Banff, November 18-22, 2019

Time-time correlation for the South polar region of the Aztec diamond

Patrik L. Ferrari
arXiv:1602.00486 with H. Spohn
arXiv:1807.02982 with A. Occelli

http://wt.iam.uni-bonn.de/ferrari

The Aztec diamond

An Aztec diamond of size $N=10$
Figure by Sunil Chhita

The Aztec diamond

An Aztec diamond of size $N=200$
Figure by Sunil Chhita

The border of the random region, as the size $N \rightarrow \infty$:

- has a circular limit shape

Jockush, Propp, Shor'98

- the border of red frozen region has fluctuations $\mathcal{O}\left(N^{1 / 3}\right)$ and (GUE) Tracy-Widom distributed
- As a process, it converges to the Airy ${ }_{2}$ process on the $\left(N^{2 / 3}, N^{1 / 3}\right)$ scale

An Aztec diamond of size $N=10$
Figure by Sunil Chhita

Lines of an Aztec diamond of size $N=10$

Figure by Sunil Chhita

Lines of an Aztec diamond of size $N=200$
Figure by Sunil Chhita

- Let $x \mapsto h(x, N)$ be the bottom curve of the Aztec diamond of size N (the origin is the south corner of the Aztec diamond).
- The rescaled height function is given by

$$
h_{N}^{\mathrm{resc}}(u)=\frac{h\left(2^{-1 / 6} u N^{2 / 3}, N\right)-N(1-1 / \sqrt{2})}{-2^{-5 / 6} N^{1 / 3}}
$$

- Asymptotic results:

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(h_{N}^{\mathrm{resc}} \leq s\right)=F_{\mathrm{GUE}}(s)
$$

with $F_{\text {GUE }}$ the (GUE) Tracy-Widom distribution and

$$
\lim _{N \rightarrow \infty} h_{N}^{\mathrm{resc}}=\mathcal{A}_{2}(u)-u^{2}
$$

with \mathcal{A}_{2} the Airy $_{2}$ process.

- For the uniform measure, an Aztec diamond of size N can be obtained from the one of size $N-1$ by the well-known shuffling algorithm

Elkies, Kuperbert, Larsen, Propp'92

- This gives a discrete time Markov chain
- TASEP: Totally Asymmetric Simple Exclusion Process
- Configurations

$$
\eta=\left\{\eta_{j}\right\}_{j \in \mathbb{Z}}, \eta_{j}= \begin{cases}1, & \text { if } j \text { is occupied } \\ 0, & \text { if } j \text { is empty }\end{cases}
$$

- Dynamics: discrete time parallel update Select all particles whose right neighboring site is empty. Independently move them by one to the right with probability $1 / 2$.

\Rightarrow Particles are ordered: position of particle k is $x^{k}(N)$
- Step initial condition is $x^{k}(0)=-k, k \geq 1$.
- Height function $h^{\text {TASEP }}(x, N)$ with $h^{\text {TASEP }}(x, 0)=|x|$.

\Rightarrow Particles are ordered: position of particle k is $x^{k}(N)$
- Step initial condition is $x^{k}(0)=-k, k \geq 1$.
- Height function $h^{\text {TASEP }}(x, N)$ with $h^{\text {TASEP }}(x, 0)=|x|$.

\Rightarrow Particles are ordered: position of particle k is $x^{k}(N)$
- Step initial condition is $x^{k}(0)=-k, k \geq 1$.
- Height function $h^{\text {TASEP }}(x, N)$ with $h^{\text {TASEP }}(x, 0)=|x|$.

\Rightarrow Particles are ordered: position of particle k is $x^{k}(N)$
- Step initial condition is $x^{k}(0)=-k, k \geq 1$.
- Height function $h^{\text {TASEP }}(x, N)$ with $h^{\text {TASEP }}(x, 0)=|x|$.

- The Aztec height function and the discrete time TASEP height function are the same object:

$$
h^{\mathrm{TASEP}}(x, N)=h(x, N)
$$

also as process in time.

- The distribution of $h(x, N)$ can be also written in terms of a last passage percolation with geometric weights.
- Spatial correlations are governed by the Airy 2 process. Q: What can one say about space-time correlations of the height function?

The Kardar-Parisi-Zhang universality class

- Surface described by a height function $h(x, t), x \in \mathbb{R}$ the space, $t \in \mathbb{R}$ the time. Set wlog $h(0,0)=0$.

- Models with local growth + smoothing mechanism
\Rightarrow macroscopic growth velocity v is a function of the slope only:

$$
\partial_{t} h=v(\nabla h)
$$

In terms of $\rho=\nabla h$ we have the PDE

$$
\partial_{t} \rho-\nabla(v(\rho))=0
$$

- KPZ class $\leftrightarrow v^{\prime \prime}(\nabla h) \neq 0$.
- Limit shape:

$$
h_{\mathrm{macro}}(v):=\lim _{t \rightarrow \infty} \frac{h(v t, t)}{t}
$$

- Fluctuation exponent: $1 / 3$
- Spatial correlation exponent: $2 / 3$

- If $\{(x=v t, t), t \geq 0\}$ is a characteristic line of

$$
\partial_{t} \rho-\nabla(v(\rho))=0
$$

\Rightarrow Rescaled height function around macroscopic position v,

$$
h_{t}^{\mathrm{resc}}(\xi)=\frac{h\left(v t+\xi t^{2 / 3}, t\right)-t h_{\mathrm{macro}}\left(v+\xi t^{-1 / 3}\right)}{t^{1 / 3}}
$$

Limit processes at fixed time

$$
h_{t}^{\mathrm{resc}}(\xi)=\frac{h\left(v t+\xi t^{2 / 3}, t\right)-t h_{\text {macro }}\left(v+\xi t^{-1 / 3}\right)}{t^{1 / 3}}
$$

- Universality conjecture: take a v such that $\frac{d}{d v} h_{\text {macro }}(v)$ exists. Then

$$
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(\xi)=\kappa_{v} \mathcal{A}\left(\xi / \kappa_{h}\right)
$$

with κ_{v}, κ_{h} model-dependent coefficients (depending on v)

- The limit process \mathcal{A} still depends on subclasses of initial conditions/boundary conditions

Analysis of exactly solvable models gives

- curved limit shape

$$
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(\xi)=\kappa_{v} \mathcal{A}_{2}\left(\xi / \kappa_{h}\right)
$$

with \mathcal{A}_{2} the Airy $_{2}$ process.

- flat limit shape with non-random initial condition

$$
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(\xi)=\kappa_{v} \mathcal{A}_{1}\left(\xi / \kappa_{h}\right)
$$

with \mathcal{A}_{1} the Airy $_{1}$ process.
Borodin, Ferrari, Johansson, Prähofer, Sasamoto, Spohn'03-07

Universality in one dimension: properties

One-point distribution

- $\mathbb{P}\left(\mathcal{A}_{2}(\xi) \leq s\right)=F_{\text {GUE }}(s)$
- $\mathbb{P}\left(\mathcal{A}_{1}(\xi) \leq s\right)=F_{\mathrm{GOE}}(2 s)$
are called the GUE/GOE Tracy-Widom distribution functions, discovered in random matrix theory

Tracy,Widom'94-'96

Beyond spatial correlations: space-time scaling

- Set $\mathcal{L}=\{i+j=0\}$ (or $\mathcal{L}=\{(0,0)\}$) and end-point \mathcal{E}
- $\left\{\omega_{i, j}\right\}_{(i, j)>\mathcal{L}}$ iid. $\exp (1)$ random variables
- On \mathcal{L} we can add some random variables (initial condition)
- Directed path π composed of \rightarrow and \uparrow s.t. $\pi(0) \in \mathcal{L}$ and $\pi(n) \in \mathcal{E}$
- Last passage time $L_{\mathcal{L} \rightarrow \mathcal{E}}=\max _{\substack{\pi: A \rightarrow E \\ A \in \mathcal{L}, E \in \mathcal{E}}} \sum_{0 \leq k \leq n} \omega_{\pi(k)}$

- Illustration for $\mathcal{L}=\{(0,0)\}$.

One can define the height function at time t by

$$
x \mapsto h(x, t):=L_{\mathcal{L} \rightarrow(t+1+x) / 2,(t+1-x) / 2}
$$

- This corresponds to the dynamics defined by
$h(x, t+1)=\max \{h(x-1, t), h(x, t), h(x+1, t)\}+w(x, t)$
with $w(x, t)=\omega((t+1+x) / 2,(t+1-x) / 2)$.
- Cut at $i+j=t$: height function at fixed time t
- Cut at $i=j$, i.e., $x=0$ is a characteristic direction

Figure by Michael Prähofer

Different space-time cuts

21

Aztec KPZ class Time correlations

Different space-time cuts

21

[^0]Height function not along a characteristic line vs.

Height function along a characteristic line

- Spatial correlation length is $\mathcal{O}\left(t^{2 / 3}\right)$
- For space-time points on a characteristic line: non-trivial correlations over macroscopic scale, i.e. $\mathcal{O}(t)$

Ferrari'08; Corwin, Ferrari, Péché'10

Characteristic lines for the point-to-line(s) (left) and for point-to-point (right)

Beyond spatial correlations: results

- The initial height function is h_{0} on \mathcal{L}
- Point-to-point: $L^{\bullet}(m, n) \quad \mathcal{L}=\{(0,0)\} \quad h_{0}=0$
- Point-to-line (flat IC): $L^{\backslash}(m, n) \quad \mathcal{L}=\{i+j=0\} \quad h_{0}=0$
- The initial height function is h_{0} on \mathcal{L}
- Point-to-point: $L^{\bullet}(m, n) \quad \mathcal{L}=\{(0,0)\} \quad h_{0}=0$
- Point-to-line (flat IC): $L \backslash(m, n) \quad \mathcal{L}=\{i+j=0\} \quad h_{0}=0$
- Point-to-random line (random IC): $L^{\sigma}(m, n)$

$$
\mathcal{L}=\{i+j=0\}
$$

$$
h_{0}(x,-x)=\sigma \begin{cases}\sum_{k=1}^{x}\left(X_{k}-Y_{k}\right) & x \geq 1 \\ 0 & x=0 \\ -\sum_{k=x+1}^{0}\left(X_{k}-Y_{k}\right) & x \leq-1\end{cases}
$$

$$
\left\{X_{k}, Y_{k}\right\}_{k \in \mathbb{Z}} \text { i. i. d. } \operatorname{Exp}(1 / 2)
$$

- $\sigma=0$ is the flat IC, $\sigma=1$ is the stationary IC.
- For the mentioned cases $\{(0, t), t \geq 0\}$ is a characteristic line
- We are interested in the limit process

$$
(u, \tau) \mapsto \mathcal{X}^{\star}(u, \tau)=\lim _{t \rightarrow \infty} \frac{L^{\star}\left(\tau t+u(2 t)^{2 / 3}, \tau t-u(2 t)^{1 / 3}\right)-4 \tau t}{2^{4 / 3} t^{1 / 3}}
$$

- Fixed time known results: $\mathcal{A}^{\star}(u)=\mathcal{X}^{\star}(u, 1)$
- $\mathcal{A}^{\bullet}(u)=\mathcal{A}_{2}(u)-u^{2}$

Prähofer, Spohn'02

- $\mathcal{A} \backslash(u)=\mathcal{A}_{1}(u)$

Sasamoto'05

- $\mathcal{A}^{\sigma=1}(u)=\mathcal{A}_{\text {stat }}(u) \quad$ Baik, Ferrari, Péché'09
- $\mathcal{A}^{\sigma}(0)=\max _{v \in \mathbb{R}}\left\{\sqrt{2} \sigma B(v)+\mathcal{A}_{2}(v)-v^{2}\right\}$

Chhita, Ferrari, Spohn'17

- $\xi_{\mathrm{BR}}=\mathcal{A}^{\sigma=1}(0)=\max _{v \in \mathbb{R}}\left\{\sqrt{2} B(v)+\mathcal{A}_{2}(v)-v^{2}\right\}$, with ξ_{BR} the Baik-Rains distribution function

Baik,Rains'00

- Restrict here to $u=0$ (for the talk only). The rescaled process is

$$
\tau \mapsto \mathcal{X}^{\star}(\tau)=\lim _{t \rightarrow \infty} \frac{L^{\star}(\tau t, \tau t)-4 \tau t}{2^{4 / 3} t^{1 / 3}}
$$

- Goal: determine the covariance of the process at two times:

$$
C^{\star}(\tau)=\operatorname{Cov}\left(\mathcal{X}^{\star}(\tau), \mathcal{X}^{\star}(1)\right)
$$

with $\star=$ curved, flat, or random.

Theorem

For the stationary case, i.e., $\star=\sigma$ with $\sigma=1$,

$$
\operatorname{Cov}\left(\mathcal{X}^{\star}(\tau), \mathcal{X}^{\star}(1)\right)=\frac{1+\tau^{2 / 3}-(1-\tau)^{2 / 3}}{2} \operatorname{Var}\left(\xi_{\mathrm{BR}}\right)
$$

- But, the process is not a fractional Brownian motion
- Open question: what is the time-time process? Is it related with fractional Brownian motion with Hurst parameter $1 / 3$?

Figure: Plot of $\tau \mapsto \operatorname{Cov}\left(\mathcal{X}^{\text {stat }}(\tau), \mathcal{X}^{\text {stat }}(1)\right) / \operatorname{Var}\left(\mathcal{X}^{\text {stat }}(1)\right)$. The top-left inset is the $\log -\log$ plot around $\tau=0$ and the right-bottom inset is the $\log -\log$ plot around $\tau=1$. The fit is made with the function $\tau \mapsto \frac{1}{2}\left(1+\tau^{2 / 3}-(1-\tau)^{2 / 3}\right)$.

Ferrari, Spohn'16

Theorem (Universal behavior for $\tau \rightarrow 1$)
For $\star \in\{\bullet, \backslash, \sigma\}$ the covariance of the limiting height function for $\tau \rightarrow 1$ is

$$
\begin{aligned}
\operatorname{Cov}\left(\mathcal{X}^{\star}(\tau), \mathcal{X}^{\star}(1)\right)= & \frac{1+\tau^{2 / 3}}{2} \operatorname{Var}\left(\mathcal{X}^{\star}(1)\right) \\
& -\frac{(1-\tau)^{2 / 3}}{2} \operatorname{Var}\left(\xi_{\mathrm{BR}}\right)+\mathcal{O}(1-\tau)^{1^{-}} .
\end{aligned}
$$

- Space-time scaling

$$
h_{N}^{\mathrm{resc}}(u, \tau)=\frac{h\left(2^{-1 / 6} u N^{2 / 3}, \tau N\right)-\tau N(1-1 / \sqrt{2})}{-2^{-5 / 6} N^{1 / 3}}
$$

- Let $H(\tau)=\lim _{N \rightarrow \infty} h_{N}^{\text {resc }}(0, \tau)$. Then the result from LPP would rewrites as

$$
\begin{aligned}
\operatorname{Cov}(H(\tau), H(1)) & =\frac{1+\tau^{2 / 3}}{2} \operatorname{Var}\left(\xi_{\mathrm{GUE}}\right) \\
& -\frac{(1-\tau)^{2 / 3}}{2} \operatorname{Var}\left(\xi_{\mathrm{BR}}\right)+\mathcal{O}(1-\tau)^{1-\delta}
\end{aligned}
$$

- Consider two paths with ending points

$$
E_{\tau}=(\tau t, \tau t) \quad \text { and } \quad E_{1}=(t, t)
$$

- Concatenation property: let $I(u)=\tau t(1,1)+u(2 \tau)^{2 / 3}(1,-1)$, then

$$
L^{\star}\left(E_{1}\right)=\max _{u \in \mathbb{R}}\left\{L^{\star}(I(u))+L_{I(u) \rightarrow E_{1}}^{\bullet}\right\}
$$

- Consider two paths with ending points

$$
E_{\tau}=(\tau t, \tau t) \quad \text { and } \quad E_{1}=(t, t)
$$

- Concatenation property: let $I(u)=\tau t(1,1)+u(2 \tau)^{2 / 3}(1,-1)$, then

$$
L^{\star}\left(E_{1}\right)=\max _{u \in \mathbb{R}}\left\{L^{\star}(I(u))+L_{I(u) \rightarrow E_{1}}^{\bullet}\right\}
$$

- Taking $t \rightarrow \infty$ we gets

$$
\mathcal{X}^{\star}(1)=\max _{u \in \mathbb{R}}\left\{\tau^{1 / 3} \mathcal{A}^{\star}\left(\tau^{-2 / 3} u\right)+(1-\tau)^{1 / 3} \mathcal{A}^{\bullet}\left((1-\tau)^{-2 / 3} u\right)\right\}
$$

and

$$
\mathcal{X}^{\star}(\tau)=\tau^{1 / 3} \mathcal{A}^{\star}(0)
$$

- Use the decomposition
$\operatorname{Cov}\left(\mathcal{X}^{\star}(1), \mathcal{X}^{\star}(\tau)\right)=\frac{1}{2} \operatorname{Var}\left(\mathcal{X}^{\star}(1)\right)+\frac{1}{2} \operatorname{Var}\left(\mathcal{X}^{\star}(\tau)\right)-\frac{1}{2} \operatorname{Var}\left(\mathcal{X}^{\star}(1)-\mathcal{X}^{\star}(\tau)\right)$
- Thus need to control the variance of

$$
\mathcal{X}^{\star}(1)-\mathcal{X}^{\star}(\tau)=\max _{u \in \mathbb{R}}\left\{\tau^{1 / 3}\left[\mathcal{A}^{\star}\left(\tau^{-2 / 3} u\right)-\mathcal{A}^{\star}(0)\right]+(1-\tau)^{1 / 3} \mathcal{A}^{\bullet}\left((1-\tau)^{-2 / 3} u\right)\right\}
$$

- Recall: $\mathcal{A}^{\bullet}(u)=\mathcal{A}_{2}(u)-u^{2}$. With $u=(1-\tau)^{2 / 3} v$:
$\mathcal{X}^{\star}(1)-\mathcal{X}^{\star}(\tau)=(1-\tau)^{1 / 3} \max _{v \in \mathbb{R}}\left\{\left(\frac{\tau}{1-\tau}\right)^{1 / 3}\left[\mathcal{A}^{\star}\left(\left(\frac{1-\tau}{\tau}\right)^{2 / 3} v\right)-\mathcal{A}^{\star}(0)\right]+\mathcal{A}_{2}(v)-v^{2}\right\}$
- Using the comparison with stationarity

$$
\left(\frac{\tau}{1-\tau}\right)^{1 / 3}\left[\mathcal{A}^{\star}\left(\left(\frac{1-\tau}{\tau}\right)^{2 / 3} v\right)-\mathcal{A}^{\star}(0)\right] \simeq \sqrt{2} B(v)
$$

$$
\text { as } \tau \rightarrow 1 \text {, i.e., }
$$

$$
\mathcal{X}^{\star}(1)-\mathcal{X}^{\star}(\tau) \simeq(1-\tau)^{1 / 3} \max _{v \in \mathbb{R}}\left\{\sqrt{2} B(v)+\mathcal{A}_{2}(v)-v^{2}\right\} \stackrel{(d)}{=} \xi_{\mathrm{BR}}
$$

- Using (exponential) tail estimates on the $\mathcal{X}^{\star}(1)$ (all of them can be obtained from the point-to-point tails with some work) we prove

$$
\operatorname{Var}\left(\mathcal{X}^{\star}(1)-\mathcal{X}^{\star}(\tau)\right)=(1-\tau)^{2 / 3} \operatorname{Var}\left(\xi_{\mathrm{BR}}\right)+\mathcal{O}\left((1-\tau)^{1^{-}}\right)
$$

Figure: Plot of $\tau \mapsto \operatorname{Cov}\left(\mathcal{X}^{\bullet}(\tau), \mathcal{X}^{\bullet}(1)\right) / \operatorname{Var}\left(\mathcal{X}^{\bullet}(1)\right)$.
$\operatorname{Cov}\left(\mathcal{X}^{\bullet}(\tau), \mathcal{X}^{\bullet}(1)\right) \sim \tau^{2 / 3}$ for $\tau \rightarrow 0$.
Ferrari,Spohn'16; Ferrari, Occelli'18; Basu,Ganguly'18
Prefactor in front of $\tau^{2 / 3}$ is known

Figure: Plot of $\tau \mapsto \operatorname{Cov}(\mathcal{X} \backslash(\tau), \mathcal{X} \backslash(1)) / \operatorname{Var}(\mathcal{X} \backslash(1))$.
$\operatorname{Cov}(\mathcal{X} \backslash(\tau), \mathcal{X} \backslash(1)) \sim \tau^{4 / 3}$ for $\tau \rightarrow 0$.
Ferrari,Spohn'16

Related results

Experimental results:

- Takeuchi (2012-2016): Experiments on turbulent liquid crystals and off-lattice Eden simulations
Mathematical results
- Baik-Liu (2017-), Johansson (2017-2018): Joint distribution function at two times (point-to-point)
- Johansson-Rahmann (2019): Joint distribution function at $n \geq 2$ times (point-to-point)

Experimental results:

- Takeuchi (2012-2016): Experiments on turbulent liquid crystals and off-lattice Eden simulations
Mathematical results
- Baik-Liu (2017-), Johansson (2017-2018): Joint distribution function at two times (point-to-point)
- Johansson-Rahmann (2019): Joint distribution function at $n \geq 2$ times (point-to-point)
- Basu-Ganguly (2018): $O\left(\tau^{2 / 3}\right)$ for $\tau \rightarrow 0$ and $O\left((1-\tau)^{2 / 3}\right)$ for $\tau \rightarrow 1$ for point-to-point. Uses less inputs from exactly solvable (no Airy processes); estimates uniform in t.
- Corwin-Ghosal-Hammond (2019): similar results as Basu-Ganguly for KPZ equation with narrow-wedge initial condition

[^0]: Aztec KPZ class Time correlations

