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Introduction Abstract homomorphisms: general philosophy

General philosophy

Given alg. groups G/K and G′/K′, an abstract homomorphism

ϕ : G(K)→ G′(K′)

can (often) be written (essentially) as ϕ = β ◦ α, where

α : G(K)→ GK′(K′) is induced by a field homomorphism

α̃ : K→ K′ ( GK′ is obtained from G by base change via α̃);

β : GK′(K′)→ G′(K′) is induced by a K′-defined

morphism GK′ → G′.
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Introduction Abstract homomorphisms: general philosophy

If an abstract homomorphism

ϕ : G(K)→ G′(K′)

admits such a factorization, we say it has a standard description.

One expects that under appropriate assumptions

all abstract homomorphisms have a standard description

(rigidity statement)
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Introduction Work of Borel and Tits

Work of Borel and Tits

Theorem 1. (Borel-Tits) Let G/K and G′/K′ be algebraic groups

over infinite fields such that

G absolutely almost simple K-isotropic

G′ absolutely simple adjoint.

Let

G+ = (normal) subgroup of G(K) generated by K-points of
unipotent radicals of K-defined parabolics.

Then any abstract homomorphism ϕ : G+ → G′(K′) with

Zariski-dense image has a standard description.

Igor Rapinchuk (MSU) Banff December 2019 7 / 48
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Introduction Work of Borel and Tits

Borel-Tits (cont.)

Similar, but more technical, result when G′ is only assumed
to be reductive.

QUESTION: Is the image of the group of K-rational points of

a semisimple group under an abstract homomorphism always reductive?

No. B-T gave an example of ϕ : G(K)→ G′(K) such that

G is absolutely almost simple / infinite K;

ϕ has Zariski-dense image;

G′ is not reductive.
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Introduction Work of Borel and Tits

Borel-Tits’ example

CONSTRUCTION: Let

G be an absolutely almost simple group / infinite k
(e.g. G = SLn)

K/k be a field extension with a nontrivial k-derivation δ : K→ K
(e.g. k(x)/k, δ = differentiation)

Set G′ = go G, g = Lie algebra of G with adjoint action.

Define ϕ : G(K)→ G′(K) by

G(K) 3 g 7→ (g−1 · ∆(g) , g) ∈ G′(K),

where ∆ is induced by δ.

Then

Im ϕ is Zariski-dense in G′;

unipotent radical of G′ is g (hence nontrivial).

Igor Rapinchuk (MSU) Banff December 2019 9 / 48
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Introduction Work of Borel and Tits

Example (cont.)

MORE CONCEPTUALLY: Consider A = K[ε], where ε2 = 0,
and define

f : K→ A, x 7→ x + δ(x)ε.

Then f is a homomorphism of k-algebras, hence induces
a group homomorphism

F : G(K)→ G(A).

Note the identification

G(A)
t−→ g(K)o G(K) = G′(K)

X + Yε 7→ (X−1 · Y , X).

Moreover, ϕ = t ◦ F.

Thus, ϕ comes from a homomorphism of algebras f : K→ A.
B-T conjectured that any abstract homomorphism can be obtained

in (basically) this fashion.

Igor Rapinchuk (MSU) Banff December 2019 10 / 48
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Introduction Work of Borel and Tits

Conjecture (BT)

Let G/K and G′/K′ be algebraic groups / infinite fields,
with G semisimple simply connected.

Conjecture (BT). Given an abstract homomorphism

ρ : G(K)→ G′(K′)

with ρ(G(K)) Zariski-dense in G′(K′), there exist

a finite-dimensional K′-algebra B, and
a ring homomorphism f : K→ B

such that
ρ = σ ◦ rB/K′ ◦ F,

where
F : G(K)→ GB(B) is induced by f ;

rB/K′ : GB(B)→ RB/K′(GB)(K′) – canonical isomorphism;

σ : RB/K′(GB)→ G′ is a K′-morphism of algebraic groups.

Igor Rapinchuk (MSU) Banff December 2019 11 / 48
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Introduction Work of Borel and Tits

For G′ not necessarily reductive, (BT) was known only

in the following cases:

K = K′ = R (Tits, sketch)

char K = char K′ = 0

G simply connected Chevalley group,

G′ has commutative unipotent radical

(L. Lifschitz, A. Rapinchuk)
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Introduction Groups over commutative rings

Groups over commutative rings

Borel and Tits treated only groups of points over fields.

Another direction of research:

abstract homomorphisms of groups of points over rings.

Previous results mainly for groups over number rings.

In particular, for

arithmetic groups having Congruence Subgroup Property

(work of BASS, MILNOR, SERRE and others)

lattices in higher rank Lie groups

(MARGULIS’ SUPERRIGIDITY THEOREM)
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Results and applications Rigidity results over rings

Notations and conventions

K – algebraically closed field, R – commutative ring

Φ – reduced irreducible root system of rank > 2

The pair (Φ, R) is nice if

2 ∈ R× in case B2 ⊂ Φ

2, 3 ∈ R× in case Φ = G2

G – universal Chevalley-Demazure group scheme/Z of type Φ

G(R)+ – subgroup of G(R) generated by R-points of root

subgroups (elementary subgroup)

Igor Rapinchuk (MSU) Banff December 2019 16 / 48
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Results and applications Rigidity results over rings

Notations and conventions (cont.)

for a finite-dimensional commutative K-algebra B,

G(B) is an algebraic group;

more precisely, there exists an algebraic K-group RB/K(G)

such that
G(B) ' RB/K(G)(K)

Given an abstract representation ρ : G(R)+ → GLn(K),

we set

H = ρ(G(R)+) (Zariski-closure)

H◦ = connected component of H

Igor Rapinchuk (MSU) Banff December 2019 17 / 48
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Results and applications Rigidity results over rings

Rigidity Theorem

Theorem 2. (I.R.) Assume (Φ, R) is nice, and R is noetherian if
char K > 0. Let ρ : G(R)+ → GLn(K) be a representation.

In each of the following situations:

H◦ is reductive,
char K = 0 and R is semilocal,
char K = 0 and U := Ru(H◦) is commutative,

there exist

a ring homomorphism f : R → B to a finite-dimensional
commutative K-algebra B with Zariski-dense image, and
a morphism σ : G(B) → H of algebraic K-groups

such that
ρ |Γ = (σ ◦ F) |Γ

for a suitable finite-index subgroup Γ ⊂ G(R)+, where
F : G(R)+ → G(B)+ is induced by f .

Igor Rapinchuk (MSU) Banff December 2019 18 / 48
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commutative K-algebra B with Zariski-dense image, and
a morphism σ : G(B) → H of algebraic K-groups

such that
ρ |Γ = (σ ◦ F) |Γ

for a suitable finite-index subgroup Γ ⊂ G(R)+, where
F : G(R)+ → G(B)+ is induced by f .
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Results and applications Rigidity results over rings

Examples of homomorphisms

In Borel-Tits’ theorem, one deals with embeddings of fields.

Over rings, there are many more possibilities.

For example, take R = Z[X]. Assume char K = 0.

Choose distinct points a1, . . . , as ∈ K×.

Let B = K× · · · × K︸ ︷︷ ︸
s copies

and define

f : R→ B, g(X) 7→ (g(a1), . . . , g(as))

Let B = K[ε1]× · · · × K[εs], with ε2
i = 0 for all i, and define

f : R→ B, g(X) 7→ (g(a1) + g′(a1)ε1, . . . , g(as) + g′(as)εs)

Igor Rapinchuk (MSU) Banff December 2019 19 / 48
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Examples (cont.)

Let B = K[δn], with δn+1
n = 0, and define

f : R→ B, g(X) 7→ g(a1) + g′(a1)δn +
g′′(a1)

2! δ2
n + · · ·+

g(n)(a1)
n! δn

n

Already these examples show that

images of root subgroups of G(R)+ can have (arbitrarily)

large dimension.

one can construct representations whose image has

unipotent radical of prescribed nilpotence class.

Igor Rapinchuk (MSU) Banff December 2019 20 / 48
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Results and applications Rigidity results over rings

Strategy of proof of Theorem 2

In proof, we handle all possible situations by

associating an algebraic ring to ρ

(generalizes construction of Kassabov and Sapir);

analyzing structure of algebraic rings;

applying results of Dennis-Stein on K2 of semilocal rings.

We have also proved analogous results for elementary groups of

type An over noncommutative rings.

Igor Rapinchuk (MSU) Banff December 2019 21 / 48
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Algebraic rings

Definition. An algebraic ring is a triple (A, α, µ) where

A is an affine algebraic variety / K, and
α : A×A → A and µ : A×A → A are regular maps
(“addition” and “multiplication”)

such that

(A , α) is a commutative algebraic group,

µ(µ(x , y) , z) = µ(x , µ(y , z)) (“associativity”),

µ(x , α(y, z)) = α(µ(x , y) , µ(x, z)) and

µ(α(x , y) , z) = α(µ(x , z) , µ(y , z)) (“distributivity”).

Our algebraic rings will always be commutative and unital.
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Results and applications Rigidity results over rings

Construction of algebraic ring for SL3

Let G = SL3.

Consider a representation ρ : E3(R) → GLn(K).

Set H = ρ(E3(R)).

Let A = ρ(e13(R)). To define addition operation, let

α : A×A → A

be the restriction of product in H to A.

Then (A , α) is a commutative algebraic group

.

Define f : R → A by t 7→ ρ(e13(t)) and note that

α(f (t1) , f (t2)) = f (t1 + t2) for all t1 , t2 ∈ R.
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Construction of algebraic ring for SL3 (cont.)

To define multiplication operation µ : A×A → A, we need

w12 = e12(1) e21(−1) e12(1) =

(
0 1 0
−1 0 0

0 0 1

)
,

w23 = e23(1) e32(−1) e23(1) =

(
1 0 0
0 0 1
0 −1 0

)
.

We have

w−1
12 e13(r)w12 = e23(r) , w23 e13(r)w−1

23 = e12(r)

and

[e12(r) , e23(s)] = e13(rs)

for all r , s ∈ R.
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Construction of algebraic ring for SL3 (cont.)

Define a regular map µ : A×A → H by

µ(a1 , a2) = [ ρ(w23) a1 ρ(w23)−1 , ρ(w12)
−1a2ρ(w12) ].

Since µ(f (t1) , f (t2)) = f (t1t2), we have

µ(A × A) ⊂ A.

As R is a commutative ring and f has Zariski-dense image

we conclude that

(A , α , µ) is a commutative algebraic ring with identity.
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Results and applications Rigidity results over rings

Structure of algebraic rings in characteristic 0

Notice that

Any finite-dimensional K-algebra A has a natural structure of

an algebraic ring.

Conversely:

Theorem. Let A be an algebraic ring / K where char K = 0.

Then there exists a finite-dimensional K-algebra B and a finite

ring C such that

A = B⊕ C.

In particular, any connected algebraic ring / K is a finite-dimen-
sional K-algebra.
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Structure of algebraic rings in characteristic 0 (cont.)

To summarize:

Starting with a representation ρ : G(R)+ → GLn(K), we
construct an algebraic ring A.

If char K = 0, then A = B⊕ C.

The finite-dimensional K-algebra B is the algebra that
appears in Theorem 2.

A nontrivial finite ring C necessitates the passage to a
finite-index subgroup.
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Results and applications Rigidity results over rings

Structure of algebraic rings in characteristic p

Structure theorem is false if char K = p > 0.

EXAMPLE. Set A = K ⊕ K with the usual addition and

the following multiplication

µ((x1 , y1) , (x2 , y2)) = (x1x2 , xp
1 y2 + xp

2 y1).

Then A is an algebraic ring with identity element (1 , 0).

But A is not a K-algebra: consider

ϕ : A → A , a 7→ µ(a , (0 , 1)).

Then ϕ((x , y)) = (0 , xp) , hence d(0 , 0) ϕ ≡ 0.

If A ' an algebra, then ϕ would be a nonzero linear map,

hence its differential would be 6≡ 0.
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Algebraic rings in char. p (cont.)

Nevertheless, A is related to a K-algebra.

Let

A′ = K ⊕ K

with the usual addition and the following multiplication

µ((x1 , y1) , (x2 , y2)) = (x1 x2 , x1 y2 + x2 y1).

Then A′ ' K[ε], where ε2 = 0, hence a K-algebra.

The map

ψ : A′ → A, (x , y) 7→ (x , yp)

is a morphism of algebraic rings and an isomorphism of

abstract rings, but not an isomorphism of algebraic rings.
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Algebraic rings in char. p (cont.)

Proposition. (D. Boyarchenko-I.R.) Let A be a connected algebraic

ring / K, where char K = p > 0, such that p A = 0.

Then there exists a finite-dimensional K-algebra B and a morphism

of algebraic rings B→ A that is an isomorphism of abstract rings.

Using this, some of our results can be extended to char p.

In particular, we generalize a rigidity result of G. Seitz.
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Results and applications Rigidity for some non-arithmetic groups

Outline

1 Introduction
Abstract homomorphisms: general philosophy
Work of Borel and Tits
Groups over commutative rings

2 Results and applications
Rigidity results over rings
Rigidity for some non-arithmetic groups
Applications to character varieties
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Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers

Notations:

Φ - reduced irreducible root system of rank > 2

G - corresponding Chevalley-Demazure group scheme/ Z

R - commutative ring such that (Φ, R) is a nice pair

K - algebraically closed field of characteristic 0

Theorem 2 implies the following classical result:

Theorem 8. Suppose O is a ring of S-integers in a number field

L. Then any representation ρ : G(O)+ → GLn(K) has a standard

description.
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Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations δ : O → K

H◦ = ρ(G(O)+)◦ is automatically reductive

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K× · · · × K and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with “few”
derivations to analyze reps of some non-arithmetic groups.

Igor Rapinchuk (MSU) Banff December 2019 33 / 48



Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations δ : O → K

H◦ = ρ(G(O)+)◦ is automatically reductive

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K× · · · × K and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with “few”
derivations to analyze reps of some non-arithmetic groups.

Igor Rapinchuk (MSU) Banff December 2019 33 / 48



Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations δ : O → K

H◦ = ρ(G(O)+)◦ is automatically reductive

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K× · · · × K and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with “few”
derivations to analyze reps of some non-arithmetic groups.

Igor Rapinchuk (MSU) Banff December 2019 33 / 48



Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations δ : O → K

H◦ = ρ(G(O)+)◦ is automatically reductive

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K× · · · × K and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with “few”
derivations to analyze reps of some non-arithmetic groups.

Igor Rapinchuk (MSU) Banff December 2019 33 / 48



Results and applications Rigidity for some non-arithmetic groups

Rigidity over rings of integers (cont.)

Key point: Since there are no nontrivial derivations δ : O → K

H◦ = ρ(G(O)+)◦ is automatically reductive

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K× · · · × K and C finite.

Theorem 8 then follows from Theorem 2.

This general strategy can be applied to rings with “few”
derivations to analyze reps of some non-arithmetic groups.

Igor Rapinchuk (MSU) Banff December 2019 33 / 48



Results and applications Rigidity for some non-arithmetic groups

Derivations and standard descriptions

For a ring homomorphism g : R→ K, let Derg(R, K) be the
K-vector space of maps δ : R→ K such that

δ(r1 + r2) = δ(r1) + δ(r2) and δ(r1r2) = δ(r1)g(r2) + g(r1)δ(r2)

for all r1, r2 ∈ R

(derivations of R with respect to g)

.

Theorem 9. (I.R.) Suppose dimK Derg(R, K) 6 1 for all homomor-

phisms g : R→ K. Then any representation ρ : G(R)+ → GLn(K)

has a standard description.

Corollary. If O is a ring of integers in a number field, then

any representation ρ : SLm(O[X])→ GLn(K) (m > 3) has a standard

description.
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Results and applications Rigidity for some non-arithmetic groups

Idea of the proof

Set H = ρ(G(R)+) and U = Ru(H◦).

The proof of Theorem 2 yields a standard description for ρ if

(Z) Z(H◦) ∩U = {e}.

To verify (Z) in our situation, we use:

algebraic ring associated to ρ is of the form

A = B⊕ C

with B ' K[ε1]× · · · × K[εr], εdi
i = 0 for di > 1, and C finite;

For Ã = K[ε], εd = 0 for d > 1, any central extension of
algebraic groups over K of the form

1→ W → E→ G(Ã)→ 1,

with W = G`
a a vector group, splits.

(Observed by Gabber.)
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For Ã = K[ε], εd = 0 for d > 1, any central extension of
algebraic groups over K of the form

1→ W → E→ G(Ã)→ 1,
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Results and applications Rigidity for some non-arithmetic groups

Derivations and standard descriptions (cont.)

Notice:

For ρ : G(O[X])+ → GLn(K), the restriction ρ|G(O)+ is
completely reducible.

We have δ|O = 0 for any δ ∈ Derg(O[X], K).

In general:

If R a comm. k-algebra and g : R→ K a ring hom., consider

Derg
k(R, K) = set of derivations δ : R→ K such that δ|k = 0.
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Results and applications Rigidity for some non-arithmetic groups

Rigidity over coordinate rings of affine curves

Theorem 10. (I.R.) Suppose dimK Derg
k(R, K) 6 1 for all homomor-

phisms g : R→ K. Then any representation ρ : G(R)+ → GLn(K)

such that ρ|G(k)+ is completely reducible has a standard description.

Corollary. Suppose C is a smooth affine algebraic curve over a

number field k, with coordinate ring R = k[C]. Then any

representation ρ : G(R)+ → GLn(K) has a standard description.
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representation ρ : G(R)+ → GLn(K) has a standard description.
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Representation and character varieties

Applications to character varieties are one motivation for
studying representations with non-reductive image.

Let

Γ be a finitely generated group,

K be an algebraically closed field of characteristic 0.

One can define

Rn(Γ) = variety of representations ρ : Γ → GLn(K)

(nth representation variety)

Xn(Γ) = (categorical) quotient of Rn(Γ) by GLn(K)

(nth character variety)
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Suppose that R is a finitely generated commutative ring,

Φ is a reduced irreducible root system of rank > 2.

Then Γ = G(R)+ has property (T) (Ershov - Jaikin - Kassabov),

in particular is finitely generated.

So, varieties Rn(Γ) and Xn(Γ) are defined.

Assume now that

R is a finitely generated commutative ring, and

(Φ , R) is a nice pair.
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Linear bound on the dimension

Theorem 5. (I.R.) There exists a constant c = c(R) (depending

only on R) such that κΓ(n) := dim Xn(Γ) satisfies

κΓ(n) 6 c · n

for all n > 1.

Remarks.

Constant c is related to dimension of space of

derivations of R.

If R is the ring of S-integers in a number field (e.g. Z),

then c = 0, hence Γ is SS-rigid.
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Elements of the proof

Bound dimension of

tangent space to Xn(Γ) at [ρ]

by dimension of H1(Γ , AdGLn ◦ ρ).

(based on ideas going back to A. Weil)

One then uses standard descriptions of representations of Γ

with non-reductive image (Theorem 2) to relate this cohomo-

logy group to a space of derivations of R.
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A conjecture

Essentially all known examples of discrete linear groups

having Kazhdan’s property (T) are of the form Γ = G(R)+.

Conjecture. Let Γ be a discrete linear group having Kazhdan’s

property (T). Then there exists a constant c = c(Γ) such that

κΓ(n) := dim Xn(Γ) 6 c · n

for all n > 1.
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Remarks

For Γ = Fd, the free group on d > 1 generators,
κΓ(n) = (d− 1)n2 + 1

(i.e. quadratic in n).

Hence, rate of growth of κΓ(n) at most quadratic for
any finitely generated Γ.

If Γ is not SS-rigid, then rate of growth of κΓ(n) is at
least linear in n (I.R.)

Thus, conjecture predicts that rate of growth of κΓ(n) is
minimum possible if Γ is Kazhdan.

For any f : N→N such that f (n)/n is non-decreasing
and f (n) 6 n(n− 1)/2, there exists a f.g. group Γf such
that κΓf (n) = f (n) for all n > 3 (M. Kassabov).
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Results and applications Applications to character varieties

Realizing affine varieties as character varieties

Question. What affine varieties can be realized as Xn(Γ) for

some finitely generated group Γ and some n > 1?

Same question with Γ having some special properties.

Note that Xn(Γ) is an affine variety defined over Q.

Are there any other restrictions?
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Realizing affine varieties as character varieties (cont.)

Theorem 6. (Kapovich-Millson, 1998) For any affine variety S

defined over Q, there is an Artin group Γ such that a Zariski-

open subset U of S is biregular isomorphic to a Zariski-open

subset of X(Γ, PO(3)).

Theorem 7. (I.R.) Let S be an affine algebraic variety defined

over Q. There exist a finitely generated group Γ having Kazhdan’s

property (T) and an integer m > 1 such that there is a biregular

isomorphism of complex algebraic varieties

ϕ : S(C)→ Xm(Γ) \ {[ρ0]}

(where ρ0 is the trivial representation).
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Idea of the proof

Let Q[S] be the ring of Q-regular functions on S.

Let R ⊂ Q[S] be a f.g. ring such that R⊗Z Q = Q[S].

Localize R more if necessary

R→ R
[ 1

N

]
(for a sufficiently large integer N).

Let G = Sp2n, n > 2.

Set Γ = G(R)+, m = 2n.
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