Abstract Homomorphisms of Algebraic Groups and Applications

Igor Rapinchuk

Michigan State University
Banff December 2019

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

General philosophy

Given alg. groups G / K and G^{\prime} / K^{\prime}, an abstract homomorphism

$$
\varphi: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

can (often) be written (essentially) as $\varphi=\beta \circ \alpha$, where

General philosophy

Given alg. groups G / K and G^{\prime} / K^{\prime}, an abstract homomorphism

$$
\varphi: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

can (often) be written (essentially) as $\varphi=\beta \circ \alpha$, where

- $\alpha: G(K) \rightarrow G_{K^{\prime}}\left(K^{\prime}\right)$ is induced by a field homomorphism $\tilde{\alpha}: K \rightarrow K^{\prime} \quad\left(G_{K^{\prime}}\right.$ is obtained from G by base change via $\left.\tilde{\alpha}\right)$;
- $\beta: G_{K^{\prime}}\left(K^{\prime}\right) \rightarrow G^{\prime}\left(K^{\prime}\right)$ is induced by a K^{\prime}-defined morphism $\quad G_{K^{\prime}} \rightarrow G^{\prime}$.

If an abstract homomorphism

$$
\varphi: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

admits such a factorization, we say it has a standard description.

If an abstract homomorphism

$$
\varphi: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

admits such a factorization, we say it has a standard description.

One expects that under appropriate assumptions
all abstract homomorphisms have a standard description

If an abstract homomorphism

$$
\varphi: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

admits such a factorization, we say it has a standard description.

One expects that under appropriate assumptions all abstract homomorphisms have a standard description
(rigidity statement)

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Work of Borel and Tits

Theorem 1. (Borel-Tits) Let G / K and G^{\prime} / K^{\prime} be algebraic groups over infinite fields such that

Work of Borel and Tits

Theorem 1. (Borel-Tits) Let G / K and G^{\prime} / K^{\prime} be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G^{\prime} absolutely simple adjoint.

Work of Borel and Tits

Theorem 1. (Borel-Tits) Let G / K and G^{\prime} / K^{\prime} be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G^{\prime} absolutely simple adjoint.

Let
$G^{+}=$(normal) subgroup of $G(K)$ generated by K-points of unipotent radicals of K-defined parabolics.

Work of Borel and Tits

Theorem 1. (Borel-Tits) Let G / K and G^{\prime} / K^{\prime} be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G^{\prime} absolutely simple adjoint.

Let
$G^{+}=$(normal) subgroup of $G(K)$ generated by K-points of unipotent radicals of K-defined parabolics.

Then any abstract homomorphism $\varphi: G^{+} \rightarrow G^{\prime}\left(K^{\prime}\right)$ with Zariski-dense image has a standard description.

Borel-Tits (cont.)

Similar, but more technical, result when G^{\prime} is only assumed to be reductive.

Borel-Tits (cont.)

Similar, but more technical, result when G^{\prime} is only assumed to be reductive.

QUestion: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

Borel-Tits (cont.)

Similar, but more technical, result when G^{\prime} is only assumed to be reductive.

QUestion: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No.

Borel-Tits (cont.)

Similar, but more technical, result when G^{\prime} is only assumed to be reductive.

QUestion: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No. B-T gave an example of $\varphi: G(K) \rightarrow G^{\prime}(K)$ such that

Borel-Tits (cont.)

Similar, but more technical, result when G^{\prime} is only assumed to be reductive.

QUestion: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No. B-T gave an example of $\varphi: G(K) \rightarrow G^{\prime}(K)$ such that

- G is absolutely almost simple / infinite K;
- φ has Zariski-dense image;
- G^{\prime} is not reductive.

Borel-Tits' example

CONSTRUCTION: Let

- G be an absolutely almost simple group / infinite k (e.g. $G=\mathrm{SL}_{n}$)
- K / k be a field extension with a nontrivial k-derivation $\delta: K \rightarrow K$ (e.g. $k(x) / k, \quad \delta=$ differentiation)

Borel-Tits' example

CONSTRUCTION: Let

- G be an absolutely almost simple group / infinite k (e.g. $G=\mathrm{SL}_{n}$)
- K / k be a field extension with a nontrivial k-derivation $\delta: K \rightarrow K$ (e.g. $k(x) / k, \quad \delta=$ differentiation)

Set $G^{\prime}=\mathfrak{g} \rtimes G, \mathfrak{g}=$ Lie algebra of G with adjoint action.

Borel-Tits' example

CONSTRUCTION: Let

- G be an absolutely almost simple group / infinite k (e.g. $G=\mathrm{SL}_{n}$)
- K / k be a field extension with a nontrivial k-derivation $\delta: K \rightarrow K$ (e.g. $k(x) / k, \quad \delta=$ differentiation)

Set $G^{\prime}=\mathfrak{g} \rtimes G, \mathfrak{g}=$ Lie algebra of G with adjoint action.
Define $\quad \varphi: G(K) \rightarrow G^{\prime}(K) \quad$ by

$$
G(K) \ni g \mapsto\left(g^{-1} \cdot \Delta(g), g\right) \in G^{\prime}(K)
$$

where Δ is induced by δ.

Borel-Tits' example

CONSTRUCTION: Let

- G be an absolutely almost simple group / infinite k (e.g. $G=\mathrm{SL}_{n}$)
- K / k be a field extension with a nontrivial k-derivation $\delta: K \rightarrow K$ (e.g. $k(x) / k, \quad \delta=$ differentiation)

Set $G^{\prime}=\mathfrak{g} \rtimes G, \mathfrak{g}=$ Lie algebra of G with adjoint action.
Define $\quad \varphi: G(K) \rightarrow G^{\prime}(K) \quad$ by

$$
G(K) \ni g \mapsto\left(g^{-1} \cdot \Delta(g), g\right) \in G^{\prime}(K)
$$

where Δ is induced by δ.

Then

- $\operatorname{Im} \varphi$ is Zariski-dense in G^{\prime};
- unipotent radical of G^{\prime} is \mathfrak{g} (hence nontrivial).

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon .
$$

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon .
$$

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$
F: G(K) \rightarrow G(A)
$$

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon
$$

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$
F: G(K) \rightarrow G(A)
$$

Note the identification

$$
\begin{gathered}
G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K)=G^{\prime}(K) \\
X+Y \varepsilon \mapsto\left(X^{-1} \cdot Y, X\right) .
\end{gathered}
$$

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon
$$

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$
F: G(K) \rightarrow G(A)
$$

Note the identification

$$
\begin{gathered}
G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K)=G^{\prime}(K) \\
X+Y \varepsilon \mapsto\left(X^{-1} \cdot Y, X\right) .
\end{gathered}
$$

Moreover, $\quad \varphi=t \circ F$.

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon .
$$

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$
F: G(K) \rightarrow G(A)
$$

Note the identification

$$
\begin{gathered}
G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K)=G^{\prime}(K) \\
X+Y \varepsilon \mapsto\left(X^{-1} \cdot Y, X\right) .
\end{gathered}
$$

Moreover, $\quad \varphi=t \circ F$.
Thus, φ comes from a homomorphism of algebras $f: K \rightarrow A$.

Example (cont.)

More conceptually: Consider $A=K[\varepsilon]$, where $\varepsilon^{2}=0$, and define

$$
f: K \rightarrow A, \quad x \mapsto x+\delta(x) \varepsilon
$$

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$
F: G(K) \rightarrow G(A)
$$

Note the identification

$$
\begin{gathered}
G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K)=G^{\prime}(K) \\
X+Y \varepsilon \mapsto\left(X^{-1} \cdot Y, X\right) .
\end{gathered}
$$

Moreover, $\quad \varphi=t \circ F$.
Thus, φ comes from a homomorphism of algebras $f: K \rightarrow A$. B-T conjectured that any abstract homomorphism can be obtained in (basically) this fashion.

Conjecture (BT)

Let G / K and G^{\prime} / K^{\prime} be algebraic groups / infinite fields, with G semisimple simply connected.

Conjecture (BT)

Let G / K and G^{\prime} / K^{\prime} be algebraic groups / infinite fields, with G semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism

$$
\rho: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

with $\rho(G(K))$ Zariski-dense in $G^{\prime}\left(K^{\prime}\right)$, there exist

- a finite-dimensional K^{\prime}-algebra B, and

Conjecture (BT)

Let G / K and G^{\prime} / K^{\prime} be algebraic groups / infinite fields, with G semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism

$$
\rho: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

with $\rho(G(K))$ Zariski-dense in $G^{\prime}\left(K^{\prime}\right)$, there exist

- a finite-dimensional K^{\prime}-algebra B, and
- a ring homomorphism $f: K \rightarrow B$

Conjecture (BT)

Let G / K and G^{\prime} / K^{\prime} be algebraic groups / infinite fields, with G semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism

$$
\rho: G(K) \rightarrow G^{\prime}\left(K^{\prime}\right)
$$

with $\rho(G(K))$ Zariski-dense in $G^{\prime}\left(K^{\prime}\right)$, there exist

- a finite-dimensional K^{\prime}-algebra B, and
- a ring homomorphism $f: K \rightarrow B$ such that

$$
\rho=\sigma \circ r_{B / K^{\prime}} \circ F,
$$

where

- $F: G(K) \rightarrow G_{B}(B)$ is induced by f;
- $r_{B / K^{\prime}}: G_{B}(B) \rightarrow \mathbf{R}_{B / K^{\prime}}\left(G_{B}\right)\left(K^{\prime}\right)$ - canonical isomorphism;
- $\sigma: \mathbf{R}_{B / K^{\prime}}\left(G_{B}\right) \rightarrow G^{\prime}$ is a K^{\prime}-morphism of algebraic groups.

For G^{\prime} not necessarily reductive, (BT) was known only in the following cases:

For G^{\prime} not necessarily reductive, (BT) was known only in the following cases:

- $K=K^{\prime}=\mathbb{R}$ (Tits, sketch)

For G^{\prime} not necessarily reductive, (BT) was known only in the following cases:

- $K=K^{\prime}=\mathbb{R} \quad$ (Tits, sketch)
- char $K=\operatorname{char} K^{\prime}=0$
G simply connected Chevalley group,
G^{\prime} has commutative unipotent radical
(L. Lifschitz, A. Rapinchuk)

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Another direction of research:
abstract homomorphisms of groups of points over rings.

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Another direction of research:
abstract homomorphisms of groups of points over rings.
Previous results mainly for groups over number rings.

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Another direction of research:
abstract homomorphisms of groups of points over rings.
Previous results mainly for groups over number rings.

In particular, for

- arithmetic groups having Congruence Subgroup Property (work of Bass, Milnor, SERre and others)

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Another direction of research:
abstract homomorphisms of groups of points over rings.
Previous results mainly for groups over number rings.

In particular, for

- arithmetic groups having Congruence Subgroup Property (work of Bass, Milnor, SERre and others)
- lattices in higher rank Lie groups (MARGULIS' SUPERRIGIDITY THEOREM)

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Notations and conventions

- K - algebraically closed field, R - commutative ring

Notations and conventions

- K - algebraically closed field, R - commutative ring
- Φ - reduced irreducible root system of rank $\geqslant 2$

Notations and conventions

- K - algebraically closed field, R - commutative ring
- Φ - reduced irreducible root system of rank $\geqslant 2$

The pair (Φ, R) is nice if

- $2 \in R^{\times}$in case $B_{2} \subset \Phi$
- $2,3 \in R^{\times}$in case $\Phi=G_{2}$

Notations and conventions

- K - algebraically closed field, R - commutative ring
- Φ - reduced irreducible root system of rank $\geqslant 2$

The pair (Φ, R) is nice if

- $2 \in R^{\times}$in case $B_{2} \subset \Phi$
- $2,3 \in R^{\times}$in case $\Phi=G_{2}$
- G - universal Chevalley-Demazure group scheme/Z \mathbb{Z} of type Φ

Notations and conventions

- K - algebraically closed field, R - commutative ring
- Φ - reduced irreducible root system of rank $\geqslant 2$ The pair (Φ, R) is nice if
- $2 \in R^{\times}$in case $B_{2} \subset \Phi$
- $2,3 \in R^{\times}$in case $\Phi=G_{2}$
- G - universal Chevalley-Demazure group scheme/ \mathbb{Z} of type Φ
- $G(R)^{+}$- subgroup of $G(R)$ generated by R-points of root subgroups (elementary subgroup)

Notations and conventions (cont.)

- for a finite-dimensional commutative K-algebra B, $G(B)$ is an algebraic group; more precisely, there exists an algebraic K-group $\mathbf{R}_{B / K}(G)$ such that

$$
G(B) \simeq \mathbf{R}_{B / K}(G)(K)
$$

Notations and conventions (cont.)

- for a finite-dimensional commutative K-algebra B, $G(B)$ is an algebraic group; more precisely, there exists an algebraic K-group $\mathbf{R}_{B / K}(G)$ such that

$$
G(B) \simeq \mathbf{R}_{B / K}(G)(K)
$$

- Given an abstract representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$, we set

$$
\begin{aligned}
& H=\overline{\rho\left(G(R)^{+}\right)} \quad \text { (Zariski-closure) } \\
& H^{\circ}=\text { connected component of } H
\end{aligned}
$$

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation.

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,
- char $K=0$ and $U:=R_{u}\left(H^{\circ}\right)$ is commutative,

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,
- char $K=0$ and $U:=R_{u}\left(H^{\circ}\right)$ is commutative,
there exist

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,
- char $K=0$ and $U:=R_{u}\left(H^{\circ}\right)$ is commutative,
there exist
- a ring homomorphism $f: R \rightarrow B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,
- char $K=0$ and $U:=R_{u}\left(H^{\circ}\right)$ is commutative,
there exist
- a ring homomorphism $f: R \rightarrow B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and
- a morphism $\sigma: G(B) \rightarrow H$ of algebraic K-groups

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char $K>0$. Let $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ be a representation. In each of the following situations:

- H° is reductive,
- char $K=0$ and R is semilocal,
- char $K=0$ and $U:=R_{u}\left(H^{\circ}\right)$ is commutative,
there exist
- a ring homomorphism $f: R \rightarrow B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and
- a morphism $\sigma: G(B) \rightarrow H$ of algebraic K-groups such that

$$
\left.\rho\right|_{\Gamma}=\left.(\sigma \circ F)\right|_{\Gamma}
$$

for a suitable finite-index subgroup $\Gamma \subset G(R)^{+}$, where $F: G(R)^{+} \rightarrow G(B)^{+}$is induced by f.

Examples of homomorphisms

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.
Over rings, there are many more possibilities.

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.
Over rings, there are many more possibilities.
For example, take $R=\mathbb{Z}[X]$. Assume char $K=0$.

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.
Over rings, there are many more possibilities.
For example, take $R=\mathbb{Z}[X]$. Assume char $K=0$.
Choose distinct points $a_{1}, \ldots, a_{s} \in K^{\times}$.

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.
Over rings, there are many more possibilities.
For example, take $R=\mathbb{Z}[X]$. Assume char $K=0$.
Choose distinct points $a_{1}, \ldots, a_{s} \in K^{\times}$.

- Let $B=\underbrace{K \times \cdots \times K}_{s \text { copies }}$ and define

$$
f: R \rightarrow B, \quad g(X) \mapsto\left(g\left(a_{1}\right), \ldots, g\left(a_{s}\right)\right)
$$

Examples of homomorphisms

In Borel-Tits' theorem, one deals with embeddings of fields.
Over rings, there are many more possibilities.
For example, take $R=\mathbb{Z}[X]$. Assume char $K=0$.
Choose distinct points $a_{1}, \ldots, a_{s} \in K^{\times}$.

- Let $B=\underbrace{K \times \cdots \times K}_{s \text { copies }}$ and define

$$
f: R \rightarrow B, \quad g(X) \mapsto\left(g\left(a_{1}\right), \ldots, g\left(a_{s}\right)\right)
$$

- Let $B=K\left[\varepsilon_{1}\right] \times \cdots \times K\left[\varepsilon_{s}\right]$, with $\varepsilon_{i}^{2}=0$ for all i, and define

$$
f: R \rightarrow B, \quad g(X) \mapsto\left(g\left(a_{1}\right)+g^{\prime}\left(a_{1}\right) \varepsilon_{1}, \ldots, g\left(a_{s}\right)+g^{\prime}\left(a_{s}\right) \varepsilon_{s}\right)
$$

Examples (cont.)

- Let $B=K\left[\delta_{n}\right]$, with $\delta_{n}^{n+1}=0$, and define

$$
f: R \rightarrow B, \quad g(X) \mapsto g\left(a_{1}\right)+g^{\prime}\left(a_{1}\right) \delta_{n}+\frac{g^{\prime \prime}\left(a_{1}\right)}{2!} \delta_{n}^{2}+\cdots+\frac{g^{(n)}\left(a_{1}\right)}{n!} \delta_{n}^{n}
$$

Examples (cont.)

- Let $B=K\left[\delta_{n}\right]$, with $\delta_{n}^{n+1}=0$, and define
$f: R \rightarrow B, \quad g(X) \mapsto g\left(a_{1}\right)+g^{\prime}\left(a_{1}\right) \delta_{n}+\frac{g^{\prime \prime}\left(a_{1}\right)}{2!} \delta_{n}^{2}+\cdots+\frac{g^{(n)}\left(a_{1}\right)}{n!} \delta_{n}^{n}$

Already these examples show that

Examples (cont.)

- Let $B=K\left[\delta_{n}\right]$, with $\delta_{n}^{n+1}=0$, and define
$f: R \rightarrow B, \quad g(X) \mapsto g\left(a_{1}\right)+g^{\prime}\left(a_{1}\right) \delta_{n}+\frac{g^{\prime \prime}\left(a_{1}\right)}{2!} \delta_{n}^{2}+\cdots+\frac{g^{(n)}\left(a_{1}\right)}{n!} \delta_{n}^{n}$

Already these examples show that

- images of root subgroups of $G(R)^{+}$can have (arbitrarily) large dimension.

Examples (cont.)

- Let $B=K\left[\delta_{n}\right]$, with $\delta_{n}^{n+1}=0$, and define
$f: R \rightarrow B, \quad g(X) \mapsto g\left(a_{1}\right)+g^{\prime}\left(a_{1}\right) \delta_{n}+\frac{g^{\prime \prime}\left(a_{1}\right)}{2!} \delta_{n}^{2}+\cdots+\frac{g^{(n)}\left(a_{1}\right)}{n!} \delta_{n}^{n}$

Already these examples show that

- images of root subgroups of $G(R)^{+}$can have (arbitrarily) large dimension.
- one can construct representations whose image has unipotent radical of prescribed nilpotence class.

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ (generalizes construction of Kassabov and Sapir);

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;
- applying results of Dennis-Stein on K_{2} of semilocal rings.

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;
- applying results of Dennis-Stein on K_{2} of semilocal rings.

We have also proved analogous results for elementary groups of type A_{n} over noncommutative rings.

Algebraic rings

Definition. An algebraic ring is a triple $(A, \boldsymbol{\alpha}, \boldsymbol{\mu})$ where

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and
- $\alpha: A \times A \rightarrow A$ and $\mu: A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and
- $\alpha: A \times A \rightarrow A$ and $\mu: A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")

such that

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and
- $\alpha: A \times A \rightarrow A$ and $\mu: A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")
such that
- (A, α) is a commutative algebraic group,

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and
- $\alpha: A \times A \rightarrow A$ and $\mu: A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")

such that

- $(A, \boldsymbol{\alpha})$ is a commutative algebraic group,
- $\boldsymbol{\mu}(\boldsymbol{\mu}(x, y), z)=\boldsymbol{\mu}(x, \boldsymbol{\mu}(y, z)) \quad$ ("associativity"),

Algebraic rings

Definition. An algebraic ring is a triple (A, α, μ) where

- A is an affine algebraic variety $/ K$, and
- $\alpha: A \times A \rightarrow A$ and $\mu: A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")
such that
- $(A, \boldsymbol{\alpha})$ is a commutative algebraic group,
- $\boldsymbol{\mu}(\boldsymbol{\mu}(x, y), z)=\boldsymbol{\mu}(x, \boldsymbol{\mu}(y, z)) \quad$ ("associativity"),
- $\boldsymbol{\mu}(x, \boldsymbol{\alpha}(y, z))=\boldsymbol{\alpha}(\boldsymbol{\mu}(x, y), \boldsymbol{\mu}(x, z))$ and

$$
\boldsymbol{\mu}(\boldsymbol{\alpha}(x, y), z)=\boldsymbol{\alpha}(\boldsymbol{\mu}(x, z), \boldsymbol{\mu}(y, z)) \quad \text { ("distributivity"). }
$$

Our algebraic rings will always be commutative and unital.

Construction of algebraic ring for $S L_{3}$

Let $G=S L_{3}$.

Construction of algebraic ring for $S L_{3}$

Let $G=S L_{3}$.
Consider a representation $\rho: E_{3}(R) \rightarrow G L_{n}(K)$.
Set $H=\overline{\rho\left(E_{3}(R)\right)}$.

Construction of algebraic ring for S_{3}

Let $G=S L_{3}$.
Consider a representation $\rho: E_{3}(R) \rightarrow G L_{n}(K)$.
Set $H=\overline{\rho\left(E_{3}(R)\right)}$.

Let $A=\overline{\rho\left(e_{13}(R)\right)}$.

Construction of algebraic ring for S_{3}

Let $G=S L_{3}$.
Consider a representation $\rho: E_{3}(R) \rightarrow G L_{n}(K)$.
Set $H=\overline{\rho\left(E_{3}(R)\right)}$.
Let $A=\overline{\rho\left(e_{13}(R)\right)}$. To define addition operation, let $\alpha: A \times A \rightarrow A$
be the restriction of product in H to A.

Construction of algebraic ring for S_{3}

Let $G=S L_{3}$.
Consider a representation $\rho: E_{3}(R) \rightarrow G L_{n}(K)$.
Set $H=\overline{\rho\left(E_{3}(R)\right)}$.
Let $A=\overline{\rho\left(e_{13}(R)\right)}$. To define addition operation, let $\alpha: A \times A \rightarrow A$
be the restriction of product in H to A.
Then (A, α) is a commutative algebraic group.

Construction of algebraic ring for S_{3}

Let $G=S L_{3}$.
Consider a representation $\rho: E_{3}(R) \rightarrow G L_{n}(K)$.
Set $H=\overline{\rho\left(E_{3}(R)\right)}$.
Let $A=\overline{\rho\left(e_{13}(R)\right)}$. To define addition operation, let

$$
\alpha: A \times A \rightarrow A
$$

be the restriction of product in H to A.
Then (A, α) is a commutative algebraic group.
Define $f: R \rightarrow A$ by $t \mapsto \rho\left(e_{13}(t)\right)$ and note that

$$
\boldsymbol{\alpha}\left(f\left(t_{1}\right), f\left(t_{2}\right)\right)=f\left(t_{1}+t_{2}\right) \quad \text { for all } \quad t_{1}, t_{2} \in R .
$$

Construction of algebraic ring for $S L_{3}$ (cont.)

To define multiplication operation $\mu: A \times A \rightarrow A$, we need

$$
\begin{aligned}
w_{12}=e_{12}(1) e_{21}(-1) e_{12}(1) & =\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
w_{23} & =e_{23}(1) e_{32}(-1) e_{23}(1)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

Construction of algebraic ring for $S L_{3}$ (cont.)

To define multiplication operation $\mu: A \times A \rightarrow A$, we need

$$
\begin{aligned}
w_{12}=e_{12}(1) e_{21}(-1) e_{12}(1) & =\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
w_{23} & =e_{23}(1) e_{32}(-1) e_{23}(1)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

We have

$$
w_{12}^{-1} e_{13}(r) w_{12}=e_{23}(r), \quad w_{23} e_{13}(r) w_{23}^{-1}=e_{12}(r)
$$

and

$$
\left[e_{12}(r), e_{23}(s)\right]=e_{13}(r s)
$$

Construction of algebraic ring for $S L_{3}$ (cont.)

Define a regular map $\boldsymbol{\mu}: A \times A \rightarrow H$ by

$$
\boldsymbol{\mu}\left(a_{1}, a_{2}\right)=\left[\rho\left(w_{23}\right) a_{1} \rho\left(w_{23}\right)^{-1}, \rho\left(w_{12}\right)^{-1} a_{2} \rho\left(w_{12}\right)\right] .
$$

Construction of algebraic ring for SL_{3} (cont.)

Define a regular map $\boldsymbol{\mu}: A \times A \rightarrow H$ by

$$
\boldsymbol{\mu}\left(a_{1}, a_{2}\right)=\left[\rho\left(w_{23}\right) a_{1} \rho\left(w_{23}\right)^{-1}, \rho\left(w_{12}\right)^{-1} a_{2} \rho\left(w_{12}\right)\right] .
$$

Since $\boldsymbol{\mu}\left(f\left(t_{1}\right), f\left(t_{2}\right)\right)=f\left(t_{1} t_{2}\right)$, we have

$$
\boldsymbol{\mu}(A \times A) \subset A
$$

Construction of algebraic ring for $S L_{3}$ (cont.)

Define a regular map $\boldsymbol{\mu}: A \times A \rightarrow H$ by

$$
\boldsymbol{\mu}\left(a_{1}, a_{2}\right)=\left[\rho\left(w_{23}\right) a_{1} \rho\left(w_{23}\right)^{-1}, \rho\left(w_{12}\right)^{-1} a_{2} \rho\left(w_{12}\right)\right] .
$$

Since $\boldsymbol{\mu}\left(f\left(t_{1}\right), f\left(t_{2}\right)\right)=f\left(t_{1} t_{2}\right)$, we have

$$
\boldsymbol{\mu}(A \times A) \subset A
$$

As R is a commutative ring and f has Zariski-dense image we conclude that
$(A, \boldsymbol{\alpha}, \boldsymbol{\mu})$ is a commutative algebraic ring with identity.

Structure of algebraic rings in characteristic 0

Notice that

Any finite-dimensional K-algebra A has a natural structure of an algebraic ring.

Structure of algebraic rings in characteristic 0

Notice that

> Any finite-dimensional K-algebra A has a natural structure of an algebraic ring.

Conversely:

Theorem. Let A be an algebraic ring / K where char $K=0$. Then there exists a finite-dimensional K-algebra B and a finite ring C such that

$$
A=B \oplus C
$$

In particular, any connected algebraic ring/K is a finite-dimensional K-algebra.

Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

- Starting with a representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$, we construct an algebraic ring A.

Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

- Starting with a representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$, we construct an algebraic ring A.
- If char $K=0$, then $A=B \oplus C$.

Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

- Starting with a representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$, we construct an algebraic ring A.
- If char $K=0$, then $A=B \oplus C$.
- The finite-dimensional K-algebra B is the algebra that appears in Theorem 2.

Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

- Starting with a representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$, we construct an algebraic ring A.
- If char $K=0$, then $A=B \oplus C$.
- The finite-dimensional K-algebra B is the algebra that appears in Theorem 2.
- A nontrivial finite ring C necessitates the passage to a finite-index subgroup.

Structure of algebraic rings in characteristic p

Structure theorem is false if char $K=p>0$.

Structure of algebraic rings in characteristic p

Structure theorem is false if char $K=p>0$.
Example. Set $A=K \oplus K$ with the usual addition and the following multiplication

$$
\boldsymbol{\mu}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(x_{1} x_{2}, x_{1}^{p} y_{2}+x_{2}^{p} y_{1}\right) .
$$

Then A is an algebraic ring with identity element $(1,0)$.

Structure of algebraic rings in characteristic p

Structure theorem is false if char $K=p>0$.
Example. Set $A=K \oplus K$ with the usual addition and the following multiplication

$$
\boldsymbol{\mu}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(x_{1} x_{2}, x_{1}^{p} y_{2}+x_{2}^{p} y_{1}\right) .
$$

Then A is an algebraic ring with identity element $(1,0)$.
But A is not a K-algebra: consider

$$
\varphi: A \rightarrow A, \quad a \mapsto \mu(a,(0,1)) .
$$

Then $\varphi((x, y))=\left(0, x^{p}\right)$, hence $d_{(0,0)} \varphi \equiv 0$.
If $A \simeq$ an algebra, then φ would be a nonzero linear map, hence its differential would be $\not \equiv 0$.

Algebraic rings in char. p (cont.)

Nevertheless, A is related to a K-algebra.

Algebraic rings in char. p (cont.)

Nevertheless, A is related to a K-algebra.
Let

$$
A^{\prime}=K \oplus K
$$

with the usual addition and the following multiplication

$$
\boldsymbol{\mu}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

Algebraic rings in char. p (cont.)

Nevertheless, A is related to a K-algebra.
Let

$$
A^{\prime}=K \oplus K
$$

with the usual addition and the following multiplication

$$
\boldsymbol{\mu}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

Then $A^{\prime} \simeq K[\varepsilon]$, where $\varepsilon^{2}=0$, hence a K-algebra.

Algebraic rings in char. p (cont.)

Nevertheless, A is related to a K-algebra.
Let

$$
A^{\prime}=K \oplus K
$$

with the usual addition and the following multiplication

$$
\boldsymbol{\mu}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

Then $\quad A^{\prime} \simeq K[\varepsilon]$, where $\varepsilon^{2}=0$, hence a K-algebra.

The map

$$
\psi: A^{\prime} \rightarrow A, \quad(x, y) \mapsto\left(x, y^{p}\right)
$$

is a morphism of algebraic rings and an isomorphism of abstract rings, but not an isomorphism of algebraic rings.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char $K=p>0$, such that $p A=0$.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char $K=p>0$, such that $p A=0$.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char $K=p>0$, such that $p A=0$.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Using this, some of our results can be extended to char p.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char $K=p>0$, such that $p A=0$.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Using this, some of our results can be extended to char p.

In particular, we generalize a rigidity result of G. Seitz.

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Rigidity over rings of integers

Rigidity over rings of integers

Notations:

- Φ - reduced irreducible root system of rank $\geqslant 2$
- G-corresponding Chevalley-Demazure group scheme/ \mathbb{Z}
- R - commutative ring such that (Φ, R) is a nice pair
- K - algebraically closed field of characteristic 0

Rigidity over rings of integers

Notations:

- Φ - reduced irreducible root system of rank $\geqslant 2$
- G-corresponding Chevalley-Demazure group scheme/ \mathbb{Z}
- R - commutative ring such that (Φ, R) is a nice pair
- K - algebraically closed field of characteristic 0

Theorem 2 implies the following classical result:

Rigidity over rings of integers

Notations:

- Φ - reduced irreducible root system of rank $\geqslant 2$
- G-corresponding Chevalley-Demazure group scheme/ \mathbb{Z}
- R - commutative ring such that (Φ, R) is a nice pair
- K - algebraically closed field of characteristic 0

Theorem 2 implies the following classical result:

Theorem 8. Suppose \mathcal{O} is a ring of S-integers in a number field
L. Then any representation $\rho: G(\mathcal{O})^{+} \rightarrow G L_{n}(K)$ has a standard description.

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations $\delta: \mathcal{O} \rightarrow K$

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations $\delta: \mathcal{O} \rightarrow K$

- $H^{\circ}={\overline{\rho\left(G(\mathcal{O})^{+}\right)}}^{\circ}$ is automatically reductive

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations $\delta: \mathcal{O} \rightarrow K$

- $H^{\circ}={\overline{\rho\left(G(\mathcal{O})^{+}\right)}}^{\circ}$ is automatically reductive
- algebraic ring associated to ρ is of the form

$$
A=B \oplus C
$$

with $B \simeq K \times \cdots \times K$ and C finite.

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations $\delta: \mathcal{O} \rightarrow K$

- $H^{\circ}={\overline{\rho\left(G(\mathcal{O})^{+}\right.}}^{\circ}$ is automatically reductive
- algebraic ring associated to ρ is of the form

$$
A=B \oplus C
$$

with $B \simeq K \times \cdots \times K$ and C finite.

Theorem 8 then follows from Theorem 2.

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations $\delta: \mathcal{O} \rightarrow K$

- $H^{\circ}={\overline{\rho\left(G(\mathcal{O})^{+}\right.}}^{\circ}$ is automatically reductive
- algebraic ring associated to ρ is of the form

$$
A=B \oplus C
$$

with $B \simeq K \times \cdots \times K$ and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with "few" derivations to analyze reps of some non-arithmetic groups.

Derivations and standard descriptions

For a ring homomorphism $g: R \rightarrow K$, let $\operatorname{Der}^{g}(R, K)$ be the K-vector space of maps $\delta: R \rightarrow K$ such that

Derivations and standard descriptions

For a ring homomorphism $g: R \rightarrow K$, let $\operatorname{Der}^{g}(R, K)$ be the K-vector space of maps $\delta: R \rightarrow K$ such that

$$
\delta\left(r_{1}+r_{2}\right)=\delta\left(r_{1}\right)+\delta\left(r_{2}\right) \text { and } \delta\left(r_{1} r_{2}\right)=\delta\left(r_{1}\right) g\left(r_{2}\right)+g\left(r_{1}\right) \delta\left(r_{2}\right)
$$

for all $r_{1}, r_{2} \in R$ (derivations of R with respect to g).

Derivations and standard descriptions

For a ring homomorphism $g: R \rightarrow K$, let $\operatorname{Der}^{g}(R, K)$ be the K-vector space of maps $\delta: R \rightarrow K$ such that

$$
\delta\left(r_{1}+r_{2}\right)=\delta\left(r_{1}\right)+\delta\left(r_{2}\right) \text { and } \delta\left(r_{1} r_{2}\right)=\delta\left(r_{1}\right) g\left(r_{2}\right)+g\left(r_{1}\right) \delta\left(r_{2}\right)
$$

for all $r_{1}, r_{2} \in R$ (derivations of R with respect to g).

Theorem 9. (I.R.) Suppose $\operatorname{dim}_{K} \operatorname{Der}^{g}(R, K) \leqslant 1$ for all homomorphisms $g: R \rightarrow K$. Then any representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ has a standard description.

Derivations and standard descriptions

For a ring homomorphism $g: R \rightarrow K$, let $\operatorname{Der}^{g}(R, K)$ be the K-vector space of maps $\delta: R \rightarrow K$ such that

$$
\delta\left(r_{1}+r_{2}\right)=\delta\left(r_{1}\right)+\delta\left(r_{2}\right) \text { and } \delta\left(r_{1} r_{2}\right)=\delta\left(r_{1}\right) g\left(r_{2}\right)+g\left(r_{1}\right) \delta\left(r_{2}\right)
$$

for all $r_{1}, r_{2} \in R$ (derivations of R with respect to g).

Theorem 9. (I.R.) Suppose $\operatorname{dim}_{K} \operatorname{Der}^{g}(R, K) \leqslant 1$ for all homomorphisms $g: R \rightarrow K$. Then any representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ has a standard description.

Corollary. If \mathcal{O} is a ring of integers in a number field, then any representation $\rho: S L_{m}(\mathcal{O}[X]) \rightarrow G L_{n}(K)(m \geqslant 3)$ has a standard description.

Idea of the proof

Set $H=\overline{\rho\left(G(R)^{+}\right)}$and $U=R_{u}\left(H^{\circ}\right)$.

Idea of the proof

Set $H=\overline{\rho\left(G(R)^{+}\right)}$and $U=R_{u}\left(H^{\circ}\right)$.
The proof of Theorem 2 yields a standard description for ρ if
(Z) $Z\left(H^{\circ}\right) \cap U=\{e\}$.

Idea of the proof

Set $H=\overline{\rho\left(G(R)^{+}\right)}$and $U=R_{u}\left(H^{\circ}\right)$.
The proof of Theorem 2 yields a standard description for ρ if
(Z)

$$
Z\left(H^{\circ}\right) \cap U=\{e\} .
$$

To verify (Z) in our situation, we use:

Idea of the proof

Set $H=\overline{\rho\left(G(R)^{+}\right)}$and $U=R_{u}\left(H^{\circ}\right)$.
The proof of Theorem 2 yields a standard description for ρ if

$$
\begin{equation*}
Z\left(H^{\circ}\right) \cap U=\{e\} . \tag{Z}
\end{equation*}
$$

To verify (Z) in our situation, we use:

- algebraic ring associated to ρ is of the form

$$
A=B \oplus C
$$

with $B \simeq K\left[\varepsilon_{1}\right] \times \cdots \times K\left[\varepsilon_{r}\right], \varepsilon_{i}^{d_{i}}=0$ for $d_{i} \geqslant 1$, and C finite;

Idea of the proof

Set $H=\overline{\rho\left(G(R)^{+}\right)}$and $U=R_{u}\left(H^{\circ}\right)$.
The proof of Theorem 2 yields a standard description for ρ if

$$
\begin{equation*}
Z\left(H^{\circ}\right) \cap U=\{e\} . \tag{Z}
\end{equation*}
$$

To verify (Z) in our situation, we use:

- algebraic ring associated to ρ is of the form

$$
A=B \oplus C
$$

with $B \simeq K\left[\varepsilon_{1}\right] \times \cdots \times K\left[\varepsilon_{r}\right], \varepsilon_{i}^{d_{i}}=0$ for $d_{i} \geqslant 1$, and C finite;

- For $\widetilde{A}=K[\varepsilon], \varepsilon^{d}=0$ for $d \geqslant 1$, any central extension of algebraic groups over K of the form

$$
1 \rightarrow W \rightarrow E \rightarrow G(\widetilde{A}) \rightarrow 1
$$

with $W=\mathbb{G}_{a}^{\ell}$ a vector group, splits. (Observed by Gabber.)

Derivations and standard descriptions (cont.)

Notice:

Derivations and standard descriptions (cont.)

Notice:

- For $\rho: G(\mathcal{O}[X])^{+} \rightarrow G L_{n}(K)$, the restriction $\left.\rho\right|_{G(\mathcal{O})^{+}}$is completely reducible.

Derivations and standard descriptions (cont.)

Notice:

- For $\rho: G(\mathcal{O}[X])^{+} \rightarrow G L_{n}(K)$, the restriction $\left.\rho\right|_{G(\mathcal{O})^{+}}$is completely reducible.
- We have $\left.\delta\right|_{\mathcal{O}}=0$ for any $\delta \in \operatorname{Der}^{g}(\mathcal{O}[X], K)$.

Derivations and standard descriptions (cont.)

Notice:

- For $\rho: G(\mathcal{O}[X])^{+} \rightarrow G L_{n}(K)$, the restriction $\left.\rho\right|_{G(\mathcal{O})^{+}}$is completely reducible.
- We have $\left.\delta\right|_{\mathcal{O}}=0$ for any $\delta \in \operatorname{Der}^{g}(\mathcal{O}[X], K)$.

In general:

Derivations and standard descriptions (cont.)

Notice:

- For $\rho: G(\mathcal{O}[X])^{+} \rightarrow G L_{n}(K)$, the restriction $\left.\rho\right|_{G(\mathcal{O})^{+}}$is completely reducible.
- We have $\left.\delta\right|_{\mathcal{O}}=0$ for any $\delta \in \operatorname{Der}^{8}(\mathcal{O}[X], K)$.

In general:

If R a comm. k-algebra and $g: R \rightarrow K$ a ring hom., consider $\operatorname{Der}_{k}^{g}(R, K)=$ set of derivations $\delta: R \rightarrow K$ such that $\left.\delta\right|_{k}=0$.

Rigidity over coordinate rings of affine curves

Theorem 10. (I.R.) Suppose $\operatorname{dim}_{K} \operatorname{Der}_{k}^{g}(R, K) \leqslant 1$ for all homomorphisms $g: R \rightarrow K$. Then any representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ such that $\left.\rho\right|_{G(k)^{+}}$is completely reducible has a standard description.

Rigidity over coordinate rings of affine curves

Theorem 10. (I.R.) Suppose $\operatorname{dim}_{K} \operatorname{Der}_{k}^{g}(R, K) \leqslant 1$ for all homomorphisms $g: R \rightarrow K$. Then any representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ such that $\left.\rho\right|_{G(k)^{+}}$is completely reducible has a standard description.

Corollary. Suppose C is a smooth affine algebraic curve over a number field k, with coordinate ring $R=k[C]$. Then any representation $\rho: G(R)^{+} \rightarrow G L_{n}(K)$ has a standard description.

Outline

(1) Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings
(2) Results and applications
- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Let

- Γ be a finitely generated group,
- K be an algebraically closed field of characteristic 0 .

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Let

- Γ be a finitely generated group,
- K be an algebraically closed field of characteristic 0 .

One can define

- $R_{n}(\Gamma)=$ variety of representations $\rho: \Gamma \rightarrow G L_{n}(K)$

$$
\left(n^{\text {th }}\right. \text { representation variety) }
$$

- $X_{n}(\Gamma)=$ (categorical) quotient of $R_{n}(\Gamma)$ by $G L_{n}(K)$ ($n^{\text {th }}$ character variety)

Suppose that R is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank $\geqslant 2$.

Suppose that R is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank $\geqslant 2$.

Then $\Gamma=G(R)^{+}$has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated.

Suppose that R is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank $\geqslant 2$.

Then $\Gamma=G(R)^{+}$has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated.

So, varieties $R_{n}(\Gamma)$ and $X_{n}(\Gamma)$ are defined.

Suppose that R is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank $\geqslant 2$.

Then $\Gamma=G(R)^{+}$has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated.

So, varieties $R_{n}(\Gamma)$ and $X_{n}(\Gamma)$ are defined.

Assume now that
R is a finitely generated commutative ring, and (Φ, R) is a nice pair.

Linear bound on the dimension

Theorem 5. (I.R.) There exists a constant $c=c(R)$ (depending only on R) such that $\varkappa_{\Gamma}(n):=\operatorname{dim} X_{n}(\Gamma)$ satisfies

$$
\varkappa_{\Gamma}(n) \leqslant c \cdot n
$$

for all $n \geqslant 1$.

Linear bound on the dimension

Theorem 5. (I.R.) There exists a constant $c=c(R)$ (depending only on R) such that $\varkappa_{\Gamma}(n):=\operatorname{dim} X_{n}(\Gamma)$ satisfies

$$
\varkappa_{\Gamma}(n) \leqslant c \cdot n
$$

for all $n \geqslant 1$.

Remarks.

Linear bound on the dimension

Theorem 5. (I.R.) There exists a constant $c=c(R)$ (depending only on R) such that $\varkappa_{\Gamma}(n):=\operatorname{dim} X_{n}(\Gamma)$ satisfies

$$
\varkappa_{\Gamma}(n) \leqslant c \cdot n
$$

for all $n \geqslant 1$.

Remarks.

- Constant c is related to dimension of space of derivations of R.

Linear bound on the dimension

Theorem 5. (I.R.) There exists a constant $c=c(R)$ (depending only on R) such that $\varkappa_{\Gamma}(n):=\operatorname{dim} X_{n}(\Gamma)$ satisfies

$$
\varkappa_{\Gamma}(n) \leqslant c \cdot n
$$

for all $n \geqslant 1$.

Remarks.

- Constant c is related to dimension of space of derivations of R.
- If R is the ring of S-integers in a number field (e.g. \mathbb{Z}), then $c=0$, hence Γ is $S S$-rigid.

Elements of the proof

Bound dimension of
tangent space to $X_{n}(\Gamma)$ at $[\rho]$
by dimension of $H^{1}\left(\Gamma, \operatorname{Ad}_{G L_{n}} \circ \rho\right)$.
(based on ideas going back to A. Weil)

Elements of the proof

Bound dimension of
tangent space to $X_{n}(\Gamma)$ at $[\rho]$
by dimension of $H^{1}\left(\Gamma, \operatorname{Ad}_{G L_{n}} \circ \rho\right)$.
(based on ideas going back to A. Weil)

One then uses standard descriptions of representations of Γ with non-reductive image (Theorem 2) to relate this cohomology group to a space of derivations of R.

A conjecture

Essentially all known examples of discrete linear groups having Kazhdan's property (T) are of the form $\Gamma=G(R)^{+}$.

A conjecture

Essentially all known examples of discrete linear groups having Kazhdan's property (T) are of the form $\Gamma=G(R)^{+}$.

Conjecture. Let Γ be a discrete linear group having Kazhdan's property (T). Then there exists a constant $c=c(\Gamma)$ such that

$$
\varkappa_{\Gamma}(n):=\operatorname{dim} X_{n}(\Gamma) \leqslant c \cdot n
$$

for all $n \geqslant 1$.

Remarks

- For $\Gamma=F_{d}$, the free group on $d>1$ generators, $\varkappa_{\Gamma}(n)=(d-1) n^{2}+1$
(i.e. quadratic in n).

Remarks

- For $\Gamma=F_{d}$, the free group on $d>1$ generators,

$$
\varkappa_{\Gamma}(n)=(d-1) n^{2}+1
$$

(i.e. quadratic in n).

- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ.

Remarks

- For $\Gamma=F_{d}$, the free group on $d>1$ generators,

$$
\varkappa_{\Gamma}(n)=(d-1) n^{2}+1
$$

(i.e. quadratic in n).

- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ.
- If Γ is not $S S$-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in n (I.R.)

Remarks

- For $\Gamma=F_{d}$, the free group on $d>1$ generators,

$$
\varkappa_{\Gamma}(n)=(d-1) n^{2}+1
$$

(i.e. quadratic in n).

- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ.
- If Γ is not $S S$-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in n (I.R.)
- Thus, conjecture predicts that rate of growth of $\varkappa_{\Gamma}(n)$ is minimum possible if Γ is Kazhdan.

Remarks

- For $\Gamma=F_{d}$, the free group on $d>1$ generators,

$$
\varkappa_{\Gamma}(n)=(d-1) n^{2}+1
$$

(i.e. quadratic in n).

- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ.
- If Γ is not $S S$-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in n (I.R.)
- Thus, conjecture predicts that rate of growth of $\varkappa_{\Gamma}(n)$ is minimum possible if Γ is Kazhdan.
- For any $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n) / n$ is non-decreasing and $f(n) \leqslant n(n-1) / 2$, there exists a f.g. group Γ_{f} such that $\varkappa_{\Gamma_{f}}(n)=f(n)$ for all $n \geqslant 3$ (M. Kassabov).

Realizing affine varieties as character varieties

Question. What affine varieties can be realized as $X_{n}(\Gamma)$ for some finitely generated group Γ and some $n \geqslant 1$?

Realizing affine varieties as character varieties

Question. What affine varieties can be realized as $X_{n}(\Gamma)$ for some finitely generated group Γ and some $n \geqslant 1$?

Same question with Γ having some special properties.

Realizing affine varieties as character varieties

Question. What affine varieties can be realized as $X_{n}(\Gamma)$ for some finitely generated group Γ and some $n \geqslant 1$?

Same question with Γ having some special properties.

Note that $X_{n}(\Gamma)$ is an affine variety defined over \mathbb{Q}.

Realizing affine varieties as character varieties

Question. What affine varieties can be realized as $X_{n}(\Gamma)$ for some finitely generated group Γ and some $n \geqslant 1$?

Same question with Γ having some special properties.

Note that $X_{n}(\Gamma)$ is an affine variety defined over \mathbb{Q}.

Are there any other restrictions?

Realizing affine varieties as character varieties (cont.)

Theorem 6. (Kapovich-Millson, 1998) For any affine variety S defined over \mathbb{Q}, there is an Artin group Γ such that a Zariskiopen subset U of S is biregular isomorphic to a Zariski-open subset of $X(\Gamma, P O(3))$.

Realizing affine varieties as character varieties (cont.)

Theorem 6. (Kapovich-Millson, 1998) For any affine variety S defined over \mathbb{Q}, there is an Artin group Γ such that a Zariskiopen subset U of S is biregular isomorphic to a Zariski-open subset of $X(\Gamma, P O(3))$.

Theorem 7. (I.R.) Let S be an affine algebraic variety defined over \mathbb{Q}. There exist a finitely generated group Γ having Kazhdan's property (T) and an integer $m \geqslant 1$ such that there is a biregular isomorphism of complex algebraic varieties

$$
\varphi: S(\mathbb{C}) \rightarrow X_{m}(\Gamma) \backslash\left\{\left[\rho_{0}\right]\right\}
$$

(where ρ_{0} is the trivial representation).

Idea of the proof

- Let $\mathbb{Q}[S]$ be the ring of \mathbb{Q}-regular functions on S.

Idea of the proof

- Let $\mathbb{Q}[S]$ be the ring of \mathbb{Q}-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}[S]$.

Idea of the proof

- Let $\mathbb{Q}[S]$ be the ring of \mathbb{Q}-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}[S]$.
- Localize R more if necessary

$$
R \rightarrow R\left[\frac{1}{N}\right]
$$

(for a sufficiently large integer N).

Idea of the proof

- Let $\mathbb{Q}[S]$ be the ring of \mathbb{Q}-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}[S]$.
- Localize R more if necessary

$$
R \rightarrow R\left[\frac{1}{N}\right]
$$

(for a sufficiently large integer N).

- Let $G=S p_{2 n}, n \geqslant 2$.

Idea of the proof

- Let $\mathbb{Q}[S]$ be the ring of \mathbb{Q}-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}[S]$.
- Localize R more if necessary

$$
R \rightarrow R\left[\frac{1}{N}\right]
$$

(for a sufficiently large integer N).

- Let $G=S p_{2 n}, n \geqslant 2$.
- Set $\Gamma=G(R)^{+}, \quad m=2 n$.

References

[1] I.A. Rapinchuk, On linear representations of Chevalley groups over rings, Proc. London Math. Soc. 102(5) (2011), 951-983.
[2] -, On abstract representations of the groups of rational points of algebraic groups and their deformations, Algebra \& Number Theory 7 (7) (2013), 1685-1723.
[3] -, On the character varieties of finitely generated groups, Math. Res. Lett. 22 (2) (2015), 579-604.
[4] D. Boyarchenko, I.A. Rapinchuk, On abstract homomorphisms of the groups of rational points of algebraic groups in positive characteristic, Arch. Math. (Basel) 107 (2016), no. 6, 569-580.
[5] I.A. Rapinchuk, On abstract homomorphisms of Chevalley groups over the coordinate rings of affine curves, Transformation Groups 24 (2019), no. 4, 1241-1259.

