Universality for Lozenge Tiling Local Statistics

Amol Aggarwal

Harvard University

November 19, 2019

• • = • • = •

Lozenge Tilings

• Consider uniformly random tilings of large, finite subdomains R of the triangular lattice \mathbb{T} using three types of **lozenges**.

Results

Random Tilings

Lozenge Tilings of Different Domains

Height Functions

• Associated with any tiling of $R \subset \mathbb{T}$ is a height function.

• Boundary height function: Restriction of this height function to ∂R (independent of the tiling, up to shifts).

イロト イロト イヨト イヨト

Local Statistics of Lozenge Tilings

- Consider a uniformly random tiling of a domain $R \subset \mathbb{T}$.
- Fix a vertex $v \in R$ and consider an O(1)-neighborhood of v.

O(1) Neighborhood

• Local statistics: Random tiling on this O(1)-neighborhood.

Question (Kasteleyn, 1961)

How do the local statistics around v depend on R?

Global Law

- Fix simply-connected macroscopic domain \Re with piecewise smooth boundary
- Let $N \in \mathbb{Z}_{>0}$ be large and $R = R_N \subset \mathbb{T}$ be simply-connected and tileable
- Boundary height function $h = h_N : \partial R \to \mathbb{Z}$ associated with tiling of *R*
- Assume $N^{-1}R \approx \mathfrak{R}$ and $N^{-1}h(N \cdot) \approx \mathfrak{h}$ for some $\mathfrak{h} : \partial \mathfrak{R} \to \mathbb{R}$
- Height function $H = H_N : R \to \mathbb{Z}$ for uniformly random tiling $\mathcal{M} = \mathcal{M}_N$ of R

Cohn–Kenyon–Propp (2000): For any $\delta > 0$,

$$\lim_{N\to\infty}\mathbb{P}\left[\max_{v\in R}\left|N^{-1}H_N(v)-\mathcal{H}(N^{-1}v)\right|>\delta\right]=0,$$

where $\mathcal{H} : \mathfrak{R} \to \mathbb{R}$ solves a variational principle (unique maximizer of $\int_{\mathfrak{R}} \sigma(\nabla \mathcal{H}(z)) dz$).

Global Law

Local Statistics Results

• Fix $v \in \mathfrak{R}$ such that $(s, t) = \nabla \mathcal{H}(v)$ satisfies s, t > 0 and s + t < 1.

Sheffield (2003): There exists a **unique infinite-volume, translation-invariant,** extremal Gibbs measure of slope (s, t), called $\mu_{s,t}$.

Theorem (A., 2019)

As N tends to ∞ , the local statistics of \mathfrak{M} around v are given by $\mu_{s,t}$.

- Predicted by Cohn–Kenyon–Propp (2000)
- Universality: Limiting local statistics around v only depend on $\nabla \mathcal{H}(\mathfrak{p})$

Global Law

Previous Results

- Domains
 - Kenyon (1997): Torus
 - Okounkov–Reshetikhin (2001, 2005): *q*-Weighted (skew) plane partitions
 - Baik-Kreicherbauer-McLaughlin-Miller (2007), Gorin (2007): Hexagons
 - Petrov (2012): Trapezoids
 - Gorin (2016): Domains "covered" by trapezoids
 - Laslier (2017): Bounded perturbations of the above
- Many of these results are based on exact determinantal identities for correlation functions
 - Kasteleyn (1961): (Inverse) Kasteleyn matrix
 - Okounkov–Reshetikhin (2001): Schur processes
- Issues
 - Inverse Kasteleyn matrix entries unstable under perturbations of R
 - Schur processes only apply for specific domains

Non-Intersecting Paths

- A path is a integer sequence $\mathbf{q} = (q(0), q(1), \dots, q(t))$ such that $q(i+1) q(i) \in \{0, 1\}$ for each *i*.
- An ensemble $\mathbf{Q} = (\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n)$ of paths is **non-intersecting** if $q_1(s) < q_2(s) < \dots < q_n(s)$ for each *s*.

• Bijection between non-intersecting path ensembles and lozenge tilings

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Random Non-Intersecting Path Ensembles

- Fix initial data $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{Z}^n$ and $\beta \in (0, 1)$.
- Let $\mathbf{Q} = (\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n)$ be an ensemble of *n* Bernoulli random walks, with jump probability β , starting at a_1, a_2, \dots, a_n and conditioned to never intersect.
- Its probability distribution is given by

$$\mathbb{P}_{\beta;\mathbf{a}}[\mathbf{Q}] = \beta^{|\mathbf{q}(t)| - |\mathbf{a}|} (1 - \beta)^{m - |\mathbf{q}(t)| + |\mathbf{a}|} \prod_{1 \le j < k \le n} \frac{q_k(t) - q_j(t)}{a_k - a_j},$$

if **Q** is non-intersecting and 0 otherwise, where $\mathbf{q}(t) = (q_1(t), q_2(t), \dots, q_n(t))$ and $|\mathbf{p}| = \sum_{p \in \mathbf{p}} p$.

• Conditional on the ending data **q**(*t*), **Q** is uniform on all non-intersecting path ensembles connecting **a** to **q**(*t*).

Universality Results for Non-Intersecting Random Walks

Gorin–Petrov (2016): The model $\mathbb{P} = \mathbb{P}_{\beta;\mathbf{a}}$ is a determinantal point process.

- Explicit kernel amenable to analysis
- If the initial data is sufficiently **regular**, then universal local statistics appear after running \mathbb{P}_{β} for **short time**
 - Scales $1 \ll U \ll T \ll V \ll N$
 - Initial data $\mathbf{a} = (a_1, a_2, \dots, a_N)$, density $\rho \in (0, 1)$, integer $x_0 \in \mathbb{Z}$
 - Assume $|I \cap \mathbf{a}| \approx \rho U$, for any interval $I \subset [x_0 V, x_0 + V]$ of length U

Then the local statistics of the non-intersecting random walk model $\mathbb{P}_{\beta;\mathbf{a}}$, run for time *T*, converge around site x_0 to some measure $\mu_{s,t}$

Outline

- Tileable $R = R_N \approx N \mathfrak{R} \subset \mathbb{T}$
- Uniformly random tiling $\mathcal{M} = \mathcal{M}_N$ with associated height function $H : R \to \mathbb{Z}$
- Vertex $v = v_N \approx N \mathfrak{v}$ of R

We will locally compare \mathcal{M} around v with a $\mathbb{P}_{\beta;\mathbf{a}}$ path ensemble.

- Local Law: Show *H* is *approximately planar* (with slope $\nabla \mathcal{H}(\mathfrak{v})$) in small disks around *v*. This *verifies the regularity of the initial data* of the path ensemble to be coupled with \mathcal{M} .
- Comparison: Couple M with a random path ensemble P sampled under some P_{β;a}, such that *the two models likely coincide around v*.
- Universality: Use results of Gorin–Petrov to show that the local statistics of P around v are universal, and *conclude that the same holds for* M.
 - Reminiscent of Erdős-Yau "three-step strategy" in random matrix theory, but independent and with very different proofs
 - Method potentially also applies to other tiling models (such as domino ones)

Proof Outline

The Local Law

- Assume $\mathfrak{R} = \mathcal{B}_1$ and $\mathcal{B}_N \subset R \subset \mathcal{B}_{N+2}$ (but no assumptions on *h*)
- Global law $\mathcal{H} : \mathcal{B}_1 \to \mathbb{R}$ with $\nabla \mathcal{H}(\mathfrak{v}) = (s, t)$
- Fix $0 < \varepsilon < 1$ and assume $\varepsilon < s, t < s + t < 1 \varepsilon$

Proposition (A., 2019)

There exists
$$C = C(\varepsilon) > 1$$
 such that, for $c = \frac{1}{20000}$ and any $1 \le M \le \frac{N}{\log N}$,

$$\mathbb{P}\left[\max_{|u-v| < M} \left| M^{-1} (H(u) - H(v)) - M^{-1} (u-v) \cdot \nabla \mathcal{H}(v) \right| > (\log M)^{-c} \right]$$

$$< CM^{-100}.$$

Here, *M* can be taken **independently of** *N*.

- If *M* is close to *N*, then this analyzes global behavior
- If *M* is close to 1, this analyzes local behavior

イロト 不得 とくほ とくほ とうほ

Outline of the Comparison

- Let $v = (x, y) \in R$.
- Fix an integer $1 \ll T \ll N \sim \operatorname{diam}(R)$.
- Define the vertex $u_0 = v (0, T) = (x_0, y_0 T) \in R$.
- Interpret M as an ensemble Q of non-intersecting paths, and let q denote the locations where these paths intersect the horizontal line {y = y₀ − T}.
- Local law: Approximates density of **q** and drifts of paths in **Q**

Comparison

Outline of the Comparison

- Introduce particle configurations \mathbf{p} and \mathbf{r} that coincide with \mathbf{q} near u_0 , but are to the left and right of \mathbf{q} , respectively, away from u_0 .
- Define two random path ensembles $\mathbf{P} \sim \mathbb{P}_{\beta_1;\mathbf{p}}$ and $\mathbf{R} \sim \mathbb{P}_{\beta_2;\mathbf{r}}$
 - Select β₁ ≈ β₂ such that β₁ < β₂ and the drifts of the P-paths are less than those of the Q-paths, which are less than those of the R-paths
- Show that there exists a coupling between (**P**, **Q**, **R**) such that **Q** is likely bounded between **P** and **R**.

Comparison

Outline of the Comparison

- Prove that the expected difference between the height functions for P and R tends to 0 in a large neighborhood of u₀ (containing v).
 - Based on explicit identities from Gorin–Petrov and the facts that $\beta_1 \approx \beta_2$, $\mathbf{p}_1 = \mathbf{p}_2$ near u, and $\mathbf{p}_1 \approx \mathbf{p}_2$ everywhere
- Using the ordering between (**P**, **Q**, **R**) and a Markov bound, conclude that they can be coupled to coincide near *v* with high probability.

- Assume $\mathfrak{R} = \mathcal{B}_1$ and $\mathcal{B}_N \subset R \subset \mathcal{B}_{N+2}$ (but no assumptions on *h*)
- Solution $\mathcal{H}: \mathcal{B}_1 \to \mathbb{R}$ of variational principle, with boundary data approximately (within $O(N^{-1})$ of) $N^{-1}h(N^{-1}\cdot)$
- Set $\nabla \mathcal{H}(\mathfrak{v}) = (s, t)$ and assume $\varepsilon < s, t < s + t < 1 \varepsilon$

Proposition (A., 2019)

There exists $C = C(\varepsilon) > 1$ *such that, for* $c = \frac{1}{20000}$ *and any* $1 \le M \le \frac{N}{\log N}$ *,*

$$\mathbb{P}\left[\max_{|u-v| < M} \left| M^{-1} \left(H(u) - H(v) \right) - M^{-1} (u-v) \cdot \nabla \mathcal{H}(\mathfrak{v}) \right| > (\log M)^{-c} \right] < CM^{-100}.$$

Proof uses a **multi-scale analysis** with **effective global laws** for the height function of the tiling.

Effective Global Laws

An effective global law is one of the form

$$\mathbb{P}\bigg[\max_{v\in R_N} |N^{-1}H(v) - \mathcal{H}(N^{-1}v)| > \omega_N\bigg] < CN^{-100},$$

for some explicit ω_N dependent on N.

- Cohn–Kenyon–Propp (2000): Can take $\omega_N = \delta > 0$ independent of N
- On all known exactly solvable domains, one has $\varpi \ll N^{\delta-1}$, for any $\delta > 0$
- Concentration estimates show

$$\mathbb{P}\left[\max_{v\in R_N} \left| N^{-1}H(v) - N^{-1}\mathbb{E}\left[H(v)\right] \right| > N^{\delta-1/2}\right] < CN^{-100},$$

but do not bound $|N^{-1}\mathbb{E}[H(v)] - \mathcal{H}(N^{-1}v)|$

Let us outline a proof of the local law assuming one has an effective local law with $\omega_N = (\log N)^{-1-c}$, for some c > 0.

Outline of the Local Law

- Original domain $R = R^{(0)} \approx \mathcal{B}_N$
- Random height function *H* on *R* with boundary data $h = h^{(0)}$
- Let $R^{(1)} = \mathcal{B}_{N/2} \cap \mathbb{T}$ and $h^{(1)} = H|_{\partial R^{(1)}}$

- Condition on the restriction of H to $\mathbb{R}^{(0)} \setminus \mathbb{R}^{(1)}$
- The restriction of *H* to $R^{(1)}$ is uniform over height functions with boundary data $h^{(1)}$

Outline of the Local Law

Define solutions of variational principle

- Let $\mathcal{H}^{(0)}: \mathcal{B}_1 \to \mathbb{R}$ have boundary data approximately $N^{-1}h^{(0)}(N \cdot)$
- Let $\mathcal{F}^{(0)}: \mathcal{B}_{1/2} \to \mathbb{R}$ have boundary data approximately $N^{-1}h^{(1)}(N \cdot)$

Outline of the Local Law

• By the assumed effective global law,

$$\mathbb{P}\bigg[\max_{v \in \partial R^{(1)}} |N^{-1}h^{(1)}(v) - \mathcal{H}^{(0)}(N^{-1}v)| > (\log N)^{-1-c}\bigg] < CN^{-100};$$

$$\mathbb{P}\bigg[\max_{v \in R^{(1)}} |N^{-1}H(v) - \mathcal{F}^{(0)}(N^{-1}v)| > 2(\log N)^{-1-c}\bigg] < CN^{-100}.$$

Outline of the Local Law

Rescale and repeatedly apply this procedure.

- Assume $N = N_0$ is a power of 2, and set $N_k = \frac{N_{k-1}}{2}$ for each k > 1
- Define $\mathcal{H}^{(k)}(z) = 2\mathcal{F}^{(k)}(\frac{z}{2})$, which solves the variational principle on \mathcal{B}_1

We would like to show that $\mathcal{H}^{(k)}$ is approximately linear with slope (s, t), for large k. ・ロト ・四ト ・ヨト ・ヨト

Gradient Stability Estimate

To that end, we bound the change in gradient upon passing from $\mathcal{H}^{(0)}$ to $\mathcal{F}^{(0)}$.

• Assume $(s, t) \in [0, 1]^2$ satisfies $\varepsilon < s, t < s + t < 1 - \varepsilon$.

Lemma

There exist constants $C = C(\varepsilon) > 1$ and $\delta = \delta(\varepsilon) > 0$ such that the following holds. Suppose $\mathcal{H}_1, \mathcal{H}_2 : \mathcal{B}_1 \to \mathbb{R}$ are solutions of the variational principle with boundary data $\mathfrak{h}_1, \mathfrak{h}_2 : \partial \mathcal{B}_1 \to \mathbb{R}$, respectively. If $\mathfrak{h}_1, \mathfrak{h}_2$ are within δ of a plane of slope (s, t), then

$$\sup_{z\in\mathcal{B}_{1/2}} \left|\nabla\mathcal{H}_1(z) - \nabla\mathcal{H}_2(z)\right| < C \sup_{z\in\partial\mathcal{B}_1} \left|\mathfrak{h}_1(z) - \mathfrak{h}_2(z)\right|.$$

Proof uses results of De Silva–Savin (2008) and known estimates on solutions of uniformly elliptic partial differential equations.

イロト 不得 とくき とくき とうき

Outline of the Local Law

• By the assumed effective global law,

$$\mathbb{P}\bigg[\max_{v\in\partial R^{(1)}} \left|N^{-1}h^{(1)}(v) - \mathcal{H}^{(0)}(N^{-1}v)\right| > (\log N)^{-1-c}\bigg] < CN^{-100};$$

$$\mathbb{P}\bigg[\max_{v\in R^{(1)}} \left|N^{-1}H(v) - \mathcal{F}^{(0)}(N^{-1}v)\right| > 2(\log N)^{-1-c}\bigg] < CN^{-100}.$$

- Therefore by the maximum principle, with probability $1 2CN^{-100}$, $\sup_{z \in \partial \mathcal{B}_{1/2}} \left| \mathcal{H}^{(0)}(z) - \mathcal{F}^{(0)}(z) \right| < 3(\log N)^{-1-c}.$
- Thus, the previous lemma gives, with probability $1 2CN^{-100}$,

$$\sup_{z \in \partial \mathcal{B}_{1/4}} \left| \nabla \mathcal{H}^{(0)}(z) - \nabla \mathcal{F}^{(0)}(z) \right| < C (\log N)^{-1-c}$$

• Since $\nabla \mathcal{H}^{(1)}(\frac{z}{2}) = \nabla \mathcal{F}^{(0)}(z)$ this implies, with probability $1 - 2CN^{-100}$,

$$\sup_{z \in \partial \mathcal{B}_{1/2}} \left| \nabla \mathcal{H}^{(0)}\left(\frac{z}{2}\right) - \nabla \mathcal{H}^{(1)}(z) \right| < C(\log N)^{-1-c}.$$

Outline of the Local Law

- Recall *N* is a power of 2 and $N_k = 2^{-k}N$.
- With probability $1 CN^{-100}$,

$$\sup_{\varepsilon \in \partial \mathcal{B}_{1/2}} \left| \nabla \mathcal{H}^{(0)}\left(\frac{z}{2}\right) - \nabla \mathcal{H}^{(1)}(z) \right| < C(\log N)^{-1-c}.$$

• More generally, with probability $1 - CN_k^{-100}$,

$$\sup_{z \in \partial \mathcal{B}_{1/2}} \left| \nabla \mathcal{H}^{(k)} \left(\frac{z}{2} \right) - \nabla \mathcal{H}^{(k+1)}(z) \right| < C (\log N_k)^{-1-c}$$

• Summing over $k \in [0, K - 1]$ gives, with probability $1 - CN_{\kappa}^{-100}$,

$$\sup_{z\in\partial\mathcal{B}_{1/2}}\left|\nabla\mathcal{H}^{(0)}\left(\frac{z}{2^{K+1}}\right)-\nabla\mathcal{H}^{(K+1)}(z)\right|< C(\log N_K)^{-c}.$$

• For $1 \ll M \ll \frac{N}{\log N}$ and $M \in \left[\frac{N}{2K+1}, \frac{N}{2K}\right]$, we have $\nabla \mathcal{H}^{(0)}\left(\frac{z}{2K+1}\right) \approx (s, t)$.

- Thus, $\mathcal{H}^{(K+1)}$ is approximately a plane of slope (s, t).
- So, on scale M, we have $H \approx \mathcal{H}^{(K+1)}$ is nearly planar with slope (s, t).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Improved Effective Global Law Without Facets

- Issue: We can only prove an effective global law for fully general boundary data when $\omega = (\log N)^{-c}$.
- However, for boundary data giving rise to a limit shape with **no frozen facets**, we have an **improved global law**.
- Integer N > 0, real number $\varepsilon > 0$, and domain $R \approx \mathcal{B}_N$
- Solution G : B₁ → ℝ of the variational principle with boundary data g : ∂B₁ → ℝ
- Random height function $H : R_N \to \mathbb{Z}$ with boundary data $h : \partial R_N \to \mathbb{Z}$

Definition

We say that (h, g) is λ -confined if the following holds.

- For each $z \in \partial R$, we have $\mathfrak{g}(z) < N^{-1}h(z) < g(z) + \lambda$.
- For each $z \in \mathcal{B}_1$, $\nabla \mathcal{G}(z) = (s_z, t_z)$ satisfies $\varepsilon < s_z, t_z < s_z + t_z < 1 \varepsilon$.

Improved Effective Global Law

- Integer N > 0, real number $\varepsilon > 0$, and domain $R \approx \mathcal{B}_N$
- Solution $\mathcal{G}: \mathcal{B}_1 \to \mathbb{R}$ of the variational principle with boundary data $\mathfrak{g}: \partial \mathcal{B}_1 \to \mathbb{R}$ ۰
- Random height function $H : R_N \to \mathbb{Z}$ with boundary data $h : \partial R_N \to \mathbb{Z}$ ۲

Lemma

Assume (h, g) is λ -confined. Then, for small c > 0 and large $C = C(\varepsilon) > 1$,

$$\mathbb{P}\left[\sup_{v \in R} \left| N^{-1} H(v) - \mathcal{G}(N^{-1}v) \right| > \lambda + N^{-c} \right] < C N^{-100}.$$

- Proof closely follows work of Laslier–Toninelli (2013) and is based on local comparison to hexagons, analyzed by Petrov (2012)
- For $\lambda \sim (\log N)^{-1-c}$, provides an effective global law with $\omega_N \sim (\log N)^{-1-c}$

To establish the local law, show upon reducing scales that the **confinement** property is retained and apply this improved global law.