Abstract Homomorphisms of Algebraic Groups and Applications

Igor Rapinchuk

Michigan State University

Banff December 2019

Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Outline

Introduction

• Abstract homomorphisms: general philosophy

- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

General philosophy

Given alg. groups G/K and G'/K', an abstract homomorphism $\varphi \colon G(K) \to G'(K')$

can (often) be written (essentially) as $\varphi = \beta \circ \alpha$, where

General philosophy

Given alg. groups G/K and G'/K', an abstract homomorphism $\varphi \colon G(K) \to G'(K')$

can (often) be written (essentially) as $\varphi = \beta \circ \alpha$, where

• α : $G(K) \to G_{K'}(K')$ is induced by a field homomorphism $\tilde{\alpha}: K \to K'$ ($G_{K'}$ is obtained from *G* by base change via $\tilde{\alpha}$);

• $\beta: G_{K'}(K') \to G'(K')$ is induced by a *K'*-defined morphism $G_{K'} \to G'$.

If an abstract homomorphism

$$\varphi\colon G(K)\to G'(K')$$

admits such a factorization, we say it has a standard description.

If an abstract homomorphism

$$\varphi\colon G(K)\to G'(K')$$

admits such a factorization, we say it has a standard description.

One expects that under appropriate assumptions

all abstract homomorphisms have a standard description

If an abstract homomorphism

$$\varphi\colon G(K)\to G'(K')$$

admits such a *factorization*, we say it has a standard description.

One expects that under appropriate assumptions

all abstract homomorphisms have a standard description

(rigidity statement)

Outline

Introduction

• Abstract homomorphisms: general philosophy

• Work of Borel and Tits

Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Theorem 1. (Borel-Tits) Let G/K and G'/K' be algebraic groups over infinite fields such that

Theorem 1. (Borel-Tits) Let G/K and G'/K' be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G' absolutely simple adjoint.

Theorem 1. (Borel-Tits) Let G/K and G'/K' be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G' absolutely simple adjoint.

Let

 $G^+ = (normal)$ subgroup of G(K) generated by K-points of unipotent radicals of K-defined parabolics.

Theorem 1. (Borel-Tits) Let G/K and G'/K' be algebraic groups over infinite fields such that

- G absolutely almost simple K-isotropic
- G' absolutely simple adjoint.

Let

 $G^+ = (normal)$ subgroup of G(K) generated by K-points of unipotent radicals of K-defined parabolics.

Then any abstract homomorphism $\varphi: G^+ \to G'(K')$ with Zariski-dense image has a standard description.

			Introdu	ction Wor	k of Borel and	d Tits				
Borel-Tits (cont.)										
Similar,	but	more	technical,	result	when	G′	is	only	assumed	

to be reductive.

Similar, but more technical, result when G' is only assumed to be reductive.

QUESTION: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

Similar, but more technical, result when *G*' is only assumed to be reductive.

QUESTION: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No.

Similar, but more technical, result when G' is only assumed to be reductive.

QUESTION: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No. B-T gave an example of $\varphi: G(K) \to G'(K)$ such that

Similar, but more technical, result when G' is only assumed to be reductive.

QUESTION: Is the image of the group of K-rational points of a semisimple group under an abstract homomorphism always reductive?

No. B-T gave an example of $\varphi: G(K) \to G'(K)$ such that

- *G* is absolutely almost simple / infinite *K*;
- φ has Zariski-dense image;
- G' is **not** reductive.

Igor Rapinchuk (MSU)

CONSTRUCTION: Let

- *G* be an absolutely almost simple group / infinite *k* (e.g. *G* = SL_{*n*})
- K/k be a field extension with a nontrivial k-derivation δ: K → K
 (e.g. k(x)/k, δ = differentiation)

CONSTRUCTION: Let

- *G* be an absolutely almost simple group / infinite *k* (e.g. *G* = SL_{*n*})
- *K*/*k* be a field extension with a nontrivial *k*-derivation δ: *K* → *K* (e.g. *k*(*x*)/*k*, δ = differentiation)

Set $G' = \mathfrak{g} \rtimes G$, \mathfrak{g} = Lie algebra of *G* with adjoint action.

CONSTRUCTION: Let

- *G* be an absolutely almost simple group / infinite *k* (e.g. *G* = SL_{*n*})
- *K*/*k* be a field extension with a nontrivial *k*-derivation δ: *K* → *K* (e.g. *k*(*x*)/*k*, δ = differentiation)

Set $G' = \mathfrak{g} \rtimes G$, \mathfrak{g} = Lie algebra of G with adjoint action. Define $\varphi: G(K) \to G'(K)$ by $G(K) \ni g \mapsto (g^{-1} \cdot \Delta(g), g) \in G'(K)$,

where Δ is induced by δ .

CONSTRUCTION: Let

- *G* be an absolutely almost simple group / infinite *k* (e.g. *G* = SL_{*n*})
- K/k be a field extension with a nontrivial k-derivation δ: K → K
 (e.g. k(x)/k, δ = differentiation)

Set $G' = \mathfrak{g} \rtimes G$, \mathfrak{g} = Lie algebra of G with adjoint action. Define $\varphi: G(K) \to G'(K)$ by $G(K) \ni g \mapsto (g^{-1} \cdot \Delta(g), g) \in G'(K)$,

where Δ is induced by δ .

Then

- Im φ is Zariski-dense in G';
- unipotent radical of G' is g (hence nontrivial). Igor Rapinchuk (MSU) Banff December 2019

9 / 48

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

 $f: K \to A, \quad x \mapsto x + \delta(x)\varepsilon.$

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

$$f: K \to A$$
, $x \mapsto x + \delta(x)\varepsilon$.

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

 $F: G(K) \to G(A).$

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

$$f: K \to A$$
, $x \mapsto x + \delta(x)\varepsilon$.

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$F\colon G(K)\to G(A).$$

Note the identification

$$G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K) = G'(K)$$
$$X + Y\varepsilon \mapsto (X^{-1} \cdot Y, X).$$

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

$$f: K \to A$$
, $x \mapsto x + \delta(x)\varepsilon$.

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$F\colon G(K)\to G(A).$$

Note the identification

$$G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K) = G'(K)$$
$$X + Y\varepsilon \mapsto (X^{-1} \cdot Y, X).$$

Moreover, $\varphi = t \circ F$.

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

$$f: K \to A$$
, $x \mapsto x + \delta(x)\varepsilon$.

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$F\colon G(K)\to G(A).$$

Note the identification

$$G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K) = G'(K)$$
$$X + Y\varepsilon \mapsto (X^{-1} \cdot Y, X).$$

Moreover, $\varphi = t \circ F$.

Thus, φ comes from a homomorphism of algebras $f: K \to A$.

MORE CONCEPTUALLY: Consider $A = K[\varepsilon]$, where $\varepsilon^2 = 0$, and define

$$f: K \to A$$
, $x \mapsto x + \delta(x)\varepsilon$.

Then f is a homomorphism of k-algebras, hence induces a group homomorphism

$$F\colon G(K)\to G(A).$$

Note the identification

$$G(A) \xrightarrow{t} \mathfrak{g}(K) \rtimes G(K) = G'(K)$$
$$X + Y\varepsilon \mapsto (X^{-1} \cdot Y, X).$$

Moreover, $\varphi = t \circ F$.

Thus, φ comes from a homomorphism of algebras $f: K \to A$. B-T **conjectured** that any abstract homomorphism can be obtained in (basically) this fashion.

Let G/K and G'/K' be algebraic groups / infinite fields, with *G* semisimple simply connected.

Let G/K and G'/K' be algebraic groups / infinite fields, with *G* semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism $\rho: G(K) \rightarrow G'(K')$

with $\rho(G(K))$ Zariski-dense in G'(K'), there exist

• a finite-dimensional K'-algebra B, and

Let G/K and G'/K' be algebraic groups / infinite fields, with *G* semisimple simply connected.

Conjecture (BT). *Given an abstract homomorphism* $\rho: G(K) \rightarrow G'(K')$

with $\rho(G(K))$ Zariski-dense in G'(K'), there exist

- a finite-dimensional K'-algebra B, and
- a ring homomorphism $f: K \to B$

Let G/K and G'/K' be algebraic groups / infinite fields, with G semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism $\rho: G(K) \rightarrow G'(K')$

with $\rho(G(K))$ Zariski-dense in G'(K'), there exist

- a finite-dimensional K'-algebra B, and
- a ring homomorphism $f: K \rightarrow B$

such that

$$\rho = \sigma \circ r_{B/K'} \circ F,$$

where

•
$$F: G(K) \rightarrow G_B(B)$$
 is induced by $f;$

- $r_{B/K'}: G_B(B) \to \mathbf{R}_{B/K'}(G_B)(K')$ canonical isomorphism;
- $\sigma: \mathbf{R}_{B/K'}(G_B) \to G'$ is a K'-morphism of algebraic groups.

For G' not necessarily reductive, (BT) was known only in the following cases: For G' not necessarily reductive, (BT) was known only in the following cases:

• $K = K' = \mathbb{R}$ (Tits, sketch)

For G' not necessarily reductive, (BT) was known only in the following cases:

•
$$K = K' = \mathbb{R}$$
 (Tits, sketch)

- char K = char K' = 0
 - G simply connected Chevalley group,
 - G' has commutative unipotent radical
 - (L. Lifschitz, A. Rapinchuk)

Outline

Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Borel and Tits treated only groups of points over fields.

Borel and Tits treated only groups of points over fields.

Another direction of research:

abstract homomorphisms of groups of points over rings.

Borel and Tits treated only groups of points over fields.

Another direction of research: abstract homomorphisms of groups of points over rings.

Previous results mainly for groups over number rings.

Borel and Tits treated only groups of points over fields.

Another direction of research: abstract homomorphisms of groups of points over rings.

Previous results mainly for groups over number rings.

In particular, for

• arithmetic groups having Congruence Subgroup Property (work of BASS, MILNOR, SERRE and others)

Borel and Tits treated only groups of points over fields.

Another direction of research: abstract homomorphisms of groups of points over rings.

Previous results mainly for groups over number rings.

In particular, for

- arithmetic groups having Congruence Subgroup Property (work of BASS, MILNOR, SERRE and others)
- lattices in higher rank Lie groups (MARGULIS' SUPERRIGIDITY THEOREM)

Outline

Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

• K – algebraically closed field, R – commutative ring

- K algebraically closed field, R commutative ring
- Φ reduced irreducible root system of rank ≥ 2

- K algebraically closed field, R commutative ring
- Φ reduced irreducible root system of rank ≥ 2

The pair (Φ, R) is nice if

•
$$2 \in R^{\times}$$
 in case $B_2 \subset \Phi$

• 2,3
$$\in R^{\times}$$
 in case $\Phi = G_2$

- K algebraically closed field, R commutative ring
- Φ reduced irreducible root system of rank ≥ 2

The pair (Φ, R) is nice if

•
$$2 \in R^{\times}$$
 in case $B_2 \subset \Phi$

• 2,3
$$\in R^{\times}$$
 in case $\Phi = G_2$

• *G* – universal Chevalley-Demazure group scheme/ \mathbb{Z} of type Φ

- K algebraically closed field, R commutative ring
- Φ reduced irreducible root system of rank ≥ 2

The pair (Φ, R) is nice if

•
$$2 \in R^{\times}$$
 in case $B_2 \subset \Phi$

• 2,3
$$\in R^{\times}$$
 in case $\Phi = G_2$

- *G* universal Chevalley-Demazure group scheme/ \mathbb{Z} of type Φ
- *G*(*R*)⁺ subgroup of *G*(*R*) generated by *R*-points of root subgroups (elementary subgroup)

Notations and conventions (cont.)

- for a finite-dimensional commutative *K*-algebra *B*, *G*(*B*) is an algebraic group;
 - more precisely, there exists an algebraic *K*-group $\mathbf{R}_{B/K}(G)$ such that

 $G(B) \simeq \mathbf{R}_{B/K}(G)(K)$

Notations and conventions (cont.)

- for a finite-dimensional commutative *K*-algebra *B*, *G*(*B*) is an algebraic group;
 - more precisely, there exists an algebraic *K*-group $\mathbf{R}_{B/K}(G)$ such that

$$G(B) \simeq \mathbf{R}_{B/K}(G)(K)$$

• Given an abstract representation $\rho: G(R)^+ \to GL_n(K)$, we set

$$H = \overline{\rho(G(R)^+)}$$
 (Zariski-closure)

 H° = connected component of H

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

• H° is reductive,

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,
- char K = 0 and $U := R_u(H^\circ)$ is commutative,

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,
- char K = 0 and $U := R_u(H^\circ)$ is commutative,

there exist

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,
- char K = 0 and $U := R_u(H^\circ)$ is commutative,

there exist

• a ring homomorphism $f: R \rightarrow B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,
- char K = 0 and $U := R_u(H^\circ)$ is commutative,

there exist

- a ring homomorphism $f: R \rightarrow B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and
- a morphism $\sigma: G(B) \rightarrow H$ of algebraic K-groups

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if char K > 0. Let $\rho: G(R)^+ \to GL_n(K)$ be a representation.

In each of the following situations:

- H° is reductive,
- char K = 0 and R is semilocal,
- char K = 0 and $U := R_u(H^\circ)$ is commutative,

there exist

- a ring homomorphism $f: R \to B$ to a finite-dimensional commutative K-algebra B with Zariski-dense image, and
- a morphism $\sigma: G(B) \rightarrow H$ of algebraic K-groups

such that

$$\rho \mid_{\Gamma} = (\sigma \circ F) \mid_{\Gamma}$$

for a suitable finite-index subgroup $\Gamma \subset G(R)^+$, where $F: G(R)^+ \to G(B)^+$ is induced by f. Isor Rapinchuk (MSU) Banff Dec

In Borel-Tits' theorem, one deals with embeddings of fields.

- In Borel-Tits' theorem, one deals with embeddings of fields.
- Over rings, there are many more possibilities.

In Borel-Tits' theorem, one deals with embeddings of fields. Over rings, there are many more possibilities.

For example, take $R = \mathbb{Z}[X]$. Assume char K = 0.

- In Borel-Tits' theorem, one deals with embeddings of fields. Over rings, there are many more possibilities.
- For example, take $R = \mathbb{Z}[X]$. Assume char K = 0.
- Choose distinct points $a_1, \ldots, a_s \in K^{\times}$.

In Borel-Tits' theorem, one deals with embeddings of fields. Over rings, there are many more possibilities.

For example, take $R = \mathbb{Z}[X]$. Assume char K = 0.

Choose distinct points $a_1, \ldots, a_s \in K^{\times}$.

• Let
$$B = \underbrace{K \times \cdots \times K}_{s \text{ copies}}$$
 and define

$$f: R \to B, \qquad g(X) \mapsto (g(a_1), \dots, g(a_s))$$

In Borel-Tits' theorem, one deals with embeddings of fields. Over rings, there are many more possibilities.

For example, take $R = \mathbb{Z}[X]$. Assume char K = 0.

Choose distinct points $a_1, \ldots, a_s \in K^{\times}$.

• Let $B = K[\delta_n]$, with $\delta_n^{n+1} = 0$, and define

$$f: R \to B, \qquad g(X) \mapsto g(a_1) + g'(a_1)\delta_n + \frac{g''(a_1)}{2!}\delta_n^2 + \dots + \frac{g^{(n)}(a_1)}{n!}\delta_n^n$$

• Let $B = K[\delta_n]$, with $\delta_n^{n+1} = 0$, and define

$$f: R \to B, \qquad g(X) \mapsto g(a_1) + g'(a_1)\delta_n + \frac{g''(a_1)}{2!}\delta_n^2 + \dots + \frac{g^{(n)}(a_1)}{n!}\delta_n^n$$

Already these examples show that

• Let $B = K[\delta_n]$, with $\delta_n^{n+1} = 0$, and define

$$f: R \to B, \qquad g(X) \mapsto g(a_1) + g'(a_1)\delta_n + \frac{g''(a_1)}{2!}\delta_n^2 + \dots + \frac{g^{(n)}(a_1)}{n!}\delta_n^n$$

Already these examples show that

• images of root subgroups of $G(R)^+$ can have (arbitrarily) large dimension.

• Let $B = K[\delta_n]$, with $\delta_n^{n+1} = 0$, and define

$$f: R \to B, \qquad g(X) \mapsto g(a_1) + g'(a_1)\delta_n + \frac{g''(a_1)}{2!}\delta_n^2 + \dots + \frac{g^{(n)}(a_1)}{n!}\delta_n^n$$

Already these examples show that

- images of root subgroups of $G(R)^+$ can have (arbitrarily) large dimension.
- one can construct representations whose image has unipotent radical of prescribed nilpotence class.

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

associating an algebraic ring to ρ
(generalizes construction of Kassabov and Sapir);

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ
 (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ
 (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;
- applying results of Dennis-Stein on K_2 of semilocal rings.

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

- associating an algebraic ring to ρ
 (generalizes construction of Kassabov and Sapir);
- analyzing structure of algebraic rings;
- applying results of Dennis-Stein on K_2 of semilocal rings.

We have also proved analogous results for elementary groups of type A_n over noncommutative rings.

Definition. An algebraic ring is a *triple* (A, α, μ) where

Definition. An algebraic ring is a *triple* (A, α, μ) where

• A is an affine algebraic variety / K, and

Definition. An algebraic ring is a *triple* (A, α, μ) where

- A is an affine algebraic variety / K, and
- $\alpha : A \times A \rightarrow A$ and $\mu : A \times A \rightarrow A$ are regular maps ("addition" and "multiplication")

Definition. An algebraic ring is a *triple* (A, α, μ) where

A is an affine algebraic variety / *K*, and *α* : *A* × *A* → *A* and *μ* : *A* × *A* → *A* are regular maps ("addition" and "multiplication")

such that

Definition. An algebraic ring is a *triple* (A, α, μ) where

A is an affine algebraic variety / *K*, and *α* : *A* × *A* → *A* and *μ* : *A* × *A* → *A* are regular maps ("addition" and "multiplication")

such that

• (A, α) is a commutative algebraic group,

Definition. An algebraic ring is a *triple* (A, α, μ) where

A is an affine algebraic variety / *K*, and *α* : *A* × *A* → *A* and *μ* : *A* × *A* → *A* are regular maps ("addition" and "multiplication")

such that

•
$$(A, \alpha)$$
 is a commutative algebraic group,

•
$$\mu(\mu(x, y), z) = \mu(x, \mu(y, z))$$
 ("associativity"),

Definition. An algebraic ring is a *triple* (A, α, μ) where

A is an affine algebraic variety / *K*, and *α* : *A* × *A* → *A* and *μ* : *A* × *A* → *A* are regular maps ("addition" and "multiplication")

such that

• (A, α) is a commutative algebraic group,

• $\mu(\mu(x, y), z) = \mu(x, \mu(y, z))$ ("associativity"),

•
$$\mu(x, \alpha(y, z)) = \alpha(\mu(x, y), \mu(x, z))$$
 and
 $\mu(\alpha(x, y), z) = \alpha(\mu(x, z), \mu(y, z))$ ("distributivity").

Our algebraic rings will always be commutative and unital.

Let $G = SL_3$.

Let $G = SL_3$.

Consider a representation ρ : $E_3(R) \rightarrow GL_n(K)$.

Set $H = \overline{\rho(E_3(R))}$.

Let $G = SL_3$.

Consider a representation ρ : $E_3(R) \rightarrow GL_n(K)$.

Set $H = \overline{\rho(E_3(R))}$.

Let $A = \overline{\rho(e_{13}(R))}$.

Let $G = SL_3$.

Consider a representation $\rho : E_3(R) \to GL_n(K)$. Set $H = \overline{\rho(E_3(R))}$.

Let $A = \overline{\rho(e_{13}(R))}$. To define addition operation, let $\alpha : A \times A \rightarrow A$ be the restriction of product in *H* to *A*.

Let $G = SL_3$.

Consider a representation $\rho : E_3(R) \to GL_n(K)$. Set $H = \overline{\rho(E_3(R))}$.

Let $A = \overline{\rho(e_{13}(R))}$. To define addition operation, let $\alpha : A \times A \rightarrow A$ be the restriction of product in *H* to *A*.

Then (A, α) is a commutative algebraic group.

Let $G = SL_3$.

Consider a representation $\rho : E_3(R) \to GL_n(K)$. Set $H = \overline{\rho(E_3(R))}$.

Let $A = \overline{\rho(e_{13}(R))}$. To define addition operation, let $\alpha : A \times A \rightarrow A$ be the restriction of product in *H* to *A*.

Then (A, α) is a commutative algebraic group.

Define $f: R \to A$ by $t \mapsto \rho(e_{13}(t))$ and **note** that

 $\alpha(f(t_1), f(t_2)) = f(t_1 + t_2)$ for all $t_1, t_2 \in R$.

Results and applications Rigidity results over rings

Construction of algebraic ring for SL_3 (cont.)

To define multiplication operation $\mu : A \times A \rightarrow A$, we need

$$w_{12} = e_{12}(1) e_{21}(-1) e_{12}(1) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$w_{23} = e_{23}(1) e_{32}(-1) e_{23}(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

To define multiplication operation $\mu: A \times A \rightarrow A$, we need

$$w_{12} = e_{12}(1) e_{21}(-1) e_{12}(1) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$w_{23} = e_{23}(1) e_{32}(-1) e_{23}(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

We have

$$w_{12}^{-1} e_{13}(r) w_{12} = e_{23}(r)$$
 , $w_{23} e_{13}(r) w_{23}^{-1} = e_{12}(r)$

and

$$[e_{12}(r), e_{23}(s)] = e_{13}(rs)$$

Define a regular map $\mu: A \times A \rightarrow H$ by

$$\mu(a_1, a_2) = [\rho(w_{23})a_1\rho(w_{23})^{-1}, \rho(w_{12})^{-1}a_2\rho(w_{12})].$$

Define a regular map $\mu : A \times A \to H$ by $\mu(a_1, a_2) = [\rho(w_{23})a_1\rho(w_{23})^{-1}, \rho(w_{12})^{-1}a_2\rho(w_{12})].$

Since $\mu(f(t_1), f(t_2)) = f(t_1t_2)$, we have $\mu(A \times A) \subset A$.

Define a regular map $\mu: A \times A \rightarrow H$ by

$$\mu(a_1, a_2) = [\rho(w_{23})a_1\rho(w_{23})^{-1}, \rho(w_{12})^{-1}a_2\rho(w_{12})].$$

Since $\mu(f(t_1), f(t_2)) = f(t_1t_2)$, we have $\mu(A \times A) \subset A$.

As R is a commutative ring and f has Zariski-dense image we conclude that

 (A, α, μ) is a commutative algebraic ring with identity.

Notice that

Any finite-dimensional K-algebra A has a natural structure of an algebraic ring.

Notice that

Any finite-dimensional K-algebra A has a natural structure of an algebraic ring.

Conversely:

Theorem. Let A be an algebraic ring / K where char K = 0. Then there exists a finite-dimensional K-algebra B and a finite ring C such that

$$A=B\oplus C.$$

In particular, any connected algebraic ring / K is a finite-dimensional K-algebra.

To summarize:

To summarize:

• Starting with a representation $\rho: G(R)^+ \to GL_n(K)$, we construct an algebraic ring *A*.

To summarize:

- Starting with a representation $\rho: G(R)^+ \to GL_n(K)$, we construct an algebraic ring *A*.
- If char K = 0, then $A = B \oplus C$.

To summarize:

• Starting with a representation $\rho: G(R)^+ \to GL_n(K)$, we construct an algebraic ring *A*.

• If char
$$K = 0$$
, then $A = B \oplus C$.

• The finite-dimensional *K*-algebra *B* is the algebra that appears in Theorem 2.

To summarize:

• Starting with a representation $\rho: G(R)^+ \to GL_n(K)$, we construct an algebraic ring *A*.

• If char
$$K = 0$$
, then $A = B \oplus C$.

- The finite-dimensional *K*-algebra *B* is the algebra that appears in Theorem 2.
- A nontrivial finite ring *C* necessitates the passage to a finite-index subgroup.

Structure theorem is *false* if char K = p > 0.

Structure theorem is *false* if char K = p > 0.

EXAMPLE. Set $A = K \oplus K$ with the usual addition and the following multiplication

$$\mu((x_1, y_1), (x_2, y_2)) = (x_1 x_2, x_1^p y_2 + x_2^p y_1).$$

Then A is an algebraic ring with identity element (1, 0).

Structure theorem is *false* if char K = p > 0.

EXAMPLE. Set $A = K \oplus K$ with the usual addition and the following multiplication

$$u((x_1, y_1), (x_2, y_2)) = (x_1x_2, x_1^p y_2 + x_2^p y_1).$$

Then A is an algebraic ring with identity element (1, 0).

But A is not a K-algebra: consider

$$\varphi: A \rightarrow A$$
 , $a \mapsto \mu(a, (0, 1)).$

Then $\varphi((x, y)) = (0, x^p)$, hence $d_{(0,0)} \varphi \equiv 0$.

If $A \simeq$ an algebra, then φ would be a nonzero linear map, hence its differential would be $\neq 0$.

Nevertheless, *A* is *related* to a *K*-algebra.

Nevertheless, *A* is *related* to a *K*-algebra. Let

 $A' = K \oplus K$

with the usual addition and the following multiplication

 $\mu((x_1, y_1), (x_2, y_2)) = (x_1 x_2, x_1 y_2 + x_2 y_1).$

Nevertheless, *A* is *related* to a *K*-algebra. Let

$$A' = K \oplus K$$

with the usual addition and the following multiplication

$$\mu((x_1, y_1), (x_2, y_2)) = (x_1 x_2, x_1 y_2 + x_2 y_1).$$

Then $A' \simeq K[\varepsilon]$, where $\varepsilon^2 = 0$, hence a *K*-algebra.

Nevertheless, *A* is *related* to a *K*-algebra. Let

$$A' = K \oplus K$$

with the usual addition and the following multiplication

$$u((x_1, y_1), (x_2, y_2)) = (x_1 x_2, x_1 y_2 + x_2 y_1).$$

Then $A' \simeq K[\varepsilon]$, where $\varepsilon^2 = 0$, hence a *K*-algebra.

The map

$$\psi: A' \to A, \quad (x, y) \mapsto (x, y^p)$$

is a *morphism of algebraic rings* **and** an *isomorphism* of *abstract* rings, **but** not an isomorphism of *algebraic* rings.

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic

ring / K, where char K = p > 0, such that p A = 0.

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char K = p > 0, such that p A = 0.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char K = p > 0, such that p A = 0.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Using this, some of our results can be extended to char *p*.

Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic ring / K, where char K = p > 0, such that p A = 0.

Then there exists a finite-dimensional K-algebra B and a morphism of algebraic rings $B \rightarrow A$ that is an isomorphism of abstract rings.

Using this, some of our results can be extended to char *p*.

In particular, we generalize a rigidity result of G. Seitz.

Outline

Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Notations:

- Φ reduced irreducible root system of rank $\geqslant 2$
- \bullet G corresponding Chevalley-Demazure group scheme/ $\mathbb Z$
- *R* commutative ring such that (Φ, R) is a *nice pair*
- K algebraically closed field of characteristic 0

Notations:

- Φ reduced irreducible root system of rank $\geqslant 2$
- \bullet G corresponding Chevalley-Demazure group scheme/ $\mathbb Z$
- *R* commutative ring such that (Φ, R) is a *nice pair*
- K algebraically closed field of characteristic 0

Theorem 2 implies the following classical result:

Notations:

- Φ reduced irreducible root system of rank $\geqslant 2$
- \bullet G corresponding Chevalley-Demazure group scheme/ $\mathbb Z$
- *R* commutative ring such that (Φ, R) is a *nice pair*
- K algebraically closed field of characteristic 0

Theorem 2 implies the following classical result:

Theorem 8. Suppose \mathcal{O} is a ring of S-integers in a number field L. Then any representation $\rho: G(\mathcal{O})^+ \to GL_n(K)$ has a standard description.

Key point: Since there are *no nontrivial derivations* $\delta: \mathcal{O} \to K$

Key point: Since there are *no nontrivial derivations* $\delta: \mathcal{O} \to K$

•
$$H^{\circ} = \overline{\rho(G(\mathcal{O})^+)}^{\circ}$$
 is automatically reductive

Key point: Since there are *no nontrivial derivations* $\delta: \mathcal{O} \to K$

•
$$H^{\circ} = \overline{\rho(G(\mathcal{O})^+)}^{\circ}$$
 is automatically reductive

• algebraic ring associated to ρ is of the form

 $A = B \oplus C$

with $B \simeq K \times \cdots \times K$ and *C* finite.

Key point: Since there are *no nontrivial derivations* $\delta: \mathcal{O} \to K$

• $H^{\circ} = \overline{\rho(G(\mathcal{O})^+)}^{\circ}$ is automatically reductive

• algebraic ring associated to ρ is of the form $A = B \oplus C$

with $B \simeq K \times \cdots \times K$ and *C* finite.

Theorem 8 then follows from Theorem 2.

Key point: Since there are *no nontrivial derivations* $\delta: \mathcal{O} \to K$

• $H^{\circ} = \overline{\rho(G(\mathcal{O})^+)}^{\circ}$ is automatically reductive

• algebraic ring associated to ρ is of the form $A = B \oplus C$

with $B \simeq K \times \cdots \times K$ and *C* finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with "few" derivations to analyze reps of some *non-arithmetic* groups.

For a ring homomorphism $g: R \to K$, let $Der^{g}(R, K)$ be the *K*-vector space of maps $\delta: R \to K$ such that

For a ring homomorphism $g: R \to K$, let $Der^{g}(R, K)$ be the *K*-vector space of maps $\delta: R \to K$ such that

 $\delta(r_1 + r_2) = \delta(r_1) + \delta(r_2)$ and $\delta(r_1 r_2) = \delta(r_1)g(r_2) + g(r_1)\delta(r_2)$

for all $r_1, r_2 \in R$ (derivations of R with respect to g).

For a ring homomorphism $g: R \to K$, let $\text{Der}^{g}(R, K)$ be the *K*-vector space of maps $\delta: R \to K$ such that

 $\delta(r_1 + r_2) = \delta(r_1) + \delta(r_2)$ and $\delta(r_1 r_2) = \delta(r_1)g(r_2) + g(r_1)\delta(r_2)$

for all $r_1, r_2 \in R$ (derivations of R with respect to g).

Theorem 9. (I.R.) Suppose $\dim_K \text{Der}^g(R, K) \leq 1$ for all homomorphisms $g: R \to K$. Then any representation $\rho: G(R)^+ \to GL_n(K)$ has a standard description.

For a ring homomorphism $g: R \to K$, let $\text{Der}^{g}(R, K)$ be the *K*-vector space of maps $\delta: R \to K$ such that

 $\delta(r_1 + r_2) = \delta(r_1) + \delta(r_2)$ and $\delta(r_1 r_2) = \delta(r_1)g(r_2) + g(r_1)\delta(r_2)$

for all $r_1, r_2 \in R$ (derivations of R with respect to g).

Theorem 9. (I.R.) Suppose $\dim_K \operatorname{Der}^g(R, K) \leq 1$ for all homomorphisms $g: R \to K$. Then any representation $\rho: G(R)^+ \to GL_n(K)$ has a standard description.

Corollary. If \mathcal{O} is a ring of integers in a number field, then any representation $\rho: SL_m(\mathcal{O}[X]) \to GL_n(K) \ (m \ge 3)$ has a standard description.

Set $H = \overline{\rho(G(R)^+)}$ and $U = R_u(H^\circ)$.

Set $H = \overline{\rho(G(R)^+)}$ and $U = R_u(H^\circ)$.

The proof of Theorem 2 yields a standard description for ρ if (Z) $Z(H^{\circ}) \cap U = \{e\}.$

Set
$$H = \overline{\rho(G(R)^+)}$$
 and $U = R_u(H^\circ)$.

The proof of Theorem 2 yields a standard description for ρ if (Z) $Z(H^{\circ}) \cap U = \{e\}.$

To verify (Z) in our situation, we use:

Set
$$H = \overline{\rho(G(R)^+)}$$
 and $U = R_u(H^\circ)$.

The proof of Theorem 2 yields a standard description for ρ if (Z) $Z(H^{\circ}) \cap U = \{e\}.$

To verify (Z) in our situation, we use:

• algebraic ring associated to ρ is of the form $A = B \oplus C$ with $B \simeq K[\varepsilon_1] \times \cdots \times K[\varepsilon_r]$, $\varepsilon_i^{d_i} = 0$ for $d_i \ge 1$, and *C* finite;

Set
$$H = \overline{\rho(G(R)^+)}$$
 and $U = R_u(H^\circ)$.

The proof of Theorem 2 yields a standard description for ρ if (Z) $Z(H^{\circ}) \cap U = \{e\}.$

To verify (Z) in our situation, we use:

- algebraic ring associated to ρ is of the form $A = B \oplus C$ with $B \simeq K[\varepsilon_1] \times \cdots \times K[\varepsilon_r]$, $\varepsilon_i^{d_i} = 0$ for $d_i \ge 1$, and *C* finite;
- For $\widetilde{A} = K[\varepsilon]$, $\varepsilon^d = 0$ for $d \ge 1$, any central extension of algebraic groups over *K* of the form

$$1 \to W \to E \to G(\widetilde{A}) \to 1$$
,

with $W = \mathbb{G}_a^{\ell}$ a vector group, splits. (Observed by Gabber.)

Notice:

Notice:

• For $\rho: G(\mathcal{O}[X])^+ \to GL_n(K)$, the restriction $\rho|_{G(\mathcal{O})^+}$ is completely reducible.

Notice:

- For $\rho: G(\mathcal{O}[X])^+ \to GL_n(K)$, the restriction $\rho|_{G(\mathcal{O})^+}$ is completely reducible.
- We have $\delta|_{\mathcal{O}} = 0$ for any $\delta \in \operatorname{Der}^{g}(\mathcal{O}[X], K)$.

Notice:

- For $\rho: G(\mathcal{O}[X])^+ \to GL_n(K)$, the restriction $\rho|_{G(\mathcal{O})^+}$ is completely reducible.
- We have $\delta|_{\mathcal{O}} = 0$ for any $\delta \in \operatorname{Der}^{g}(\mathcal{O}[X], K)$.

In general:

Notice:

- For $\rho: G(\mathcal{O}[X])^+ \to GL_n(K)$, the restriction $\rho|_{G(\mathcal{O})^+}$ is completely reducible.
- We have $\delta|_{\mathcal{O}} = 0$ for any $\delta \in \text{Der}^{g}(\mathcal{O}[X], K)$.

In general:

If *R* a comm. *k*-algebra and $g: R \to K$ a ring hom., consider $\text{Der}_k^g(R, K) = \text{set of derivations } \delta: R \to K$ such that $\delta|_k = 0$.

Rigidity over coordinate rings of affine curves

Theorem 10. (I.R.) Suppose dim_K $\text{Der}_{k}^{g}(R, K) \leq 1$ for all homomor-

phisms $g: \mathbb{R} \to K$. Then any representation $\rho: G(\mathbb{R})^+ \to GL_n(K)$

such that $\rho|_{G(k)^+}$ is completely reducible has a standard description.

Rigidity over coordinate rings of affine curves

Theorem 10. (I.R.) Suppose $\dim_K \operatorname{Der}_k^{\mathscr{S}}(R, K) \leq 1$ for all homomorphisms $g: R \to K$. Then any representation $\rho: G(R)^+ \to GL_n(K)$ such that $\rho|_{G(k)^+}$ is completely reducible has a standard description.

Corollary. Suppose C is a smooth affine algebraic curve over a number field k, with coordinate ring R = k[C]. Then any representation $\rho: G(R)^+ \to GL_n(K)$ has a standard description.

Outline

Introduction

- Abstract homomorphisms: general philosophy
- Work of Borel and Tits
- Groups over commutative rings

Results and applications

- Rigidity results over rings
- Rigidity for some non-arithmetic groups
- Applications to character varieties

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Let

- Γ be a finitely generated group,
- *K* be an algebraically closed field of characteristic 0.

Representation and character varieties

Applications to character varieties are one motivation for studying representations with non-reductive image.

Let

- Γ be a finitely generated group,
- K be an algebraically closed field of characteristic 0.

One can define

• $R_n(\Gamma)$ = variety of representations $\rho: \Gamma \to GL_n(K)$ (*n*th representation variety)

• $X_n(\Gamma)$ = (categorical) quotient of $R_n(\Gamma)$ by $GL_n(K)$ (n^{th} character variety) Suppose that *R* is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank ≥ 2 . Suppose that *R* is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank ≥ 2 .

Then $\Gamma = G(R)^+$ has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated. Suppose that *R* is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank ≥ 2 .

Then $\Gamma = G(R)^+$ has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated.

So, varieties $R_n(\Gamma)$ and $X_n(\Gamma)$ are defined.

Suppose that *R* is a finitely generated commutative ring, Φ is a reduced irreducible root system of rank ≥ 2 .

Then $\Gamma = G(R)^+$ has property (T) (Ershov-Jaikin-Kassabov), in particular is finitely generated.

So, varieties $R_n(\Gamma)$ and $X_n(\Gamma)$ are defined.

Assume now that

R is a finitely generated commutative ring, and (Φ, R) is a nice pair.

Theorem 5. (I.R.) *There exists a constant* c = c(R) (depending only on R) such that $\varkappa_{\Gamma}(n) := \dim X_n(\Gamma)$ satisfies

 $\varkappa_{\Gamma}(n) \leqslant c \cdot n$

for all $n \ge 1$.

Theorem 5. (I.R.) There exists a constant c = c(R) (depending only on R) such that $\varkappa_{\Gamma}(n) := \dim X_n(\Gamma)$ satisfies

 $\varkappa_{\Gamma}(n) \leqslant c \cdot n$

for all $n \ge 1$.

Theorem 5. (I.R.) There exists a constant c = c(R) (depending only on R) such that $\varkappa_{\Gamma}(n) := \dim X_n(\Gamma)$ satisfies

$$\varkappa_{\Gamma}(n) \leqslant c \cdot n$$

for all $n \ge 1$.

Remarks.

• Constant *c* is related to dimension of space of derivations of *R*.

Theorem 5. (I.R.) There exists a constant c = c(R) (depending only on R) such that $\varkappa_{\Gamma}(n) := \dim X_n(\Gamma)$ satisfies

$$\varkappa_{\Gamma}(n) \leqslant c \cdot n$$

for all $n \ge 1$.

- Constant *c* is related to dimension of space of derivations of *R*.
- If *R* is the ring of *S*-integers in a number field (e.g. \mathbb{Z}), then c = 0, hence Γ is *SS*-rigid.

Elements of the proof

Bound dimension of

tangent space to $X_n(\Gamma)$ at $[\rho]$

by dimension of $H^1(\Gamma, \operatorname{Ad}_{GL_n} \circ \rho)$.

(based on ideas going back to A. Weil)

Elements of the proof

Bound dimension of

tangent space to $X_n(\Gamma)$ at $[\rho]$

by dimension of $H^1(\Gamma, \operatorname{Ad}_{GL_n} \circ \rho)$.

(based on ideas going back to A. Weil)

One then uses standard descriptions of representations of Γ with non-reductive image (Theorem 2) to relate this cohomology group to a space of derivations of *R*.

A conjecture

Essentially all known examples of discrete linear groups having Kazhdan's property (T) are of the form $\Gamma = G(R)^+$.

A conjecture

Essentially all known examples of discrete linear groups having Kazhdan's property (T) are of the form $\Gamma = G(R)^+$.

Conjecture. Let Γ be a discrete linear group having Kazhdan's property (T). Then there exists a constant $c = c(\Gamma)$ such that

$$\varkappa_{\Gamma}(n) := \dim X_n(\Gamma) \leqslant c \cdot n$$

for all $n \ge 1$.

• For $\Gamma = F_d$, the free group on d > 1 generators, $\varkappa_{\Gamma}(n) = (d-1)n^2 + 1$ (i.e. quadratic in n).

- For $\Gamma = F_d$, the free group on d > 1 generators, $\varkappa_{\Gamma}(n) = (d-1)n^2 + 1$ (i.e. quadratic in n).
- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ .

- For $\Gamma = F_d$, the free group on d > 1 generators, $\varkappa_{\Gamma}(n) = (d-1)n^2 + 1$ (i.e. quadratic in n).
- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ .
- If Γ is not *SS*-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in *n* (I.R.)

- For $\Gamma = F_d$, the free group on d > 1 generators, $\varkappa_{\Gamma}(n) = (d-1)n^2 + 1$ (i.e. quadratic in n).
- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ .
- If Γ is not *SS*-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in *n* (I.R.)
- Thus, conjecture predicts that rate of growth of $\varkappa_{\Gamma}(n)$ is minimum possible if Γ is Kazhdan.

- For $\Gamma = F_d$, the free group on d > 1 generators, $\varkappa_{\Gamma}(n) = (d-1)n^2 + 1$ (i.e. quadratic in n).
- Hence, rate of growth of $\varkappa_{\Gamma}(n)$ at most quadratic for any finitely generated Γ .
- If Γ is not *SS*-rigid, then rate of growth of $\varkappa_{\Gamma}(n)$ is at least linear in *n* (I.R.)
- Thus, conjecture predicts that rate of growth of $\varkappa_{\Gamma}(n)$ is minimum possible if Γ is Kazhdan.
- For any $f: \mathbb{N} \to \mathbb{N}$ such that f(n)/n is non-decreasing and $f(n) \leq n(n-1)/2$, there exists a f.g. group Γ_f such that $\varkappa_{\Gamma_f}(n) = f(n)$ for all $n \geq 3$ (M. Kassabov).

Question. What affine varieties can be realized as $X_n(\Gamma)$ for some finitely generated group Γ and some $n \ge 1$?

Question. What affine varieties can be realized as $X_n(\Gamma)$ for some finitely generated group Γ and some $n \ge 1$?

Same question with Γ having some special properties.

Question. What affine varieties can be realized as $X_n(\Gamma)$ for some finitely generated group Γ and some $n \ge 1$?

Same question with Γ having some special properties.

Note that $X_n(\Gamma)$ is an affine variety defined over Q.

Question. What affine varieties can be realized as $X_n(\Gamma)$ for some finitely generated group Γ and some $n \ge 1$?

Same question with Γ having some special properties.

Note that $X_n(\Gamma)$ is an affine variety defined over Q.

Are there any other restrictions?

Theorem 6. (Kapovich-Millson, 1998) For any affine variety *S* defined over \mathbb{Q} , there is an Artin group Γ such that a Zariskiopen subset *U* of *S* is biregular isomorphic to a Zariski-open subset of $X(\Gamma, PO(3))$.

Theorem 6. (Kapovich-Millson, 1998) For any affine variety *S* defined over \mathbb{Q} , there is an Artin group Γ such that a Zariskiopen subset *U* of *S* is biregular isomorphic to a Zariski-open subset of $X(\Gamma, PO(3))$.

Theorem 7. (I.R.) Let *S* be an affine algebraic variety defined over \mathbb{Q} . There exist a finitely generated group Γ having Kazhdan's property (*T*) and an integer $m \ge 1$ such that there is a biregular isomorphism of complex algebraic varieties

 $\varphi\colon S(\mathbb{C})\to X_m(\Gamma)\setminus\{[\rho_0]\}$

(where ρ_0 is the trivial representation).

Igor Rapinchuk (MSU)

• Let Q[S] be the ring of Q-regular functions on S.

• Let $\mathbb{Q}[S]$ be the ring of Q-regular functions on S.

• Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[S]$.

- Let $\mathbb{Q}[S]$ be the ring of Q-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[S]$.
- Localize *R* more if necessary $R \to R\left[\frac{1}{N}\right]$
 - (for a sufficiently large integer *N*).

- Let $\mathbb{Q}[S]$ be the ring of Q-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[S]$.
- Localize *R* more if necessary $R \to R\left[\frac{1}{N}\right]$

(for a sufficiently large integer *N*).

• Let $G = Sp_{2n}$, $n \ge 2$.

- Let $\mathbb{Q}[S]$ be the ring of Q-regular functions on S.
- Let $R \subset \mathbb{Q}[S]$ be a f.g. ring such that $R \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[S]$.
- Localize *R* more if necessary $R \to R\left[\frac{1}{N}\right]$

(for a sufficiently large integer *N*).

• Let
$$G = Sp_{2n}$$
, $n \ge 2$.

• Set
$$\Gamma = G(R)^+$$
, $m = 2n$.

References

- I.A. Rapinchuk, On linear representations of Chevalley groups over rings, Proc. London Math. Soc. 102(5) (2011), 951-983.
- [2] —, On abstract representations of the groups of rational points of algebraic groups and their deformations, Algebra & Number Theory 7 (7) (2013), 1685-1723.
- [3] —, On the character varieties of finitely generated groups, Math. Res. Lett. 22 (2) (2015), 579-604.
- [4] D. Boyarchenko, I.A. Rapinchuk, On abstract homomorphisms of the groups of rational points of algebraic groups in positive characteristic, Arch. Math. (Basel) 107 (2016), no. 6, 569-580.
 [5] I.A. Rapinchuk, On abstract homomorphisms of Chevalley groups over the coordinate rings of affine curves, Transformation Groups 24 (2019), no. 4, 1241-1259.