Universal fluctuations and scaling relations in interacting dimer models

Alessandro Giuliani, Univ. Roma Tre

Based on joint works with V. Mastropietro and F. Toninelli

BIRS, November 18, 2019

Outline

(1) The non-interacting dimer model: exact solution and universality
(2) Interacting dimers:
weak universality and main results
(3) Sketch of the proof

Non-interacting dimer model

$$
z_{i}^{p}=\sum_{D \in p_{b}=0} \prod_{i(t)}
$$

Non-interacting dimer model

$$
z_{i}^{0}=\sum_{D \in p_{b}=0} \prod_{i \in t} t_{(t)}
$$

Non-interacting dimer model

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)} .
$$

Non-interacting dimer model

$$
z_{L}^{0}=\sum_{D \in D_{D}} \prod_{b \in D} t_{(i(b)} .
$$

Non-interacting dimer model

$$
z_{l}^{0}=\sum_{D \in D_{D}} \prod_{b \in D} t_{(i(b)} .
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).

Non-interacting dimer model

$$
z_{L}^{0}=\sum_{D \in D_{D}} \prod_{G \in D} t_{t_{i}()} .
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).
The model is exactly solvable, e.g., $Z_{L}^{0}=\operatorname{det} K(\underline{t})$, with $K(\underline{t})$ the Kasteleyn matrix.

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)}
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).
The model is exactly solvable, e.g., $Z_{L}^{0}=\operatorname{det} K(\underline{t})$, with $K(\underline{t})$ the Kasteleyn matrix. This implies

$$
F(\underline{t})=\lim _{L \rightarrow \infty} \frac{1}{L^{2}} \log Z_{L}^{0}=\int_{[-\pi, \pi]^{2}} \frac{d k}{(2 \pi)^{2}} \log |\mu(k)|
$$

with: $\quad \mu(k)=t_{1}+i t_{2} e^{i k_{1}}-t_{3} e^{i k_{1}+i k_{2}}-i e^{i k_{2}}$.

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can also be computed exactly. E.g.,

$$
\left\langle\mathbb{1}_{(x, 1)} ; \mathbb{1}_{(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x-y) K^{-1}(y-x)
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can also be computed exactly. E.g.,

$$
\left\langle\mathbb{1}_{(x, 1)} ; \mathbb{1}_{(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x-y) K^{-1}(y-x)
$$

$$
\text { where: } \quad K^{-1}(x)=\int_{[-\pi \cdot \pi]^{2}} \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k \cdot x}}{\mu(k)}
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can also be computed exactly. E.g.,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{(x, 1)} ; \mathbb{1}_{(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x-y) K^{-1}(y-x), \\
& \text { where: } \quad K^{-1}(x)=\int_{[-\pi, \pi]^{2}} \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k \cdot x}}{\mu(k)} .
\end{aligned}
$$

Analyticity of $F(\underline{t})$ and decay of $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{0}$ can be read from the zeros of $\mu(k)$:

$$
\mu(k)=0 \quad \Leftrightarrow \quad e^{i k_{2}}=\frac{t_{1}+i t_{2} e^{i k_{1}}}{i+t_{3} e^{i k_{1}}}
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can also be computed exactly. E.g.,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{(x, 1)} ; \mathbb{1}_{(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x-y) K^{-1}(y-x), \\
& \text { where: } \quad K^{-1}(x)=\int_{[-\pi, \pi]^{2}} \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k \cdot x}}{\mu(k)} .
\end{aligned}
$$

Analyticity of $F(\underline{t})$ and decay of $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{0}$ can be read from the zeros of $\mu(k)$:

$$
\mu(k)=0 \quad \Leftrightarrow \quad e^{i k_{2}}=\frac{t_{1}+i t_{2} e^{i k_{1}}}{i+t_{3} e^{i k_{1}}}
$$

Liquid phase: two non-degenerate zeros, in which case $K^{-1}(x)$ decays algebraically, as (dist. $)^{-1}$.

Asymptotics of dimer correlations

Let $p_{ \pm}$be the two non-degenerate zeros of $\mu(k)$, $\alpha_{ \pm}=\partial_{k_{1}} \mu\left(p_{ \pm}\right), \beta_{ \pm}=\partial_{k_{2}} \mu\left(p_{ \pm}\right)$.

Asymptotics of dimer correlations

Let $p_{ \pm}$be the two non-degenerate zeros of $\mu(k)$, $\alpha_{ \pm}=\partial_{k_{1}} \mu\left(p_{ \pm}\right), \beta_{ \pm}=\partial_{k_{2}} \mu\left(p_{ \pm}\right)$. One has

$$
K^{-1}(x)=\frac{1}{2 \pi} \sum_{\omega= \pm} \omega \frac{e^{-i p_{\omega} \cdot x}}{\beta_{\omega} x_{1}-\alpha_{\omega} x_{2}}+O\left(|x|^{-2}\right)
$$

Asymptotics of dimer correlations

Let $p_{ \pm}$be the two non-degenerate zeros of $\mu(k)$, $\alpha_{ \pm}=\partial_{k_{1}} \mu\left(p_{ \pm}\right), \beta_{ \pm}=\partial_{k_{2}} \mu\left(p_{ \pm}\right)$. One has

$$
K^{-1}(x)=\frac{1}{2 \pi} \sum_{\omega= \pm} \omega \frac{e^{-i p_{\omega} \cdot x}}{\beta_{\omega} x_{1}-\alpha_{\omega} x_{2}}+O\left(|x|^{-2}\right)
$$

Correspondingly,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left.\left(0, r^{\prime}\right)\right\rangle_{0}}=\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r} K_{\omega, r^{\prime}}}{\left(\beta_{\omega} x_{1}-\alpha_{\omega} x_{2}\right)^{2}}\right. \\
& \quad+\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{-\omega, r} K_{\omega, r^{\prime}}}{\left|\beta_{\omega} x_{1}-\alpha_{\omega} x_{2}\right|^{2}} e^{i\left(p_{\omega}-p_{-\omega}\right) \cdot x}+O\left(|x|^{-3}\right)
\end{aligned}
$$

where: $\quad K_{\omega, 1}=t_{1}$,

$$
K_{\omega, 2}=i t_{2} e^{i\left(p_{\omega}\right)_{1}}
$$

$$
K_{\omega, 3}=-t_{3} e^{i\left(p_{\omega}\right)_{1}+i\left(p_{\omega}\right)_{2}}, \quad K_{\omega, 4}=-i e^{i\left(p_{\omega}\right)_{2}}
$$

Dimers and height function

Dimer correlations \Rightarrow fluctuations of $h(f)$:

$$
h\left(f^{\prime}\right)-h(f)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sigma_{b}\left(\mathbb{1}_{b}-1 / 4\right)
$$

[$\sigma_{b}= \pm 1$ if b crossed with white on the right/left.]

Non-interacting height fluctuations

E.g., variance of the height difference:

$$
\operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b, b^{\prime} \in C_{f \rightarrow f^{\prime}}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}
$$

Formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}+$ path-indep. of $h(f)-h\left(f^{\prime}\right)$

$$
\Rightarrow \operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right) \sim \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).

Non-interacting height fluctuations

E.g., variance of the height difference:

$$
\operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b, b^{\prime} \in C_{f \rightarrow f^{\prime}}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}
$$

Formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}+$ path-indep. of $h(f)-h\left(f^{\prime}\right)$

$$
\Rightarrow \operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right) \sim \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).
NB : the pre-factor $\frac{1}{\pi^{2}}$ is independent of t_{1}, t_{2}, t_{3}.

Non-interacting height fluctuations

E.g., variance of the height difference:

$$
\operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b, b^{\prime} \in C_{f \rightarrow f^{\prime}}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}
$$

Formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}+$ path-indep. of $h(f)-h\left(f^{\prime}\right)$

$$
\Rightarrow \operatorname{Var}_{0}\left(h(f)-h\left(f^{\prime}\right)\right) \sim \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).
NB : the pre-factor $\frac{1}{\pi^{2}}$ is independent of t_{1}, t_{2}, t_{3}.
Building upon this (Kenyon):

- height fluctuations converge to massless GFF
- scaling limit is conformally covariant

Universality in non-interacting dimers

Summarizing, in the liquid phase the scaling limit of height fluctuations is universal in very strong sense:

Universality in non-interacting dimers

Summarizing, in the liquid phase the scaling limit of height fluctuations is universal in very strong sense:
(1) the limit is always Gaussian, with logarithmic growth of the variance;

Universality in non-interacting dimers

Summarizing, in the liquid phase the scaling limit of height fluctuations is universal in very strong sense:
(0) the limit is always Gaussian, with logarithmic growth of the variance;
(2) the pre-factor in front of the logarithm in the variance is independent of the edge weights.

Universality in non-interacting dimers

Summarizing, in the liquid phase the scaling limit of height fluctuations is universal in very strong sense:
(1) the limit is always Gaussian, with logarithmic growth of the variance;
(2) the pre-factor in front of the logarithm in the variance is independent of the edge weights.

Q: Does universality survives in the presence of perturbations breaking the determinant structure?

Outline

(1) The non-interacting dimer model: exact solution and universality

(2) Interacting dimers:
weak universality and main results
(3) Sketch of the proof

Interacting dimers

Interacting model:

$$
Z_{L}^{\lambda}=\sum_{D \in \mathcal{D}_{L}}\left(\prod_{b \in D} t_{r(b)}\right) e^{\lambda \sum_{x \in \Lambda} f\left(\tau_{x} D\right)},
$$

where: λ is small, f is a local function around the origin, τ_{x} translates by x.

Interacting dimers

Interacting model:

$$
Z_{L}^{\lambda}=\sum_{D \in \mathcal{D}_{L}}\left(\prod_{b \in D} t_{r(b)}\right) e^{\lambda \sum_{x \in \Lambda} f\left(\tau_{x} D\right)}
$$

where: λ is small, f is a local function around the origin, τ_{x} translates by x. Two examples:
(0) Dimers with plaquette interaction:

$$
f_{P}(D)=\mathbb{1}_{e_{1}} \mathbb{1}_{e_{2}}+\mathbb{1}_{e_{3}} \mathbb{1}_{e_{4}}+\mathbb{1}_{e_{1}} \mathbb{1}_{e_{5}}+\mathbb{1}_{e_{6}} \mathbb{1}_{e_{7}}
$$

(0) The 6 -vertex model: $f_{6 v}(D)=\mathbb{1}_{e_{1}} \mathbb{1}_{e_{2}}+\mathbb{1}_{e_{3}} \mathbb{1}_{e_{4}}$ [Recall: $6 \mathrm{~V} \leftrightarrow A T$ via discrete bosonization (Dubedat)]

Critical exponents and weak universality

If $f=f_{6 v}$ the model is solvable by Bethe Ansatz.
Generically, the model is non-solvable.

Critical exponents and weak universality

If $f=f_{6 v}$ the model is solvable by Bethe Ansatz.
Generically, the model is non-solvable.
In all cases, it is non-determinantal and displays λ-dependent critical exponents.

Critical exponents and weak universality

If $f=f_{6 v}$ the model is solvable by Bethe Ansatz.
Generically, the model is non-solvable.
In all cases, it is non-determinantal and displays λ-dependent critical exponents.

Therefore, if the model exhibits some form of universality, it cannot be in a naive way.

If $f=f_{6 v}$ the model is solvable by Bethe Ansatz.
Generically, the model is non-solvable.
In all cases, it is non-determinantal and displays λ-dependent critical exponents.

Therefore, if the model exhibits some form of universality, it cannot be in a naive way. Right notion: weak universality, proposed by Kadanoff:
all critical exponents can be deduced by one of them.

$$
\text { E.g., } \quad X_{c}^{A T} X_{e}^{A T}=1, \quad X_{p}^{A T}=\frac{1}{4} X_{e}^{A T}
$$

Main results: interacting dimer-dimer correlation

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:

Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}=\partial_{k_{1}} \mu\left(p_{\omega}\right)$ and $\beta_{\omega}=\partial_{k_{2}} \mu\left(p_{\omega}\right)$ are not parallel).
Then, for λ small enough,

Main results: interacting dimer-dimer correlation

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:

Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}=\partial_{k_{1}} \mu\left(\rho_{\omega}\right)$ and $\beta_{\omega}=\partial_{k_{2}} \mu\left(\rho_{\omega}\right)$ are not parallel).
Then, for λ small enough,
$\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(0, r^{\prime}\right)}\right\rangle_{\lambda}=\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r}^{\lambda} K_{\omega, r^{\prime}}^{\lambda}}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}}$
$+\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{H_{-\omega, r}^{\lambda} H_{\omega, r^{\prime}}^{\lambda}}{\left|\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right|^{2 \nu(\lambda)}} e^{-i\left(\rho_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right) \cdot x}+O\left(|x|^{-3+O(\lambda)}\right)$
where: $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \alpha_{\omega}^{\lambda}, \beta_{\omega}^{\lambda}, p_{\omega}^{\lambda}, \nu(\lambda)$ are analytic in λ.

Main results: interacting dimer-dimer correlation

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:

Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}=\partial_{k_{1}} \mu\left(p_{\omega}\right)$ and $\beta_{\omega}=\partial_{k_{2}} \mu\left(p_{\omega}\right)$ are not parallel).
Then, for λ small enough,
$\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(0, r^{\prime}\right)}\right\rangle_{\lambda}=\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r}^{\lambda} K_{\omega, r^{\prime}}^{\lambda}}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}}$
$+\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{H_{-\omega, r}^{\lambda} H_{\omega, r^{\prime}}^{\lambda}}{\left|\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right|^{2 \nu(\lambda)}} e^{-i\left(\rho_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right) \cdot x}+O\left(|x|^{-3+O(\lambda)}\right)$
where: $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \alpha_{\omega}^{\lambda}, \beta_{\omega}^{\lambda}, p_{\omega}^{\lambda}, \nu(\lambda)$ are analytic in λ.
Moreover, $\nu(\lambda)=1+a \lambda+\cdots$ and, generically, $a \neq 0$.

Remarks

Proof \Rightarrow algorithm for computing $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \ldots$
We don't have closed formulas for these quantities.

Proof \Rightarrow algorithm for computing $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \ldots$
We don't have closed formulas for these quantities.
Use formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$ in that for height variance:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b, b^{\prime} \in C_{f \rightarrow f^{\prime}}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}
$$

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. $\nu(\lambda)$.

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:
Same hypotheses as previous theorem. Then:

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:
Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|+O(1)
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$,

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:
Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|+O(1)
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$, where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:
Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|+O(1)
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$, where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

- In general, $A(\lambda)$ depends on $\lambda, f, t_{1}, t_{2}, t_{3}$. Moreover,

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:
Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|+O(1)
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$, where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

- In general, $A(\lambda)$ depends on $\lambda, f, t_{1}, t_{2}, t_{3}$. Moreover,

$$
A(\lambda)=\nu(\lambda)
$$

Kadanoff/Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.

Kadanoff/Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.
$A(\lambda)=\nu(\lambda) \longleftrightarrow$ Kadanoff relation $X_{p}^{A T}=\frac{1}{4} X_{e}^{A T}$.

Kadanoff/Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.
$A(\lambda)=\nu(\lambda) \leadsto$ Kadanoff relation $X_{p}^{A T}=\frac{1}{4} X_{e}^{A T}$.
Previous rigorous proofs: in $\mathrm{AT}, 8 \mathrm{~V}$ and non-integrable variants (Benfatto-Falco-Mastropietro).

However: restricted to scaling relations for 'local observables', e.g., $X_{c}^{A T} X_{e}^{A T}=1$.

Kadanoff/Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.
$A(\lambda)=\nu(\lambda) \longleftrightarrow$ Kadanoff relation $X_{p}^{A T}=\frac{1}{4} X_{e}^{A T}$.
Previous rigorous proofs: in $\mathrm{AT}, 8 \mathrm{~V}$ and non-integrable variants (Benfatto-Falco-Mastropietro).

However: restricted to scaling relations for 'local observables', e.g., $X_{c}^{A T} X_{e}^{A T}=1$.

Analogue of $A=\nu$ previously proved in quantum 1D models (Haldane relation) (Benfatto-Mastropietro).

Our result is the first instance of such a 'non-local' scaling relation in a classical statmech model.

Outline

(1) The non-interacting dimer model: exact solution and universality
(2) Interacting dimers:
weak universality and main results
(3) Sketch of the proof

Fermionic representation

Starting point: Grassmann representation of the non-interacting partition function:

$$
\begin{aligned}
Z_{0}=\operatorname{det}(K) & =\int \prod_{x} d \psi_{x}^{+} d \psi_{x}^{-} e^{-\left(\psi^{+}, K \psi^{-}\right)} \\
& =\int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{\bar{k}}^{-} \mu(k)}
\end{aligned}
$$

where $\left\{\psi_{x}^{ \pm}\right\}_{x \in \Lambda}$ are Grassmann variables.

Fermionic representation

Starting point: Grassmann representation of the non-interacting partition function:

$$
\begin{aligned}
Z_{0}=\operatorname{det}(K) & =\int \prod_{x} d \psi_{x}^{+} d \psi_{x}^{-} e^{-\left(\psi^{+}, K \psi^{-}\right)} \\
& =\int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu(k)}
\end{aligned}
$$

where $\left\{\psi_{x}^{ \pm}\right\}_{x \in \Lambda}$ are Grassmann variables. Similarly,

$$
K^{-1}(x, y)=\frac{1}{\operatorname{det}(K)} \int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu(k)} \psi_{x}^{-} \psi_{y}^{+} .
$$

Interacting dimers as interacting fermions

The partition function of the interacting model is

$$
\frac{Z_{\lambda}}{Z_{0}}=\frac{1}{\operatorname{det}(K)} \int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu(k)+V(\psi)}
$$

where $V(\psi)$ is exp. decaying. E.g., if $f=f_{P}$,

$$
V(\psi)=-\sum_{\gamma:|\gamma|>1}\left(1-e^{\lambda}\right)^{|\gamma|-1} \prod_{e \in \gamma}\left(K_{r(e)} \psi_{b(e)}^{+} \psi_{w(e)}^{-}\right)
$$

Interacting dimers as interacting fermions

The partition function of the interacting model is

$$
\frac{Z_{\lambda}}{Z_{0}}=\frac{1}{\operatorname{det}(K)} \int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu(k)+V(\psi)}
$$

where $V(\psi)$ is exp. decaying. E.g., if $f=f_{P}$,

$$
V(\psi)=-\sum_{\gamma:|\gamma|>1}\left(1-e^{\lambda}\right)^{|\gamma|-1} \prod_{e \in \gamma}\left(K_{r(e)} \psi_{b(e)}^{+} \psi_{w(e)}^{-}\right),
$$

The generating function for dimer correlations $W(A)=\left\langle\prod_{e} e^{A_{e} 1_{e}}\right\rangle_{\lambda}$ can be expressed similarly. E.g., if $f=f_{P}, V(\psi)$ is replaced by

$$
V(\psi, A)=-\sum_{\gamma:|\gamma|>1}\left(1-e^{\lambda}\right)^{|\gamma|-1} \prod_{e \in \gamma}\left(K_{r(e)} \psi_{b(e)}^{+} \psi_{w(e)}^{-} e^{A_{e}}\right),
$$

which is lattice gauge invariant w.r.t.

$$
\psi_{x}^{ \pm} \rightarrow e^{i \alpha_{x}^{ \pm}} \psi_{x}^{ \pm}, \quad A_{e} \rightarrow A_{e}-i \alpha_{b(e)}^{+}-i \alpha_{w(e)}^{-}
$$

Counterterms

The interaction has the effect of moving the 'Fermi points' p_{ω} and the 'Fermi velocities' $\alpha_{\omega}, \beta_{\omega}$.

The interaction has the effect of moving the 'Fermi points' p_{ω} and the 'Fermi velocities' $\alpha_{\omega}, \beta_{\omega}$. We let $p_{\omega}^{\lambda}=p_{\omega}+O(\lambda), \quad \alpha_{\omega}^{\lambda}=\alpha_{\omega}+O(\lambda), \quad \beta_{\omega}^{\lambda}=\beta_{\omega}+O(\lambda)$, be the interacting ones, to be fixed a posteriori via a fixed point argument.

The interaction has the effect of moving the 'Fermi points' p_{ω} and the 'Fermi velocities' $\alpha_{\omega}, \beta_{\omega}$. We let $p_{\omega}^{\lambda}=p_{\omega}+O(\lambda), \quad \alpha_{\omega}^{\lambda}=\alpha_{\omega}+O(\lambda), \quad \beta_{\omega}^{\lambda}=\beta_{\omega}+O(\lambda)$, be the interacting ones, to be fixed a posteriori via a fixed point argument. Correspondingly, we write

$$
\mu(k)=\mu_{0}(k)-n(k)
$$

where, in the vicinity of p_{ω}^{λ},

$$
n(k)=\nu_{0, \omega}+a_{0, \omega}\left(k_{1}-\left(p_{\omega}^{\lambda}\right)_{1}\right)+b_{0, \omega}\left(k_{2}-\left(p_{\omega}^{\lambda}\right)_{2}\right)
$$

Multiscale decomposition

We rewrite
$\frac{Z_{\lambda}}{Z_{0}}=\frac{1}{\operatorname{det}(K)} \int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu_{0}(k)+N(\psi)+V(\psi)} \equiv\left\langle e^{N(\psi)+V(\psi)}\right\rangle_{0}$.
where

$$
N(\psi)=\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} n(k),
$$

and similarly for $W(A)$.

Multiscale decomposition

We rewrite
$\frac{Z_{\lambda}}{Z_{0}}=\frac{1}{\operatorname{det}(K)} \int \mathcal{D} \psi e^{-\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} \mu_{0}(k)+N(\psi)+V(\psi)} \equiv\left\langle e^{N(\psi)+V(\psi)}\right\rangle_{0}$.
where

$$
N(\psi)=\int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k}^{+} \hat{\psi}_{k}^{-} n(k),
$$

and similarly for $W(A) . Z_{\lambda}$ and $W(A)$ can be analyzed via a multiscale procedure (fermionic RG): we decompose

$$
\int \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k \cdot(x-y)}}{\mu_{0}(k)}=\sum_{\omega= \pm} \sum_{h \leq 0} e^{-i i_{\omega}^{\lambda}(x-y)} g_{\omega}^{(h)}(x-y),
$$

where

$$
g_{\omega}^{(h)}(x)=\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i\left(k-p_{\omega}^{\hat{1}}\right) x}}{\mu_{0}(k)} f_{h}\left(k-p_{\omega}^{\lambda}\right)
$$

with $f_{h}(k)$ a smooth version of $\mathbb{1}\left(2^{h-1} \leq|k| \leq 2^{h}\right)$.

Multiscale integration

Correspondingly, we decompose the Grassmann field into quasi-particles and scales: $\psi_{x}^{ \pm}=\sum_{\omega} e^{ \pm i p_{F}^{\omega} \times} \sum_{h \leq 0} \psi_{x, \omega}^{(h) \pm}$ and integrate step by step $\psi^{(0)}, \psi^{(-1)}, \ldots$, thus getting for $h<0$

Multiscale integration

Correspondingly, we decompose the Grassmann field into quasi-particles and scales: $\psi_{x}^{ \pm}=\sum_{\omega} e^{ \pm i \rho_{F}^{\omega} x} \sum_{h \leq 0} \psi_{x, \omega}^{(h) \pm}$ and integrate step by step $\psi^{(0)}, \psi^{(-1)}, \ldots$, thus getting for $h<0$

$$
\frac{Z_{\lambda}}{Z_{0}}=e^{L^{2} E_{h}} \int P_{Z_{h}}\left(\psi^{(\leq h)}\right) e^{V^{(h)}\left(\sqrt{Z_{h} \psi} \psi(\leq h)\right.},
$$

and similarly for $W(A)$.

Multiscale integration

Correspondingly, we decompose the Grassmann field into quasi-particles and scales: $\psi_{x}^{ \pm}=\sum_{\omega} e^{ \pm i \rho_{F}^{\omega} \times} \sum_{h \leq 0} \psi_{x, \omega}^{(h) \pm}$ and integrate step by step $\psi^{(0)}, \psi^{(-1)}, \ldots$, thus getting for $h<0$

$$
\frac{Z_{\lambda}}{Z_{0}}=e^{L^{2} E_{h}} \int P_{Z_{h}}\left(\psi^{(\leq h)}\right) e^{V^{(h)}\left(\sqrt{Z_{h} \psi(\leq h)}\right)},
$$

and similarly for $W(A)$. Here $P_{Z_{h}}$ has propagator $Z_{h}^{-1} g_{\omega}^{(h)}$ and

$$
V^{(h)}(\psi)=\sum_{\omega} \int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\left(2^{h} \nu_{h, \omega}+a_{h, \omega} k_{1}+b_{h, \omega} k_{2}\right)
$$

$+\lambda_{h} \sum_{x} \psi_{x,+}^{+} \psi_{x,+}^{-} \psi_{x,-}^{+} \psi_{x,-}^{-}+$irrelevant terms.

Multiscale integration

Correspondingly, we decompose the Grassmann field into quasi-particles and scales: $\psi_{x}^{ \pm}=\sum_{\omega} e^{ \pm i \boldsymbol{p}_{F}^{\omega} \times} \sum_{h \leq 0} \psi_{x, \omega}^{(h) \pm}$ and integrate step by step $\psi^{(0)}, \psi^{(-1)}, \ldots$, thus getting for $h<0$

$$
\frac{Z_{\lambda}}{Z_{0}}=e^{L^{2} E_{h}} \int P_{Z_{h}}\left(\psi^{(\leq h)}\right) e^{V^{(h)}\left(\sqrt{Z_{h} \psi(\leq h)}\right)},
$$

and similarly for $W(A)$. Here $P_{Z_{h}}$ has propagator $Z_{h}^{-1} g_{\omega}^{(h)}$ and

$$
\begin{aligned}
V^{(h)}(\psi) & =\sum_{\omega} \int \frac{d k}{(2 \pi)^{2}} \hat{\psi}_{k, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\left(2^{h} \nu_{h, \omega}+a_{h, \omega} k_{1}+b_{h, \omega} k_{2}\right) \\
& +\lambda_{h} \sum_{x} \psi_{x,+}^{+} \psi_{x,+}^{-} \psi_{x,-}^{+} \psi_{x,-}^{-}+\text {irrelevant terms. }
\end{aligned}
$$

Key point to be shown: if $\nu_{0, \omega}, a_{0, \omega}, b_{0, \omega}$ are properly fixed,

$$
\left|\nu_{h, \omega}\right|,\left|a_{h, \omega}\right|,\left|b_{h . \omega}\right|,\left|\lambda_{h}-\lambda_{-\infty}\right| \leq C|\lambda| 2^{h / 2} \text {, with } \lambda_{-\infty}=\lambda+O\left(\lambda^{2}\right) \text {. }
$$

The infrared reference model: Tomonaga-Luttinger

Difficult part: control λ_{h}. If it stays bounded $\forall h<0$, it must be due to cancellations ('vanishing of the beta function').

The infrared reference model: Tomonaga-Luttinger

Difficult part: control λ_{h}. If it stays bounded $\forall h<0$, it must be due to cancellations ('vanishing of the beta function').
In order to prove it, we compare the IR behaviour of our model with that of a reference, exactly solvable, model, playing the role of infrared fixed point theory, the TL model:

$$
e^{W_{N}(J, \phi)}=\int P_{Z}^{[\leq N]}(d \psi) e^{\mathcal{V}(\sqrt{Z} \psi)+\sum_{j=1}^{2}\left(J^{(j)}, \rho^{(j)}\right)+Z(\psi, \phi)}
$$

The infrared reference model: Tomonaga-Luttinger

Difficult part: control λ_{h}. If it stays bounded $\forall h<0$, it must be due to cancellations ('vanishing of the beta function').
In order to prove it, we compare the IR behaviour of our model with that of a reference, exactly solvable, model, playing the role of infrared fixed point theory, the TL model:

$$
e^{W_{N}(J, \phi)}=\int P_{Z}^{[\leq N]}(d \psi) e^{\mathcal{V}(\sqrt{Z} \psi)+\sum_{j=1}^{2}\left(J^{(j)}, \rho^{(j)}\right)+Z(\psi, \phi)}
$$

Here: $P_{Z}^{(\leq N)}$ has relativistic propagator with UV cutoff

$$
g_{\omega}(x-y)=\frac{1}{Z} \int \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\alpha_{\omega}^{\lambda} k_{1}+\beta_{\omega}^{\lambda} k_{2}} \chi_{N}(k)
$$

The infrared reference model: Tomonaga-Luttinger

Difficult part: control λ_{h}. If it stays bounded $\forall h<0$, it must be due to cancellations ('vanishing of the beta function').
In order to prove it, we compare the IR behaviour of our model with that of a reference, exactly solvable, model, playing the role of infrared fixed point theory, the TL model:

$$
e^{W_{N}(J, \phi)}=\int P_{Z}^{[\leq N]}(d \psi) e^{\mathcal{V}(\sqrt{Z} \psi)+\sum_{j=1}^{2}\left(J^{(j)}, \rho^{(j)}\right)+Z(\psi, \phi)}
$$

Here: $P_{Z}^{(\leq N)}$ has relativistic propagator with UV cutoff

$$
g_{\omega}(x-y)=\frac{1}{Z} \int \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\alpha_{\omega}^{\lambda} k_{1}+\beta_{\omega}^{\lambda} k_{2}} \chi_{N}(k)
$$

\mathcal{V} is a non-local quartic interaction with kernel $\lambda_{\infty} v_{0}(x, y)$;

The infrared reference model: Tomonaga-Luttinger

Difficult part: control λ_{h}. If it stays bounded $\forall h<0$, it must be due to cancellations ('vanishing of the beta function').
In order to prove it, we compare the IR behaviour of our model with that of a reference, exactly solvable, model, playing the role of infrared fixed point theory, the TL model:

$$
e^{W_{N}(J, \phi)}=\int P_{Z}^{[\leq N]}(d \psi) e^{\mathcal{V}(\sqrt{Z} \psi)+\sum_{j=1}^{2}\left(J^{(j)}, \rho^{(j)}\right)+Z(\psi, \phi)}
$$

Here: $P_{Z}^{(\leq N)}$ has relativistic propagator with UV cutoff

$$
g_{\omega}(x-y)=\frac{1}{Z} \int \frac{d k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\alpha_{\omega}^{\lambda} k_{1}+\beta_{\omega}^{\lambda} k_{2}} \chi_{N}(k)
$$

\mathcal{V} is a non-local quartic interaction with kernel $\lambda_{\infty} v_{0}(x, y)$;
$\rho_{x, \omega}^{(1)}=\psi_{x, \omega}^{+} \psi_{x, \omega}^{-}$is the 'density', $\rho_{x, \omega}^{(2)}=\psi_{x, \omega}^{+} \psi_{x,-\omega}^{-}$is the 'mass'.

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.
(2) There exists η and $A_{T L}$, analytic in λ_{∞}, s.t. $Z_{h}^{T L} \sim A_{T L} 2^{\eta h}$, with exp. small relative error.

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.
(2) There exists η and $A_{T L}$, analytic in λ_{∞}, s.t. $Z_{h}^{T L} \sim A_{T L} 2^{\eta h}$, with exp. small relative error.
(3) In the limit $N \rightarrow \infty$, the correlation functions can be computed explicitly.

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.
(c) There exists η and $A_{T L}$, analytic in λ_{∞}, s.t. $Z_{h}^{T L} \sim A_{T L} 2^{\eta h}$, with exp. small relative error.

- In the limit $N \rightarrow \infty$, the correlation functions can be computed explicitly. E.g., if $\tau=-\lambda_{\infty} /(4 \Delta \pi)$ with $\Delta=\operatorname{Re} \alpha_{+}^{\lambda} \operatorname{Im} \beta_{+}^{\lambda}-\operatorname{Im} \alpha_{+}^{\lambda} \operatorname{Re} \beta_{+}^{\lambda}$, and $D_{\omega}(p)=\alpha_{\omega}^{\lambda} p_{1}+\beta_{\omega}^{\lambda} p_{2}:$
$Z \sum_{\omega^{\prime}= \pm} D_{\omega^{\prime}}(p)\left\langle\hat{\rho}_{p, \omega^{\prime}}^{(1)} ; \hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}=\frac{\left\langle\hat{\psi}_{k, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}-\left\langle\hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k+p, \omega}^{-}\right\rangle_{T L}}{1-\tau \hat{v}_{0}(p)}$,

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.
(2) There exists η and $A_{T L}$, analytic in λ_{∞}, s.t. $Z_{h}^{T L} \sim A_{T L} 2^{\eta h}$, with exp. small relative error.

- In the limit $N \rightarrow \infty$, the correlation functions can be computed explicitly. E.g., if $\tau=-\lambda_{\infty} /(4 \Delta \pi)$ with $\Delta=\operatorname{Re} \alpha_{+}^{\lambda} \operatorname{Im} \beta_{+}^{\lambda}-\operatorname{Im} \alpha_{+}^{\lambda} \operatorname{Re} \beta_{+}^{\lambda}$, and $D_{\omega}(p)=\alpha_{\omega}^{\lambda} p_{1}+\beta_{\omega}^{\lambda} p_{2}:$
$Z \sum_{\omega^{\prime}= \pm} D_{\omega^{\prime}}(p)\left\langle\hat{\rho}_{p, \omega^{\prime}}^{(1)} ; \hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}=\frac{\left\langle\hat{\psi}_{k, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}-\left\langle\hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k+p, \omega}^{-}\right\rangle_{T L}}{1-\tau \hat{v}_{0}(p)}$,

$$
\left\langle\rho_{x, \omega}^{(1)} ; \rho_{0, \omega}^{(1)}\right\rangle_{T L}=\frac{1}{4 \pi^{2} Z^{2}\left(1-\tau^{2}\right)} \frac{1}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}}+O\left(|x|^{-3}\right),
$$

Exact solution of the TL model

Key features of the TL model: if λ_{∞} is sufficiently small, using Ward Identities + Schwinger-Dyson equation:
(1) $\lambda_{h}^{T L}$ tends exp. fast to $\lambda_{-\infty}^{T L}$, which is analytic in λ_{∞}.
(2) There exists η and $A_{T L}$, analytic in λ_{∞}, s.t. $Z_{h}^{T L} \sim A_{T L} 2^{\eta h}$, with exp. small relative error.

- In the limit $N \rightarrow \infty$, the correlation functions can be computed explicitly. E.g., if $\tau=-\lambda_{\infty} /(4 \Delta \pi)$ with $\Delta=\operatorname{Re} \alpha_{+}^{\lambda} \operatorname{Im} \beta_{+}^{\lambda}-\operatorname{Im} \alpha_{+}^{\lambda} \operatorname{Re} \beta_{+}^{\lambda}$, and $D_{\omega}(p)=\alpha_{\omega}^{\lambda} p_{1}+\beta_{\omega}^{\lambda} p_{2}:$
$z \sum_{\omega^{\prime}= \pm} D_{\omega^{\prime}}(p)\left\langle\hat{\rho}_{p, \omega^{\prime}}^{(1)}, \hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}=\frac{\left\langle\hat{\psi}_{k, \omega}^{+} \hat{\psi}_{k, \omega}^{-}\right\rangle_{T L}-\left\langle\hat{\psi}_{k+p, \omega}^{+} \hat{\psi}_{k+p, \omega}^{-}\right\rangle_{T L}}{1-\tau \hat{v}_{0}(p)}$,

$$
\left\langle\rho_{x, \omega}^{(1)} ; \rho_{0, \omega}^{(1)}\right\rangle_{T L}=\frac{1}{4 \pi^{2} Z^{2}\left(1-\tau^{2}\right)} \frac{1}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}}+O\left(|x|^{-3}\right),
$$

and $\left\langle\rho_{x, \omega}^{(2)} ; \rho_{0, \omega}^{(2)}\right\rangle_{T L} \sim($ const. $)|x|^{-2 \nu_{T L}}$, with $\nu_{T L}=\frac{1-\tau}{1+\tau}$.

Comparison of the dimer model with TL

The beta function of λ_{h} in the dimer model is the same as TL up to lower order terms \Rightarrow boundedness of $\lambda_{h}^{T L}$ implies boundedness of λ_{h}.

Comparison of the dimer model with TL

The beta function of λ_{h} in the dimer model is the same as TL up to lower order terms \Rightarrow boundedness of $\lambda_{h}^{T L}$ implies boundedness of λ_{h}. Therefore, for $h<0$,

$$
\lambda_{h}=\lambda_{-\infty}\left(1+O\left(\lambda 2^{h / 2}\right)\right), \quad Z_{h}=\tilde{A} 2^{\tilde{n} h}\left(1+O\left(\lambda 2^{h / 2}\right)\right.
$$

for suitable $\lambda_{-\infty}, \tilde{\eta}, \tilde{A}$, analytic in λ.

Comparison of the dimer model with TL

The beta function of λ_{h} in the dimer model is the same as TL up to lower order terms \Rightarrow boundedness of $\lambda_{h}^{T L}$ implies boundedness of λ_{h}. Therefore, for $h<0$,

$$
\lambda_{h}=\lambda_{-\infty}\left(1+O\left(\lambda 2^{h / 2}\right)\right), \quad Z_{h}=\tilde{A} 2^{\tilde{\eta} h}\left(1+O\left(\lambda 2^{h / 2}\right)\right.
$$

for suitable $\lambda_{-\infty}, \tilde{\eta}, \tilde{A}$, analytic in λ.
By fixing the bare parameters λ_{∞}, Z of the TL model, we can impose that $\lambda_{-\infty}=\lambda_{-\infty}^{T L}, \eta=\tilde{\eta}, \tilde{A}=A_{T L}$ and $\nu=\nu_{T L}$.

Comparison of the dimer model with TL

The beta function of λ_{h} in the dimer model is the same as TL up to lower order terms \Rightarrow boundedness of $\lambda_{h}^{T L}$ implies boundedness of λ_{h}. Therefore, for $h<0$,

$$
\lambda_{h}=\lambda_{-\infty}\left(1+O\left(\lambda 2^{h / 2}\right)\right), \quad Z_{h}=\tilde{A} 2^{\tilde{\eta} h}\left(1+O\left(\lambda 2^{h / 2}\right)\right.
$$

for suitable $\lambda_{-\infty}, \tilde{\eta}, \tilde{A}$, analytic in λ.
By fixing the bare parameters λ_{∞}, Z of the TL model, we can impose that $\lambda_{-\infty}=\lambda_{-\infty}^{T L}, \eta=\tilde{\eta}, \tilde{A}=A_{T L}$ and $\nu=\nu_{T L}$.
Correspondingly, $\left\langle\hat{\psi}_{k+p_{\omega}^{1}}^{-} \hat{\psi}_{k+p_{\omega}^{\omega}}^{+}\right\rangle_{\lambda} \sim\left\langle\hat{\psi}_{k, \omega}^{-} \hat{\psi}_{k, \omega}^{+}\right\rangle_{T L}$, and

$$
\begin{aligned}
& \left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{\lambda}=\sum_{\omega= \pm} \hat{K}_{\omega, r} \hat{K}_{\omega, r^{\prime}}\left\langle\rho_{x, \omega}^{(1)} ; \rho_{y, \omega}^{(1)}\right\rangle_{T L} \\
& +\sum_{\omega= \pm} e^{i\left(\rho_{\omega}^{\lambda}-\rho_{-\omega}^{\lambda}\right)(x-y)} \hat{H}_{-\omega,{ }^{\prime}} \hat{H}_{\omega, r^{\prime}}\left\langle\rho_{x, \omega}^{(2)} ; \rho_{y, \omega}^{(2)}\right\rangle_{T L}+O\left(|x-y|^{-3+O(\lambda)}\right) .
\end{aligned}
$$

A similar relation, involving the same prefactors $\hat{K}_{\omega, r}, \hat{K}_{\omega, r}$, is valid for the vertex function.

Ward Identities for the dimer and TL models

Using the last relation between $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{\lambda}$ and $\left\langle\rho_{x, \omega}^{(j)} ; \rho_{y, \omega}^{(j)}\right\rangle_{T L}$, with $j=1,2$, we obtain our main result on the asymptotics of the interacting dimer-dimer correlation, with

$$
K_{\omega, r}^{\lambda}=\hat{K}_{\omega, r} \frac{1}{Z \sqrt{1-\tau^{2}}} .
$$

Ward Identities for the dimer and TL models

Using the last relation between $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{\lambda}$ and $\left\langle\rho_{x, \omega}^{(j)} ; \rho_{y, \omega}^{(j)}\right\rangle_{T L}$, with $j=1,2$, we obtain our main result on the asymptotics of the interacting dimer-dimer correlation, with

$$
K_{\omega, r}^{\lambda}=\hat{K}_{\omega, r} \frac{1}{Z \sqrt{1-\tau^{2}}} .
$$

If we now compare the vertex WI of the TL model with the lattice WI of the dimer model, associated with the local conservation law $\sum_{b \rightarrow x} \mathbb{1}_{b}=1$, we find:

$$
\hat{K}_{\omega, 2}+\hat{K}_{\omega, 3}=-i Z(1-\tau) \alpha_{\omega}^{\lambda}, \quad \hat{K}_{\omega, 3}+\hat{K}_{\omega, 4}=-i Z(1-\tau) \beta_{\omega}^{\lambda} .
$$

Ward Identities for the dimer and TL models

Using the last relation between $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{\lambda}$ and $\left\langle\rho_{x, \omega}^{(j)} ; \rho_{y, \omega}^{(j)}\right\rangle_{T L}$, with $j=1,2$, we obtain our main result on the asymptotics of the interacting dimer-dimer correlation, with

$$
K_{\omega, r}^{\lambda}=\hat{K}_{\omega, r} \frac{1}{Z \sqrt{1-\tau^{2}}} .
$$

If we now compare the vertex WI of the TL model with the lattice WI of the dimer model, associated with the local conservation law $\sum_{b \rightarrow x} \mathbb{1}_{b}=1$, we find:

$$
K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}=-i \sqrt{\frac{1-\tau}{1+\tau}} \alpha_{\omega}^{\lambda}, \quad K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}=-i \sqrt{\frac{1-\tau}{1+\tau}} \beta_{\omega}^{\lambda} .
$$

Ward Identities for the dimer and TL models

Using the last relation between $\left\langle\mathbb{1}_{(x, r)} ; \mathbb{1}_{\left(y, r^{\prime}\right)}\right\rangle_{\lambda}$ and $\left\langle\rho_{x, \omega}^{(j)} ; \rho_{y, \omega}^{(j)}\right\rangle_{T L}$, with $j=1,2$, we obtain our main result on the asymptotics of the interacting dimer-dimer correlation, with

$$
K_{\omega, r}^{\lambda}=\hat{K}_{\omega, r} \frac{1}{Z \sqrt{1-\tau^{2}}} .
$$

If we now compare the vertex WI of the TL model with the lattice WI of the dimer model, associated with the local conservation law $\sum_{b \rightarrow x} \mathbb{1}_{b}=1$, we find:

$$
\begin{equation*}
K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}=-i \sqrt{\nu} \alpha_{\omega}^{\lambda}, \quad K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}=-i \sqrt{\nu} \beta_{\omega}^{\lambda} \tag{*}
\end{equation*}
$$

Logarithmic growth and Kadanoff relation

We go back to $\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sum_{b \in C_{f \rightarrow f^{\prime}}^{\prime}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$.

Logarithmic growth and Kadanoff relation

We go back to $\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sum_{b \in C_{f \rightarrow f^{\prime}}^{\prime}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$.
Using the asymptotics of $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$ and the oscillations due to $\sigma_{b} \sigma_{b^{\prime}}$ and $e^{i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right)(x-y)}$, we find:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{\omega= \pm} \sum_{\substack{b \in C_{f \rightarrow f^{\prime}} \\ b^{\prime} \in C_{f \rightarrow f^{\prime}}}} \frac{\sigma_{b} \sigma_{b^{\prime}} K_{\omega, r(b)}^{\lambda} K_{\omega, r\left(b^{\prime}\right)}^{\lambda}}{4 \pi^{2}\left(\phi_{\omega}^{\lambda}(x-y)\right)^{2}}+O(1)
$$

where $\phi_{\omega}^{\lambda}(x)=\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}$.

Logarithmic growth and Kadanoff relation

We go back to $\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sum_{b \in C_{f \rightarrow f^{\prime}}^{\prime}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$. Using the asymptotics of $\left\langle\mathbb{1}_{b^{\prime}} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$ and the oscillations due to $\sigma_{b} \sigma_{b^{\prime}}$ and $e^{i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right)(x-y)}$, we find:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{\omega= \pm} \sum_{\substack{b \in C_{f \rightarrow f^{\prime}} \\ b^{\prime} \in C_{f \rightarrow f^{\prime}}}} \frac{\sigma_{b} \sigma_{b^{\prime}} K_{\omega, r(b)}^{\lambda} K_{\omega, r\left(b^{\prime}\right)}^{\lambda}}{4 \pi^{2}\left(\phi_{\omega}^{\lambda}(x-y)\right)^{2}}+O(1)
$$

where $\phi_{\omega}^{\lambda}(x)=\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}$. Eq. $(*)$ can be restated as

$$
\sum_{b \in s(x, j)} \sigma_{b} K_{\omega, r(b)}^{\lambda}=-i \sqrt{\nu} \Delta_{j} \phi_{\omega}^{\lambda},
$$

where $s(x, j)$ is a two-bonds path from x to $x+e_{j}$.

Logarithmic growth and Kadanoff relation

We go back to $\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sum_{b \in C_{f \rightarrow f^{\prime}}^{\prime}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$.
Using the asymptotics of $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$ and the oscillations due to $\sigma_{b} \sigma_{b^{\prime}}$ and $e^{i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right)(x-y)}$, we find:

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=\sum_{\omega= \pm} \sum_{\substack{b \in C_{f \rightarrow f^{\prime}} \\ b^{\prime} \in C_{f \rightarrow f^{\prime}}}} \frac{\sigma_{b} \sigma_{b^{\prime}} K_{\omega, r(b)}^{\lambda} K_{\omega, r\left(b^{\prime}\right)}^{\lambda}}{4 \pi^{2}\left(\phi_{\omega}^{\lambda}(x-y)\right)^{2}}+O(1)
$$

where $\phi_{\omega}^{\lambda}(x)=\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}$. Eq. (*) can be restated as

$$
\sum_{b \in s(x, j)} \sigma_{b} K_{\omega, r(b)}^{\lambda}=-i \sqrt{\nu} \Delta_{j} \phi_{\omega}^{\lambda},
$$

where $s(x, j)$ is a two-bonds path from x to $x+e_{j}$. Therefore,

$$
\operatorname{Var}_{\lambda}\left(h(f)-h\left(f^{\prime}\right)\right)=-\frac{\nu}{2 \pi^{2}} \operatorname{Re} \int_{\phi_{+}^{\lambda}(f)}^{\phi_{\uparrow}^{\phi_{4}}\left(f^{\prime}\right)} d z \int_{\phi_{+}^{\lambda}(f)}^{\phi_{4}^{\lambda}\left(f^{\prime}\right)} d z^{\prime} \frac{1}{\left(z-z^{\prime}\right)^{2}}+O(1) .
$$

Conclusions

- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Kadanoff relation: $A=\nu$; subtle form of univers.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Kadanoff relation: $A=\nu$; subtle form of univers.
- Proof based on constructive, fermionic, RG (key ingredients: WIs, SD eq ${ }^{n}$, comparison with reference model, path indep ${ }^{\text {nce }}$ of the height).
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Kadanoff relation: $A=\nu$; subtle form of univers.
- Proof based on constructive, fermionic, RG (key ingredients: WIs, SD eq ${ }^{n}$, comparison with reference model, path indep ${ }^{\text {nce }}$ of the height).
- Related results, via similar methods, for: Ashkin-Teller, 8V, 6V, XXZ, non-planar Ising.

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance)

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance)
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance)
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).
- Generalize to more general \mathbb{Z}^{2}-periodic bipartite planar graphs: larger unit cell corresponds to fermions with more colors; unclear whether beta function is vanishing or not (as in 1D fermions with $S=1 / 2$)

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance)
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).
- Generalize to more general \mathbb{Z}^{2}-periodic bipartite planar graphs: larger unit cell corresponds to fermions with more colors; unclear whether beta function is vanishing or not (as in 1D fermions with $S=1 / 2$)
- ...

Thank you!

