) \simeq \mathsf{Isom}^+(\mathbb{H}^n)$

 $\Gamma = {\rm Spin}_f(\mathcal{O}_k)$

Let
$$I < \mathcal{O}_k$$
 be an ideal.
 $\Gamma(I) = \left\{ A \in \Gamma \mid A \equiv I_d \mod I \right\} \leq_{f,i} \Gamma.$
 $M_I = \Gamma(I) \setminus \mathbb{H}^n \longrightarrow M = \Gamma \setminus \mathbb{H}^n$
 $\operatorname{vol}(M_I) \approx \operatorname{N}(I)^{\frac{n(n+1)}{2}}, \quad \operatorname{N}(I) := |\mathcal{O}_k/I|.$

 M_I is the congruence covering of M associated to I.

Systole of congruence coverings

Theorem (M. 2019)

Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_I its congruence coverings. Then

$$\operatorname{sys}_1(M_I) \geq \frac{8}{n(n+1)} \log(\operatorname{vol}(M_I)) - c_2,$$

where c_2 is a constant.

4 3 5 4 3 5 5

Systole of congruence coverings

Theorem (M. 2019)

Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_I its congruence coverings. Then

$$\operatorname{sys}_1(M_I) \geq \frac{8}{n(n+1)} \log(\operatorname{vol}(M_I)) - c_2,$$

where c_2 is a constant.

Theorem (With C. Dória. 2019) The constant $\frac{8}{n(n+1)}$ is sharp.

Plinio G. P. Murillo (KIAS)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic n-manifold with $\pi_1(S_g) \subset \pi_1(M)$. Then, for any $\epsilon > 0$

$$g \ge e^{(rac{1}{2} - \epsilon) \mathrm{sys}_1(M)}$$

whenever $sys_1(M)$ is large enough.

Proposition (Bel. 2013

Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_I its congruence coverings. If $\pi_1(S_{g_{min}}) \subset \pi_1(M_I)$, then

$$g_{min} \leq \operatorname{vol}(M_I)^{\frac{6}{n(n+1)}}.$$

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic n-manifold with $\pi_1(S_g) \subset \pi_1(M)$. Then, for any $\epsilon > 0$

$$g \ge e^{(rac{1}{2} - \epsilon) \mathrm{sys}_1(M)}$$

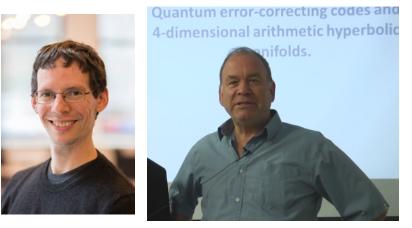
whenever $sys_1(M)$ is large enough.

Proposition (Bel. 2013, M. 2019)

Let M be a compact arithmetic hyperbolic n-orbifold as before, and M_I its congruence coverings. If $\pi_1(S_{g_{min}}) \subset \pi_1(M_I)$, then

$$\operatorname{vol}(M_I)^{\frac{4}{n(n+1)}-\epsilon} \leq g_{min} \leq \operatorname{vol}(M_I)^{\frac{6}{n(n+1)}}.$$

Other applications



Limitation of parameters of error correcting codes constructed by **L. Guth** and **A. Lubotzky** in 2013.

Other applications

10/15

Construction of a special type of Einstein manifolds by **J. Fine** and **B. Premoselli** (2018).

Plinio G. P. Murillo (KIAS) Systole growth on locally symmetric spaces Banff. December 11, 2019

Systole of congruence coverings (Rank > 1)

Sara Lapan, **Benjamin Linowitz** and **Jeffrey Meyer** (2018): Congruence subgroups $\Gamma(I)$ of non-cocompact arithmetic subgroups $\Gamma \subset SL_n(\mathbb{R})$ such that

$$\operatorname{sys}_1(M_I) \geq \frac{2\sqrt{2}}{n(n^2-1)} \log(\operatorname{vol}(M_I)) - c_3.$$

 $M_I = \Gamma(I) \setminus X$, $X = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SO}(n)$ and c_3 is a constant.

Systole of congruence coverings (Rank = 1)

$\operatorname{sys}_1(M_l) \geq C \log(\operatorname{vol}(M_l)) - d,$

d is a constant.

$$\boldsymbol{C} = \begin{cases} \frac{2\sqrt{2}}{n(n+1)^2} \\ \frac{1}{n(n+1)(n+2)} \\ \frac{1}{2\sqrt{2}(n+1)^2(2n+3)} \end{cases}$$

M real hyperbolic

M complex hyperbolic

M quaternionic hyperbolic

イヨト イモト イモト

Theorem (With V. Emery and I. Kim)

Let M be a compact quaternionic hyperbolic n-orbifold, and M_I its congruence coverings. Then

$$\operatorname{sys}_1(M_I) \geq \frac{4}{(n+1)(2n+3)} \log(\operatorname{vol}(M_I)) - c,$$

where c is a constant. Also, $\frac{4}{(n+1)(2n+3)}$ is sharp.

Plinio G. P. Murillo (KIAS) Systole growth on locally symmetric spaces Banff. December 11, 2019 13/15

"A rare photo of Long and Reid". Taken from Reid's homepage.

Theorem (Long and Reid, 2019)

There exists a sequence of congruence subgroups in $SL_3(\mathbb{R})$ all containing a genus 3 surface group.

Thank you very much!

Plinio G. P. Murillo (KIAS) Systole growth on locally symmetric spaces Banff. December 11, 2019

A (10) N (10)

2

 $15 \, / \, 15$