# Universality for Lozenge Tiling Local Statistics 

## Amol Aggarwal

Harvard University
November 19, 2019

## Lozenge Tilings

- Consider uniformly random tilings of large, finite subdomains $R$ of the triangular lattice $\mathbb{T}$ using three types of lozenges.

$T$



## Lozenge Tilings of Different Domains



## Height Functions

- Associated with any tiling of $R \subset \mathbb{T}$ is a height function.

- Boundary height function: Restriction of this height function to $\partial R$ (independent of the tiling, up to shifts).


## Local Statistics of Lozenge Tilings

- Consider a uniformly random tiling of a domain $R \subset \mathbb{T}$.
- Fix a vertex $v \in R$ and consider an $O(1)$-neighborhood of $v$.

- Local statistics: Random tiling on this $O(1)$-neighborhood.


## Question (Kasteleyn, 1961)

How do the local statistics around $v$ depend on $R$ ?

## Global Law

- Fix simply-connected macroscopic domain $\mathfrak{R}$ with piecewise smooth boundary
- Let $N \in \mathbb{Z}_{>0}$ be large and $R=R_{N} \subset \mathbb{T}$ be simply-connected and tileable
- Boundary height function $h=h_{N}: \partial R \rightarrow \mathbb{Z}$ associated with tiling of $R$
- Assume $N^{-1} R \approx \mathfrak{R}$ and $N^{-1} h(N \cdot) \approx \mathfrak{h}$ for some $\mathfrak{h}: \partial \mathfrak{R} \rightarrow \mathbb{R}$
- Height function $H=H_{N}: R \rightarrow \mathbb{Z}$ for uniformly random tiling $\mathcal{M}=\mathcal{M}_{N}$ of $R$


Cohn-Kenyon-Propp (2000): For any $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left[\max _{v \in R}\left|N^{-1} H_{N}(v)-\mathcal{H}\left(N^{-1} v\right)\right|>\delta\right]=0
$$

where $\mathcal{H}: \Re \rightarrow \mathbb{R}$ solves a variational principle (unique maximizer of $\int_{\mathfrak{R}} \sigma(\nabla \mathcal{H}(z)) d z$ ).

## Local Statistics Results

- Fix $\mathfrak{v} \in \mathfrak{R}$ such that $(s, t)=\nabla \mathcal{H}(\mathfrak{v})$ satisfies $s, t>0$ and $s+t<1$.
- Let $v=v_{N} \in R_{N}$ be such that $N^{-1} v \approx \mathfrak{v}$.


Sheffield (2003): There exists a unique infinite-volume, translation-invariant, extremal Gibbs measure of slope $(s, t)$, called $\mu_{s, t}$.

## Theorem (A., 2019)

As $N$ tends to $\infty$, the local statistics of $\mathcal{M}$ around $v$ are given by $\mu_{s, t}$.

- Predicted by Cohn-Kenyon-Propp (2000)
- Universality: Limiting local statistics around $v$ only depend on $\nabla \mathcal{H}(\mathfrak{p})$


## Previous Results

- Domains
- Kenyon (1997): Torus
- Okounkov-Reshetikhin (2001, 2005): $q$-Weighted (skew) plane partitions
- Baik-Kreicherbauer-McLaughlin-Miller (2007), Gorin (2007): Hexagons
- Petrov (2012): Trapezoids
- Gorin (2016): Domains "covered" by trapezoids
- Laslier (2017): Bounded perturbations of the above
- Many of these results are based on exact determinantal identities for correlation functions
- Kasteleyn (1961): (Inverse) Kasteleyn matrix
- Okounkov-Reshetikhin (2001): Schur processes
- Issues
- Inverse Kasteleyn matrix entries unstable under perturbations of $R$
- Schur processes only apply for specific domains


## Non-Intersecting Paths

- A path is a integer sequence $\mathbf{q}=(q(0), q(1), \ldots, q(t))$ such that $q(i+1)-q(i) \in\{0,1\}$ for each $i$.
- An ensemble $\mathbf{Q}=\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right)$ of paths is non-intersecting if $q_{1}(s)<q_{2}(s)<\cdots<q_{n}(s)$ for each $s$.

- Bijection between non-intersecting path ensembles and lozenge tilings


## Random Non-Intersecting Path Ensembles

- Fix initial data $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ and $\beta \in(0,1)$.
- Let $\mathbf{Q}=\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right)$ be an ensemble of $n$ Bernoulli random walks, with jump probability $\beta$, starting at $a_{1}, a_{2}, \ldots, a_{n}$ and conditioned to never intersect.
- Its probability distribution is given by

$$
\mathbb{P}_{\beta ; \mathbf{a}}[\mathbf{Q}]=\beta^{|\mathbf{q}(t)|-|\mathbf{a}|}(1-\beta)^{t n-|\mathbf{q}(t)|+|\mathbf{a}|} \prod_{1 \leq i<k \leq n} \frac{q_{k}(t)-q_{j}(t)}{a_{k}-a_{j}},
$$

if $\mathbf{Q}$ is non-intersecting and 0 otherwise, where $\mathbf{q}(t)=\left(q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right)$ and $|\mathbf{p}|=\sum_{p \in \mathbf{p}} p$.

- Conditional on the ending data $\mathbf{q}(t), \mathbf{Q}$ is uniform on all non-intersecting path ensembles connecting a to $\mathbf{q}(t)$.


## Universality Results for Non-Intersecting Random Walks

Gorin-Petrov (2016): The model $\mathbb{P}=\mathbb{P}_{\beta ; \mathbf{a}}$ is a determinantal point process.

- Explicit kernel amenable to analysis
- If the initial data is sufficiently regular, then universal local statistics appear after running $\mathbb{P}_{\beta}$ for short time
- Scales $1 \ll U \ll T \ll V \ll N$
- Initial data $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$, density $\rho \in(0,1)$, integer $x_{0} \in \mathbb{Z}$
- Assume $|I \cap \mathbf{a}| \approx \rho U$, for any interval $I \subset\left[x_{0}-V, x_{0}+V\right]$ of length $U$ Then the local statistics of the non-intersecting random walk model $\mathbb{P}_{\beta ; \mathbf{a}}$, run for time $T$, converge around site $x_{0}$ to some measure $\mu_{s, t}$



## Outline

- Tileable $R=R_{N} \approx N \Re \subset \mathbb{T}$
- Uniformly random tiling $\mathcal{M}=\mathcal{M}_{N}$ with associated height function $H: R \rightarrow \mathbb{Z}$
- Vertex $v=v_{N} \approx N \mathfrak{v}$ of $R$

We will locally compare $\mathcal{M}$ around $v$ with a $\mathbb{P}_{\beta ; \mathbf{a}}$ path ensemble.
(1) Local Law: Show $H$ is approximately planar (with slope $\nabla \mathcal{H}(\mathfrak{v})$ ) in small disks around $v$. This verifies the regularity of the initial data of the path ensemble to be coupled with $\mathcal{M}$.
(2) Comparison: Couple $\mathcal{M}$ with a random path ensemble $\mathbf{P}$ sampled under some $\mathbb{P}_{\beta ; \mathbf{a}}$, such that the two models likely coincide around $v$.
(3) Universality: Use results of Gorin-Petrov to show that the local statistics of $\mathbf{P}$ around $v$ are universal, and conclude that the same holds for $\mathcal{M}$.

- Reminiscent of Erdős-Yau "three-step strategy" in random matrix theory, but independent and with very different proofs
- Method potentially also applies to other tiling models (such as domino ones)


## The Local Law

- Assume $\mathfrak{R}=\mathcal{B}_{1}$ and $\mathcal{B}_{N} \subset R \subset \mathcal{B}_{N+2}$ (but no assumptions on $h$ )
- Global law $\mathcal{H}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ with $\nabla \mathcal{H}(\mathfrak{v})=(s, t)$
- Fix $0<\varepsilon<1$ and assume $\varepsilon<s, t<s+t<1-\varepsilon$


## Proposition (A., 2019)

There exists $C=C(\varepsilon)>1$ such that, for $c=\frac{1}{20000}$ and any $1 \leq M \leq \frac{N}{\log N}$,

$$
\begin{aligned}
\mathbb{P}\left[\max _{|u-v|<M}\left|M^{-1}(H(u)-H(v))-M^{-1}(u-v) \cdot \nabla \mathcal{H}(\mathfrak{v})\right|\right. & \left.>(\log M)^{-c}\right] \\
& <C M^{-100}
\end{aligned}
$$

Here, $M$ can be taken independently of $N$.

- If $M$ is close to $N$, then this analyzes global behavior
- If $M$ is close to 1 , this analyzes local behavior


## Outline of the Comparison

- Let $v=(x, y) \in R$.
- Fix an integer $1 \ll T \ll N \sim \operatorname{diam}(R)$.
- Define the vertex $u_{0}=v-(0, T)=\left(x_{0}, y_{0}-T\right) \in R$.
- Interpret $\mathcal{M}$ as an ensemble $\mathbf{Q}$ of non-intersecting paths, and let $\mathbf{q}$ denote the locations where these paths intersect the horizontal line $\left\{y=y_{0}-T\right\}$.
- Local law: Approximates density of $\mathbf{q}$ and drifts of paths in $\mathbf{Q}$



## Outline of the Comparison

- Introduce particle configurations $\mathbf{p}$ and $\mathbf{r}$ that coincide with $\mathbf{q}$ near $u_{0}$, but are to the left and right of $\mathbf{q}$, respectively, away from $u_{0}$.
- Define two random path ensembles $\mathbf{P} \sim \mathbb{P}_{\beta_{1} ; \mathbf{p}}$ and $\mathbf{R} \sim \mathbb{P}_{\beta_{2} ; \mathbf{r}}$
- Select $\beta_{1} \approx \beta_{2}$ such that $\beta_{1}<\beta_{2}$ and the drifts of the $\mathbf{P}$-paths are less than those of the $\mathbf{Q}$-paths, which are less than those of the $\mathbf{R}$-paths
- Show that there exists a coupling between $(\mathbf{P}, \mathbf{Q}, \mathbf{R})$ such that $\mathbf{Q}$ is likely bounded between $\mathbf{P}$ and $\mathbf{R}$.



## Outline of the Comparison

- Prove that the expected difference between the height functions for $\mathbf{P}$ and $\mathbf{R}$ tends to 0 in a large neighborhood of $u_{0}$ (containing $v$ ).
- Based on explicit identities from Gorin-Petrov and the facts that $\beta_{1} \approx \beta_{2}$, $\mathbf{p}_{1}=\mathbf{p}_{2}$ near $u$, and $\mathbf{p}_{1} \approx \mathbf{p}_{2}$ everywhere
- Using the ordering between $(\mathbf{P}, \mathbf{Q}, \mathbf{R})$ and a Markov bound, conclude that they can be coupled to coincide near $v$ with high probability.



## Local Law

- Assume $\mathfrak{R}=\mathcal{B}_{1}$ and $\mathcal{B}_{N} \subset R \subset \mathcal{B}_{N+2}$ (but no assumptions on $h$ )
- Solution $\mathcal{H}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ of variational principle, with boundary data approximately (within $O\left(N^{-1}\right)$ of) $N^{-1} h\left(N^{-1}.\right)$
- Set $\nabla \mathcal{H}(\mathfrak{v})=(s, t)$ and assume $\varepsilon<s, t<s+t<1-\varepsilon$


## Proposition (A., 2019)

There exists $C=C(\varepsilon)>1$ such that, for $c=\frac{1}{20000}$ and any $1 \leq M \leq \frac{N}{\log N}$,

$$
\begin{aligned}
\mathbb{P}\left[\max _{|u-v|<M}\left|M^{-1}(H(u)-H(v))-M^{-1}(u-v) \cdot \nabla \mathcal{H}(\mathfrak{v})\right|\right. & \left.>(\log M)^{-c}\right] \\
& <C M^{-100}
\end{aligned}
$$

Proof uses a multi-scale analysis with effective global laws for the height function of the tiling.

## Effective Global Laws

An effective global law is one of the form

$$
\mathbb{P}\left[\max _{v \in R_{N}}\left|N^{-1} H(v)-\mathcal{H}\left(N^{-1} v\right)\right|>\omega_{N}\right]<C N^{-100}
$$

for some explicit $\omega_{N}$ dependent on $N$.

- Cohn-Kenyon-Propp (2000): Can take $\omega_{N}=\delta>0$ independent of $N$
- On all known exactly solvable domains, one has $\varpi \ll N^{\delta-1}$, for any $\delta>0$
- Concentration estimates show

$$
\mathbb{P}\left[\max _{v \in R_{N}}\left|N^{-1} H(v)-N^{-1} \mathbb{E}[H(v)]\right|>N^{\delta-1 / 2}\right]<C N^{-100}
$$

but do not bound $\left|N^{-1} \mathbb{E}[H(v)]-\mathcal{H}\left(N^{-1} v\right)\right|$
Let us outline a proof of the local law assuming one has an effective local law with $\omega_{N}=(\log N)^{-1-c}$, for some $c>0$.

## Outline of the Local Law

- Original domain $R=R^{(0)} \approx \mathcal{B}_{N}$
- Random height function $H$ on $R$ with boundary data $h=h^{(0)}$
- Let $R^{(1)}=\mathcal{B}_{N / 2} \cap \mathbb{T}$ and $h^{(1)}=\left.H\right|_{\partial R^{(1)}}$

- Condition on the restriction of $H$ to $R^{(0)} \backslash R^{(1)}$
- The restriction of $H$ to $R^{(1)}$ is uniform over height functions with boundary data $h^{(1)}$


## Outline of the Local Law

Define solutions of variational principle

- Let $\mathcal{H}^{(0)}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ have boundary data approximately $N^{-1} h^{(0)}(N \cdot)$
- Let $\mathcal{F}^{(0)}: \mathcal{B}_{1 / 2} \rightarrow \mathbb{R}$ have boundary data approximately $N^{-1} h^{(1)}(N \cdot)$



## Outline of the Local Law



- By the assumed effective global law,

$$
\begin{aligned}
& \mathbb{P}\left[\max _{v \in \partial R^{(1)}}\left|N^{-1} h^{(1)}(v)-\mathcal{H}^{(0)}\left(N^{-1} v\right)\right|>(\log N)^{-1-c}\right]<C N^{-100} \\
& \mathbb{P}\left[\max _{v \in R^{(1)}}\left|N^{-1} H(v)-\mathcal{F}^{(0)}\left(N^{-1} v\right)\right|>2(\log N)^{-1-c}\right]<C N^{-100}
\end{aligned}
$$

## Outline of the Local Law

Rescale and repeatedly apply this procedure.

- Assume $N=N_{0}$ is a power of 2 , and set $N_{k}=\frac{N_{k-1}}{2}$ for each $k>1$
- Define $\mathcal{H}^{(k)}(z)=2 \mathcal{F}^{(k)}\left(\frac{z}{2}\right)$, which solves the variational principle on $\mathcal{B}_{1}$


We would like to show that $\mathcal{H}^{(k)}$ is approximately linear with slope $(s, t)$, for large $k$.

## Gradient Stability Estimate

To that end, we bound the change in gradient upon passing from $\mathcal{H}^{(0)}$ to $\mathcal{F}^{(0)}$.

- Assume $(s, t) \in[0,1]^{2}$ satisfies $\varepsilon<s, t<s+t<1-\varepsilon$.


## Lemma

There exist constants $C=C(\varepsilon)>1$ and $\delta=\delta(\varepsilon)>0$ such that the following holds. Suppose $\mathcal{H}_{1}, \mathcal{H}_{2}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ are solutions of the variational principle with boundary data $\mathfrak{h}_{1}, \mathfrak{h}_{2}: \partial \mathcal{B}_{1} \rightarrow \mathbb{R}$, respectively. If $\mathfrak{h}_{1}, \mathfrak{h}_{2}$ are within $\delta$ of a plane of slope $(s, t)$, then

$$
\sup _{z \in \mathcal{B}_{1 / 2}}\left|\nabla \mathcal{H}_{1}(z)-\nabla \mathcal{H}_{2}(z)\right|<C \sup _{z \in \mathcal{\mathcal { B } _ { 1 }}}\left|\mathfrak{h}_{1}(z)-\mathfrak{h}_{2}(z)\right| .
$$

Proof uses results of De Silva-Savin (2008) and known estimates on solutions of uniformly elliptic partial differential equations.

## Outline of the Local Law

- By the assumed effective global law,

$$
\begin{aligned}
& \mathbb{P}\left[\max _{v \in \partial R^{(1)}}\left|N^{-1} h^{(1)}(v)-\mathcal{H}^{(0)}\left(N^{-1} v\right)\right|>(\log N)^{-1-c}\right]<C N^{-100} \\
& \mathbb{P}\left[\max _{v \in R^{(1)}}\left|N^{-1} H(v)-\mathcal{F}^{(0)}\left(N^{-1} v\right)\right|>2(\log N)^{-1-c}\right]<C N^{-100}
\end{aligned}
$$

- Therefore by the maximum principle, with probability $1-2 C N^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 2}}\left|\mathcal{H}^{(0)}(z)-\mathcal{F}^{(0)}(z)\right|<3(\log N)^{-1-c}
$$

- Thus, the previous lemma gives, with probability $1-2 C N^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 4}}\left|\nabla \mathcal{H}^{(0)}(z)-\nabla \mathcal{F}^{(0)}(z)\right|<C(\log N)^{-1-c}
$$

- Since $\nabla \mathcal{H}^{(1)}\left(\frac{z}{2}\right)=\nabla \mathcal{F}^{(0)}(z)$ this implies, with probability $1-2 C N^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 2}}\left|\nabla \mathcal{H}^{(0)}\left(\frac{z}{2}\right)-\nabla \mathcal{H}^{(1)}(z)\right|<C(\log N)^{-1-c} .
$$

## Outline of the Local Law

- Recall $N$ is a power of 2 and $N_{k}=2^{-k} N$.
- With probability $1-C N^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 2}}\left|\nabla \mathcal{H}^{(0)}\left(\frac{z}{2}\right)-\nabla \mathcal{H}^{(1)}(z)\right|<C(\log N)^{-1-c}
$$

- More generally, with probability $1-C N_{k}^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 2}}\left|\nabla \mathcal{H}^{(k)}\left(\frac{z}{2}\right)-\nabla \mathcal{H}^{(k+1)}(z)\right|<C\left(\log N_{k}\right)^{-1-c}
$$

- Summing over $k \in[0, K-1]$ gives, with probability $1-C N_{K}^{-100}$,

$$
\sup _{z \in \partial \mathcal{B}_{1 / 2}}\left|\nabla \mathcal{H}^{(0)}\left(\frac{z}{2^{K+1}}\right)-\nabla \mathcal{H}^{(K+1)}(z)\right|<C\left(\log N_{K}\right)^{-c}
$$

- For $1 \ll M \ll \frac{N}{\log N}$ and $M \in\left[\frac{N}{2^{K+1}}, \frac{N}{2^{K}}\right)$, we have $\nabla \mathcal{H}^{(0)}\left(\frac{z}{2^{K+1}}\right) \approx(s, t)$.
- Thus, $\mathcal{H}^{(K+1)}$ is approximately a plane of slope $(s, t)$.
- So, on scale $M$, we have $H \approx \mathcal{H}^{(K+1)}$ is nearly planar with slope $(s, t)$.


## Improved Effective Global Law Without Facets

- Issue: We can only prove an effective global law for fully general boundary data when $\omega=(\log N)^{-c}$.
- However, for boundary data giving rise to a limit shape with no frozen facets, we have an improved global law.
- Integer $N>0$, real number $\varepsilon>0$, and domain $R \approx \mathcal{B}_{N}$
- Solution $\mathcal{G}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ of the variational principle with boundary data $\mathfrak{g}: \partial \mathcal{B}_{1} \rightarrow \mathbb{R}$
- Random height function $H: R_{N} \rightarrow \mathbb{Z}$ with boundary data $h: \partial R_{N} \rightarrow \mathbb{Z}$


## Definition

We say that $(h, g)$ is $\lambda$-confined if the following holds.

- For each $z \in \partial R$, we have $\mathfrak{g}(z)<N^{-1} h(z)<g(z)+\lambda$.
- For each $z \in \mathcal{B}_{1}, \nabla \mathcal{G}(z)=\left(s_{z}, t_{z}\right)$ satisfies $\varepsilon<s_{z}, t_{z}<s_{z}+t_{z}<1-\varepsilon$.


## Improved Effective Global Law

- Integer $N>0$, real number $\varepsilon>0$, and domain $R \approx \mathcal{B}_{N}$
- Solution $\mathcal{G}: \mathcal{B}_{1} \rightarrow \mathbb{R}$ of the variational principle with boundary data $\mathfrak{g}: \partial \mathcal{B}_{1} \rightarrow \mathbb{R}$
- Random height function $H: R_{N} \rightarrow \mathbb{Z}$ with boundary data $h: \partial R_{N} \rightarrow \mathbb{Z}$


## Lemma

Assume $(h, g)$ is $\lambda$-confined. Then, for small $c>0$ and large $C=C(\varepsilon)>1$,

$$
\mathbb{P}\left[\sup _{v \in R}\left|N^{-1} H(v)-\mathcal{G}\left(N^{-1} v\right)\right|>\lambda+N^{-c}\right]<C N^{-100}
$$

- Proof closely follows work of Laslier-Toninelli (2013) and is based on local comparison to hexagons, analyzed by Petrov (2012)
- For $\lambda \sim(\log N)^{-1-c}$, provides an effective global law with $\omega_{N} \sim(\log N)^{-1-c}$ To establish the local law, show upon reducing scales that the confinement property is retained and apply this improved global law.

