Six-vertex and Ashkin-Teller models: order/disorder phase transition

Alexander Glazman
University of Fribourg

19th November 2019

- Dimers, Ising model and their interactions -

joint work with:
Ron Peled

Structure of the talk

FK model ${ }^{\circ}$

FK model with
boundary-cluster weight q_{b}

Part 1: Ashkin-Teller model

FK model ${ }^{\circ}$

FK model with
boundary-cluster weight q_{b}

Ashkin-Teller model: definition

Finite domain $\Omega \subset \mathbb{Z}^{2}($ box $N \times N)$.
A pair of spin configurations: $\tau, \tau^{\prime} \in\{+1,-1\}^{V(\Omega)}$.
Boundary conditions (free, +): $\tau=\tau^{\prime}$ on $\partial \Omega$.
'43 Ashkin-Teller model with parameters $J, U \in \mathbb{R}$:

$$
\mathrm{AT}_{\Omega, J, U}^{\mathrm{free},+}=\frac{1}{Z} \cdot \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right] .
$$

Case $U=0$: two independent Ising models.
Question: ordering in $\tau, \tau^{\prime}, \tau \tau^{\prime}$?

Ashkin-Teller model: conjectured phase diagram

Ashkin-Teller model: conjectured phase diagram

Ashkin-Teller model: conjectured phase diagram

 $\exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ Known results:

- three distinct regimes when U/J >> 1 [Pfister '82]
- $J>U$: sharp phase transition at the self-dual curve
[Duminil-Copin-Raoufi-Tassion '18]

Theorem

Let $J<U$ be such that $\sinh 2 J=e^{-2 U}$. Then the weak limit $\mathrm{AT}_{J, U}^{\text {free,+ }}$ under (free, +) b.c. exists and exhibits exponential decay of correlations of τ (and τ^{\prime}) and ordering of the product $\tau \tau^{\prime}$:

$$
\mathrm{AT}_{J, U}^{\text {free, }+}\left(\tau_{i} \tau_{j}\right) \leq C e^{-\alpha|i-j|} \quad \operatorname{AT}_{J, U}^{\text {free, }+}\left(\tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right) \geq \delta,
$$

for some $C, \alpha, \delta>0$ depending on J, U.

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$$
\mathrm{AT}_{\Omega, J, U}^{\text {free },+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i}} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then $i j \in \xi^{*}$ w.p. $1-e^{-4 J}$ and $i j \notin \xi^{*}$ w.p. $e^{-4 J}$
- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i}} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then ij $\notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$ $\oplus \bullet \oplus \oplus \bullet \oplus \bullet \oplus$

$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ $\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$ $\oplus \oplus \oplus \bullet \bullet \oplus \oplus$

$\oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus}$
$\mathrm{AT}_{\Omega, J, U}^{\text {free },+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then ij $\notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

	$\mathrm{AT}_{\Omega, J, U}^{\mathrm{free},+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i}} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$
(1)	FK-Ising-type representation
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$	- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus$	$i j \in \xi^{*}$ w.p. $1-e^{-4 J}$ and $i j \notin \xi^{*}$ w.p.
	- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then ij $\notin \xi^{*}$;
	Spin configurations ($\sigma^{\bullet}, \sigma^{\circ}$):
$\oplus \oplus \oplus$	- $\sigma_{i}^{\boldsymbol{\bullet}}:=\tau_{i} \tau_{i}^{\prime}$;
$\oplus \oplus \oplus$	- σ° (cluster of $\left.\xi\right)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \boldsymbol{\bullet}^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}, \tau \perp \xi^{*}} e^{-4\lrcorner \#\left\{\tau_{i}=\tau_{j}, \tau_{i}^{\prime}=\tau_{j}^{\prime}\right\}} \mathrm{AT}_{\Omega, J, U}^{\text {free, }+}\left(\tau, \tau^{\prime}\right)
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \oplus \bullet \oplus \bullet \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \boldsymbol{\oplus} \oplus \oplus$
$\oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\mathrm{AT}_{\Omega, J, U}^{\text {free },+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \sigma, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}, \tau \perp \xi^{*}} e^{(2 J-2 U) \#\left\{\tau_{i} \tau_{i}^{\prime} \neq \tau_{j} \tau_{j}^{\prime}\right\}}
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \oplus \bullet \oplus \bullet \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\mathrm{AT} \mathrm{AT}_{\Omega, J, \cup}^{\mathrm{free},+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma \bullet, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \sigma \bullet, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}, \tau \perp \xi^{*}} e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}}
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \oplus \bullet \oplus \bullet \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\mathrm{AT} \mathrm{AT}_{\Omega, J, \cup}^{\mathrm{free},+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma \bullet, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \sigma \bullet, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} 2^{k\left(\xi^{*}\right)} e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}}
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus}$
$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i}} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma \cdot, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} 2^{k\left(\xi^{*}\right)} e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \\
& \propto e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{|\xi|}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|}
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \bullet \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus}$
$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i}} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\begin{aligned}
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) & =\sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)} \mathbb{P}\left(\sigma^{\bullet}, \xi\right)=\sum_{\xi \perp \sigma \bullet, \sigma^{\circ}} 2^{-k(\xi)} \sum_{\tau \tau^{\prime}=\sigma^{\bullet}} \mathbb{P}\left(\tau, \tau^{\prime}, \xi^{*}\right) \\
& \propto \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}} 2^{-k(\xi)}\left(\frac{1-e^{-4 J}}{e^{-4 J}}\right)^{\left|\xi^{*}\right|} 2^{k\left(\xi^{*}\right)} e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \\
& \propto e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}}\left(\frac{2}{e^{4 J}-1}\right)^{|\xi|}
\end{aligned}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U_{\tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}}\right]$
FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) \propto e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}}\left(\frac{2}{e^{4 J}-1}\right)^{|\xi|}
$$

$$
\begin{array}{cll}
\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet} \oplus & \sigma_{i}^{\bullet}=\sigma_{j}^{\bullet} \oplus & \begin{array}{l}
\sigma_{i}^{\bullet}=\sigma_{j}^{\bullet} \\
\sigma_{i^{*}}^{\circ}=\sigma_{j^{*}}^{\circ} \oplus \oplus \\
\frac{\sigma_{i}^{*}}{\circ} \neq \sigma_{j^{*}}^{\circ} \oplus \\
\sigma_{i^{*}}^{\circ}=\sigma_{j^{*}}^{\circ} \oplus
\end{array} \\
e^{4 J-2 U}-1 & & 1
\end{array}
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus$ $\oplus \bullet \oplus \oplus \bullet \oplus \bullet \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ $\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$ $\oplus \bullet \oplus \bullet \bullet \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus$ $\oplus \boldsymbol{\bullet} \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus} \oplus \boldsymbol{\oplus}$
$\mathrm{AT}_{\Omega, J, U}^{\text {free },+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.

$$
\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) \propto e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}}\left(\frac{2}{e^{4 J}-1}\right)^{|\xi|}
$$

$$
\begin{aligned}
& \sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet} \nsubseteq \perp \\
& \sigma_{i^{*}}^{\circ}=\sigma_{j^{*}}^{\circ}+4+
\end{aligned}
$$

$$
\frac{2 e^{2 J-2 U}}{e^{4 J}-1}=1
$$

1

$$
\begin{aligned}
& \sigma_{i}^{\bullet \bullet}=\sigma_{\dot{j}}-\boldsymbol{\oplus} \boldsymbol{\oplus} \\
& \sigma_{i^{*}}^{\circ}=\sigma_{j^{*}}^{\circ} \boldsymbol{\oplus} \cdot \stackrel{\rightharpoonup}{\ominus}
\end{aligned}
$$

$$
\frac{e^{4 J}+1}{e^{4 J}-1}=: c
$$

Ashkin-Teller \leftrightarrow Six-vertex: coupling via duality

$\mathrm{AT}_{\Omega, J, U}^{\text {free, }+} \propto \exp \left[\sum_{i \sim j} J\left(\tau_{i} \tau_{j}+\tau_{i}^{\prime} \tau_{j}^{\prime}\right)+U \tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right]$ FK-Ising-type representation ξ^{*} :

- if $\tau_{i}=\tau_{j}$ and $\tau_{i}^{\prime}=\tau_{j}^{\prime}$, then

$$
i j \in \xi^{*} \text { w.p. } 1-e^{-4 J} \text { and } i j \notin \xi^{*} \text { w.p. } e^{-4 J}
$$

- if $\tau_{i} \neq \tau_{j}$ or $\tau_{i}^{\prime} \neq \tau_{j}^{\prime}$, then $i j \notin \xi^{*}$;

Spin configurations $\left(\sigma^{\bullet}, \sigma^{\circ}\right)$:

- $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$;
- $\sigma^{\circ}($ cluster of $\xi)= \pm 1$ indep. w.p. $1 / 2$.
$\mathbb{P}\left(\sigma^{\bullet}, \sigma^{\circ}\right) \propto e^{(2 J-2 U) \#\left\{\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet}\right\}} \sum_{\xi \perp \sigma^{\bullet}, \sigma^{\circ}}\left(\frac{2}{e^{4 J}-1}\right)^{|\xi|} \propto c^{\text {double-agreement }}$ [SixVertex]
$\sigma_{i}^{\bullet} \neq \sigma_{j}^{\bullet} \nrightarrow \perp$
$\sigma_{i^{*}}^{\circ}=\sigma_{j^{*}}^{\circ}+4$

$$
\frac{2 e^{2 J-2 U}}{e^{4 J}-1}=1
$$

1

$$
\frac{e^{4 J}+1}{e^{4 J}-1}=: c
$$

$$
\begin{aligned}
& \sigma_{i}^{*}=\sigma_{j}^{*} \Theta, \boldsymbol{\oplus} \\
& \sigma_{i+}^{o}=\sigma_{j+}^{o} \dot{\boldsymbol{\varphi}} \dot{\Theta}
\end{aligned}
$$

Correlations in Ashkin-Teller via six-vertex and ξ

Fix $J<U$ such that $\sinh 2 J=e^{-2 U}$. Take $c:=\frac{e^{4 J}+1}{e^{4 J}-1}>2$.

Correlations in Ashkin-Teller via six-vertex and ξ

Fix $J<U$ such that $\sinh 2 J=e^{-2 U}$. Take $c:=\frac{e^{4 J}+1}{e^{4 J}-1}>2$.
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \boldsymbol{\bullet}+\oplus \rightarrow \oplus \ominus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$

- To prove $\mathrm{AT}_{J, U}^{\text {free },+}\left(\tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right) \geq \delta$: Since $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$, this is equivalent to:

$$
\operatorname{Six}_{c}\left(\sigma_{i}^{\bullet \bullet} \sigma_{j}^{\bullet}\right) \geq \delta
$$

Correlations in Ashkin-Teller via six-vertex and ξ

Fix $J<U$ such that $\sinh 2 J=e^{-2 U}$. Take $c:=\frac{e^{4 J}+1}{e^{4 J}-1}>2$.
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \boldsymbol{\bullet}+\oplus \rightarrow \oplus \ominus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \boldsymbol{\oplus} \oplus \ominus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$

- To prove $\mathrm{AT}_{J, U}^{\text {free },+}\left(\tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right) \geq \delta$: Since $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$, this is equivalent to:

$$
\operatorname{Six}_{c}\left(\sigma_{i}^{\bullet} \sigma_{j}^{\bullet}\right) \geq \delta
$$

- To prove $\mathrm{AT}_{J, U}^{\text {free, }+}\left(\tau_{i} \tau_{j}\right) \leq C e^{-\alpha|i-j|}$: Enough to show

$$
\operatorname{AT}_{J, U}^{\text {free },+}\left(\tau_{i} \tau_{j}\right)=\mathbb{P}_{c}\left(i \stackrel{\xi^{*}}{\longleftrightarrow} j\right) \leq C e^{-\alpha|i-j|} .
$$

$$
\text { We saw: } \operatorname{Six}_{c}\left(\sigma^{\circ}(i) \sigma^{\circ}(j)\right)=\mathbb{P}_{c}(i \stackrel{\xi}{\leftrightarrows} j) \text {. }
$$

Correlations in Ashkin-Teller via six-vertex and ξ

Fix $J<U$ such that $\sinh 2 J=e^{-2 U}$. Take $c:=\frac{e^{4 J}+1}{e^{4 J}-1}>2$.

$\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
 $\oplus \boldsymbol{\oplus}+\boldsymbol{+}+\boldsymbol{\oplus}$
 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
 $\boldsymbol{\oplus} \oplus \oplus \boldsymbol{\oplus} \oplus \oplus \oplus \boldsymbol{\oplus}$
 $\oplus \boldsymbol{\top} \boldsymbol{\oplus} \oplus \oplus \oplus \oplus$
 $\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
 $\oplus \boldsymbol{\ominus} \oplus \oplus \oplus \oplus \oplus \oplus$
 $\boldsymbol{\oplus} \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$

- To prove $\mathrm{AT}_{J, U}^{\text {free },+}\left(\tau_{i} \tau_{i}^{\prime} \tau_{j} \tau_{j}^{\prime}\right) \geq \delta$: Since $\sigma_{i}^{\bullet}:=\tau_{i} \tau_{i}^{\prime}$, this is equivalent to:

$$
\operatorname{Six}_{c}\left(\sigma_{i}^{\bullet} \sigma_{j}^{\bullet}\right) \geq \delta
$$

- To prove $\mathrm{AT}_{J, U}^{\text {free, }+}\left(\tau_{i} \tau_{j}\right) \leq C e^{-\alpha|i-j|}$: Enough to show

$$
\mathrm{AT}_{J, U}^{\text {free },+}\left(\tau_{i} \tau_{j}\right)=\mathbb{P}_{c}\left(i \stackrel{\xi^{*}}{\stackrel{ }{\leftrightarrows}} j\right) \leq C e^{-\alpha|i-j|} .
$$

$$
\text { We saw: } \operatorname{Six}_{c}\left(\sigma^{\circ}(i) \sigma^{\circ}(j)\right)=\mathbb{P}_{c}(i \stackrel{\xi}{\leftrightarrow} j) .
$$

Part 2: Six-vertex model

Proofs:

Input from the FK model
\mathbb{T}-circuits
Coupling $g(i, j)=1-f(i-1, j)$
Exp. decay of clusters in ξ^{*}

Six－vertex model

Six－vertex model：

1

1

$\propto c^{\#\left\{\begin{array}{c}\text { double } \\ \text { agreement }\end{array}\right\}}$

0	$1 \downarrow 0 \wedge 1 \downarrow 0$	$1 \downarrow 0$	$1 \downarrow$	0
1	$2 \times 1 \wedge 2$ ソ 1	$2 \downarrow 1$	0	1
0	$1 \wedge 2 \wedge 3 \vee 2$	$3 \vee 2$	1	－
1	$2 \wedge 3 \wedge 4 \times 3$	$\stackrel{4}{2}$	$0 \wedge$	1
0	$1 \wedge 2 \wedge 3 \times 2$	1	$1 \times$	$\xrightarrow{0}$
1	$0 \wedge 1 \wedge 2$ ソ 1	$0 \psi^{-1} \uparrow$	$0 \uparrow$	1
$\stackrel{+}{4}$	－1ヶ0ヶ1ヶ4	－1 \uparrow ¢	1	$\stackrel{+}{+}$
1		${ }_{0}$	0	1
0	$\overrightarrow{1 \times 0 \uparrow 1 \times 0}$	1 +0	1 y	${ }_{0}^{+}$

Six－vertex model

Six－vertex model：

1

1

1

c
 $\propto C^{\#\left\{\begin{array}{c}\text { double } \\ \text { agreement }\end{array}\right\}}$

Known results：

－$h \rightarrow$ GFF ：$c=\sqrt{2}$（dimers）［Kenyon＇00］， $c \approx \sqrt{2}$［Giuliani－Mastropietro－Toninelli＇16］
－log．fluctuations：$c=1$［Sheffield＇05］， ［Chandgotia－Peled－Sheffield－Tassy＇18］，
［Duminil－Copin－Harel－Laslier－Raoufi－Ray＇18］
－free energy：c＞ 2 ［Duminil－Copin－Gagnebin－ Harel－Manolescu－Tassion＇16］

0	1 ¢ $0 \wedge 1$ ข 0	0	$1 \downarrow 0$
1	$2 \times 1 \wedge 2$ y 1	2	$0 \wedge 1$
$\stackrel{+}{0}$	$1 \wedge 2 \wedge 3 \times 2$	3×2	1 y 0
1	$2 \wedge 3 \wedge 4 \vee 3$	$\stackrel{2}{2} 1$	$\xrightarrow{\square} \stackrel{1}{1}$
0	$1 \wedge 2 \wedge 3 \times 2$	1.0	1×0
1	$0 \wedge 1 \wedge 2$ ソ	${ }^{0} \psi^{-1}$	$0 \uparrow$
0	－1＾0＾1ヶ0	－1	$\overrightarrow{1} \times{ }^{\text {r }}$
1		0 － 1	$\stackrel{+}{0} \uparrow 1$
0	1 1 ソ $0 \uparrow 1$ ソ 0	1 ${ }^{\text {a }}$	， 1×0

Six-vertex model

1

1
1

1

1
1

c

Six-vertex model:

$\propto C^{\#\left\{\begin{array}{c}\text { double } \\ \text { agreement }\end{array}\right\}}$

里

Theorem

- Order when $c>2$: convergence of measures with $0 / 1$ b.c., all extremal transl.-inv. Gibbs measures can be obtained as limits under $n / n+1$ b.c., for some n; ξ has an infinite cluster with logarithmically small holes.
- Disorder when $c=2$: logarithmic variations of heights, no extremal transl.-inv. Gibbs measures; spin measures under + and - b.c. are the same.
- FKG: marginals σ^{\bullet} and σ° when $c \geq 1$; marginal on ξ when $c \geq 2$.

When $c=2, \xi$ coincides with the critical FK configuration at $q=4$.

Part 3: Baxter-Kelland-Wu coupling six-vertex \leftrightarrow FK

Random-cluster (Fortuin-Kasteleyn) model

Parameters $p \in(0,1), q>0$, finite graph G (box on \mathbb{Z}^{2}), edge-config. $\omega \in\{\text { open, closed }\}^{E(G)}$:
$\mathrm{FK}_{G, q, p}(\omega)=\frac{1}{Z} \cdot p^{\# \mathrm{open}(\omega)}(1-p)^{\# \mathrm{closed}(\omega)} q^{\# \mathrm{cluster}(\omega)}$
Wired b.c.: all boundary points are identified.
 Free b.c.: no boundary points are identified.

Random-cluster (Fortuin-Kasteleyn) model

Parameters $p \in(0,1), q>0$, finite graph G (box on \mathbb{Z}^{2}), edge-config. $\omega \in\{\text { open, closed }\}^{E(G)}$:
$\mathrm{FK}_{G, q, p}(\omega)=\frac{1}{Z} \cdot p^{\# \operatorname{open}(\omega)}(1-p)^{\# \mathrm{closed}(\omega)} q^{\# \mathrm{cluster}(\omega)}$
Wired b.c.: all boundary points are identified.
 Free b.c.: no boundary points are identified.

- $q \geq 1$, phase transition at $p_{c}=\frac{\sqrt{q}}{\sqrt{q}+1}$: infinite cluster exists if $p>p_{c}$ and does not if $p<p_{c}$ [Beffara-Duminil-Copin '12]

Random-cluster (Fortuin-Kasteleyn) model

Parameters $p \in(0,1), q>0$, finite graph G (box on \mathbb{Z}^{2}), edge-config. $\omega \in\{\text { open, closed }\}^{E(G)}$:
$\mathrm{FK}_{G, q, p}(\omega)=\frac{1}{Z} \cdot p^{\# \operatorname{open}(\omega)}(1-p)^{\# \mathrm{closed}(\omega)} q^{\# \mathrm{cluster}(\omega)}$
Wired b.c.: all boundary points are identified.
 Free b.c.: no boundary points are identified.

- $q \geq 1$, phase transition at $p_{c}=\frac{\sqrt{q}}{\sqrt{q}+1}$: infinite cluster exists if $p>p_{c}$ and does not if $p<p_{c}$ [Beffara-Duminil-Copin '12]
- $q \in[1,4]: \mathrm{FK}_{q, p_{c}}^{\text {wired }}=\mathrm{FK}_{q, p_{c}}^{\text {free }}$, no infinite cluster [Duminil-Copin-Sidoravicius-Tassion '17]

Random-cluster (Fortuin-Kasteleyn) model

Parameters $p \in(0,1), q>0$, finite graph G (box on \mathbb{Z}^{2}), edge-config. $\omega \in\{\text { open, closed }\}^{E(G)}$:
$\mathrm{FK}_{G, q, p}(\omega)=\frac{1}{Z} \cdot p^{\# \operatorname{open}(\omega)}(1-p)^{\# \mathrm{closed}(\omega)} q^{\# \mathrm{cluster}(\omega)}$
Wired b.c.: all boundary points are identified.
 Free b.c.: no boundary points are identified.

- $q \geq 1$, phase transition at $p_{c}=\frac{\sqrt{q}}{\sqrt{q}+1}$: infinite cluster exists if $p>p_{c}$ and does not if $p<p_{c}$ [Beffara-Duminil-Copin '12]
- $q \in[1,4]: \mathrm{FK}_{q, p_{c}}^{\text {wired }}=\mathrm{FK}_{q, p_{c}}^{\text {free }}$, no infinite cluster [Duminil-Copin-Sidoravicius-Tassion '17]
- $q>4$: $\mathrm{FK}_{q, p_{c}}^{\text {wired }}$ exhibits an infinite cluster with log. small holes [Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16]

Random-cluster (Fortuin-Kasteleyn) model

Parameters $p \in(0,1), q>0$, finite graph G (box on \mathbb{Z}^{2}), edge-config. $\omega \in\{\text { open, closed }\}^{E(G)}$:
$\mathrm{FK}_{G, q, p}(\omega)=\frac{1}{Z} \cdot p^{\# \text { open }(\omega)}(1-p)^{\# \operatorname{closed}(\omega)} q^{\# \mathrm{cluster}(\omega)^{0}}$
Wired b.c.: all boundary points are identified.
 Free b.c.: no boundary points are identified.

- $q \geq 1$, phase transition at $p_{c}=\frac{\sqrt{q}}{\sqrt{q}+1}$: infinite cluster exists if $p>p_{c}$ and does not if $p<p_{c}$ [Beffara-Duminil-Copin '12]
- $q \in[1,4]: \mathrm{FK}_{q, p_{c}}^{\text {wired }}=\mathrm{FK}_{q, p_{c}}^{\text {free }}$, no infinite cluster [Duminil-Copin-Sidoravicius-Tassion '17]
- $q>4$: $\mathrm{FK}_{q, p_{c}}^{\text {wired }}$ exhibits an infinite cluster with log. small holes [Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16]

Six-vertex \leftrightarrow random-cluster: Baxter-Kelland-Wu coupling

$h \sim$ height function on \mathcal{D} with $0 / 1$ b.c. and parameter $c=e^{\lambda / 2}+e^{-\lambda / 2} \geq 2$
$\eta \sim$ critical FK config. on \mathcal{D}^{\bullet} with free b.c. and parameter $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2} \geq 4$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside }} \mathcal{C}^{*}}\right], \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{i j \text { open }}}\right] . \tag{2}
\end{align*}
$$

$q=\left[e^{\lambda}+e^{-\lambda}\right]^{2} \geq 4$. Coupling $-h$ is constant on clusters of η and η^{*},

$$
\begin{equation*}
(h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside } \mathcal{C}^{*}}}\right] \tag{1}
\end{equation*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$:

$$
\begin{aligned}
\sum_{h \perp \eta, \eta^{*}}(1) \propto \sqrt{q}^{k(\eta)+k\left(\eta^{*}\right)} & =\sqrt{q}^{k\left(\eta^{*}\right)-k(\eta)} \sqrt{q}^{2 k(\eta)} \propto\left(\frac{p_{c}}{1-p_{c}}\right)^{\# \operatorname{open}(\eta)} q^{k(\eta)} \\
& \propto p_{c}^{\# \operatorname{open}(\eta)}\left(1-p_{c}\right)^{\# \operatorname{closed}(\eta)} q^{\# \operatorname{clusters}(\eta)}
\end{aligned}
$$

$c=e^{\lambda / 2}+e^{-\lambda / 2} \geq 2$. Coupling $-h$ is constant on clusters of η and η^{*},

$$
\begin{gather*}
(h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{i j} \text { open }}\right] \tag{2}\\
\text { (1) 0 } \\
0
\end{gather*}
$$

(2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise.

Six-vertex \leftrightarrow random-cluster: boundary weights

$h \sim$ height function on \mathcal{D} with $0 / 1$ b.c. and parameter $c=e^{\lambda / 2}+e^{-\lambda / 2} \geq 2$ $\eta \sim$ critical FK config. on \mathcal{D}^{\bullet} with free b.c. and parameter $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2} \geq 4$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside } \mathcal{C}^{*}}}\right], \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{j j \text { open }}}\right] . \tag{2}
\end{align*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$ (2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise. Marginal of (1) on η is FK. Marginal of (2) on h is six-vertex. (1) $\propto(2)$: by hands.

Six-vertex \leftrightarrow random-cluster: boundary weights

$h \sim$ height function on \mathcal{D} with $0 / 1$ b.c. and parameter $c=e^{\lambda / 2}+e^{-\lambda / 2} \geq 2$ $\eta \sim$ critical FK config. on \mathcal{D}^{\bullet} with free b.c. and parameter $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2} \geq 4$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside } \mathcal{C}^{*}}}\right], \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{j j \text { open }}}\right] . \tag{2}
\end{align*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$
(2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise. Marginal of (1) on η is FK. Marginal of (2) on h is six-vertex. (1) $\propto(2)$: by hands. Doesn't work on the boundary!

Six-vertex \leftrightarrow random-cluster: boundary weights

$h \sim$ height f -n on \mathcal{D} with $0 / 1$ b.c., $c=e^{\lambda / 2}+e^{-\lambda / 2}, c_{b}=e^{\lambda / 2}$ on $\partial \mathcal{D}$ $\eta \sim$ critical FK on \mathcal{D}^{\bullet} with wired b.c., $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2}$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside }} \mathcal{C}^{*}}\right] \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{i j \text { open }}}\right] . \tag{2}
\end{align*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$
(2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise. Marginal of (1) on η is FK. Marginal of (2) on h is six-vertex. $(1) \propto(2)$: by hands. Doesn't work on the boundary!

Six-vertex \leftrightarrow random-cluster: boundary weights

$h \sim$ height f-n on \mathcal{D} with $0 / 1$ b.c., $c=e^{\lambda / 2}+e^{-\lambda / 2}$
$\eta \sim$ critical FK on \mathcal{D}^{\bullet} with free b.c., $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2}, q_{b}=e^{-\lambda} \sqrt{q}$ on $\partial \mathcal{D}^{\bullet}$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside } \mathcal{C}^{*}}}\right], \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{j \text { open }}}\right] . \tag{2}
\end{align*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$ (2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise. Marginal of (1) on η is FK. Marginal of (2) on h is six-vertex. (1) $\propto(2)$: by hands. Doesn't work on the boundary!

Six-vertex \leftrightarrow random-cluster: boundary weights

$h \sim$ height f-n on \mathcal{D} with $0 / 1$ b.c., $c=e^{\lambda / 2}+e^{-\lambda / 2}, c_{b}=e^{\lambda / 2}, c$ on $\partial \mathcal{D}$ $\eta \sim$ critical FK on \mathcal{D}^{\bullet} with free b.c., $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2}, q_{b}=1, e^{-\lambda} \sqrt{q}$ on $\partial \mathcal{D}^{\bullet}$

Proposition

Variables h and η can be coupled in such a way that h is constant on clusters of η and η^{*}. The joint law can be written in either of the two following ways:

$$
\begin{align*}
& (h, \eta) \sim \exp \left[\lambda \sum_{\mathcal{C} \sim \mathcal{C}^{*} \text { clusters }}\left(h\left(\mathcal{C}^{*}\right)-h(\mathcal{C})\right)(-1)^{\mathbb{1}_{\mathcal{C} \text { inside } \mathcal{C}^{*}}}\right], \tag{1}\\
& (h, \eta) \sim \exp \left[\frac{\lambda}{4} \sum_{i \sim j \text { black }}\left(h(i)+h(j)-h\left(i^{*}\right)-h\left(j^{*}\right)\right)(-1)^{\mathbb{1}_{j \text { open }}}\right] . \tag{2}
\end{align*}
$$

(1): clusters of η or η^{*} contribute $e^{\lambda}+e^{-\lambda}$; use $k\left(\eta^{*}\right)-k(\eta) \sim|\eta|, \frac{p_{c}}{1-p_{c}}=\sqrt{q}$ (2): ij contributes $e^{\lambda / 2}+e^{-\lambda / 2}$ if $h(i)=h(j)$ and $h\left(i^{*}\right)=h\left(j^{*}\right)$ and 1 , otherwise. Marginal of (1) on η is FK. Marginal of (2) on h is six-vertex. (1) $\propto(2)$: by hands. Doesn't work on the boundary! $\lambda \leftrightarrow-\lambda$: [Ray-Spinka '19]

Part 4: FK model with boundary-cluster weight c_{b}

FK model with weight $q_{b} \in[1, q]$ for boundary clusters

Parameters $p \in(0,1), q, q_{b}>0$, finite $G \subset \mathbb{Z}^{2}, \omega \in\{\text { open, closed }\}^{E(G)}$:

$$
\begin{gathered}
\operatorname{FK}_{G, q, p}^{q_{b}}(\omega)=p^{\# \operatorname{open}(\omega)}(1-p)^{\# \operatorname{closed}(\omega)} q^{\# \operatorname{bulk-clusters}(\omega)} q_{b}^{\# \partial-\operatorname{clusters}(\omega)} \\
\begin{array}{cc}
\text { wired } & \text { free }
\end{array}
\end{gathered}
$$

Fix $q \geq 1$. Measures $\mathrm{FK}_{G, q, p}^{q_{b}}$ are stochastically ordered when $q_{b} \in[1, q]$, interpolating between wired $\left(q_{b}=1\right)$ and free $\left(q_{b}=q\right)$ b.c.

FK model with weight $q_{b} \in[1, q]$ for boundary clusters

Parameters $p \in(0,1), q, q_{b}>0$, finite $G \subset \mathbb{Z}^{2}, \omega \in\{\text { open, closed }\}^{E(G)}$:

$$
\begin{gathered}
\operatorname{FK}_{G, q, p}^{q_{b}}(\omega)=p^{\# \operatorname{open}(\omega)}(1-p)^{\# \operatorname{closed}(\omega)} q^{\# \operatorname{bulk} \text {-clusters }(\omega)} q_{b}^{\# \text {-clusters }(\omega)} \\
\xrightarrow[\text { wired }]{\stackrel{\text { wree }}{ }} \xrightarrow[\text { fre }]{ }
\end{gathered}
$$

Fix $q \geq 1$. Measures $\mathrm{FK}_{G, q, p}^{q_{b}}$ are stochastically ordered when $q_{b} \in[1, q]$, interpolating between wired $\left(q_{b}=1\right)$ and free $\left(q_{b}=q\right)$ b.c.

- If $p \neq p_{c}$, then the infinite-volume limit does not depend on q_{b}.
- Same at $p=p_{c}$ when $q \in[1,4]$.
- Measure dual to $\mathrm{FK}_{G, q, p_{c}}^{q_{b}}$ is $\mathrm{FK}_{G^{*}, q, p_{c}}^{q^{*}}$ with $q_{b}^{*}=q / q_{b}$.

FK model with weight $q_{b} \in[1, q]$ for boundary clusters

Parameters $p \in(0,1), q, q_{b}>0$, finite $G \subset \mathbb{Z}^{2}, \omega \in\{\text { open, closed }\}^{E(G)}$:

Fix $q \geq 1$. Measures $\mathrm{FK}_{G, q, p}^{q_{b}}$ are stochastically ordered when $q_{b} \in[1, q]$, interpolating between wired $\left(q_{b}=1\right)$ and free $\left(q_{b}=q\right)$ b.c.

- If $p \neq p_{c}$, then the infinite-volume limit does not depend on q_{b}.
- Same at $p=p_{c}$ when $q \in[1,4]$.
- Measure dual to $\mathrm{FK}_{G, q, p_{c}}^{q_{b}}$ is $\mathrm{FK}_{G^{*}, q, p_{c}}^{q^{*}}$ with $q_{b}^{*}=q / q_{b}$.

Theorem

Take $q=\left[e^{\lambda}+e^{-\lambda}\right]^{2}, \lambda>0$. Then $\mathrm{FK}_{q, p_{c}}^{q_{b}}=\mathrm{FK}_{q, p_{c}}^{\text {wired }}$ if $q_{b} \in\left[1, e^{-\lambda} \sqrt{q}\right]$ and $\mathrm{FK}_{q, p_{c}}^{q_{b}}=\mathrm{FK}_{q, p_{c}}^{\mathrm{free}}$ if $q_{b} \in\left[e^{\lambda} \sqrt{q}, q\right]$.

Conjecture: Phase transition at $q_{b}=\sqrt{q}$.

Part 5: proofs

FK model ${ }^{\circ}$

FK model with
boundary-cluster weight q_{b}

Proof, step 1: building on the FK model

- Russo-Seymour-Welsh theory at p_{c} when $q=4$ implies logarithmic fluctuations of the height function at $c=2$
- If $q>4, p=p_{c}$, wired b.c. \Rightarrow infinite cluster with log. small holes \Rightarrow
- uniformly bdd fluctuations of height functions when $c=e^{\lambda / 2}+e^{-\lambda / 2}, \lambda>0$
- under 0,1 b.c. if \mathcal{D}_{k} is a sequence of even domains, then height-function measures with $c_{b}=e^{\lambda / 2}$ converge, the limit $\mathrm{HF}_{c, \text { even }}^{0,1 ; e^{\lambda / 2}}$ is extremal, transl. inv., has an infinite cluster of height 0 , with logarithmically small holes
- $\mathrm{HF}_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ is defined similarly, infinite cluster of height 1

Proof, step 2: $\mathrm{HF}_{c, \text { even }}^{0,1, \mathrm{e}^{\mathrm{e}} / 2} \preceq \mathrm{HF}_{c, 0 \text { odd }}^{0,1, i^{\mathrm{e}} / 2}$ $c=e^{\lambda / 2}+e^{-\lambda / 2}$. Let \mathcal{D} be an even domain.

$c=e^{\lambda / 2}+e^{-\lambda / 2}$. Let \mathcal{D} be an even domain.
Positive association of heights \Rightarrow imposing height 1 on $\partial \mathcal{D}$ increases the measure:

$$
\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; e^{\lambda / 2}} \preceq \mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; c}
$$

Proof, step 2: $\mathrm{HF}^{0,1 ; i^{e} / 2} \prec \mathrm{HF}^{0,1 ; i^{e} / 2}$

$c=e^{\lambda / 2}+e^{-\lambda / 2}$. Let \mathcal{D} be an even domain.
Positive association of heights \Rightarrow imposing height 1 on $\partial \mathcal{D}$ increases the measure:

$$
\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}} \preceq \mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; c}
$$

Domain $\mathcal{D} \backslash \partial \mathcal{D}$ is odd. Monotonicity in the boundary parameter c_{b} :

$$
\mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; c} \preceq \mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; e^{\lambda / 2}}
$$

Proof, step 2: $\mathrm{HF}_{\text {ceven }}^{0,1 ; \mathrm{e}^{\mathrm{e}} / 2} \prec \mathrm{HF}^{0,1 ; i^{e} / 2}$

$c=e^{\lambda / 2}+e^{-\lambda / 2}$. Let \mathcal{D} be an even domain.
Positive association of heights \Rightarrow imposing height 1 on $\partial \mathcal{D}$ increases the measure:

$$
\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}} \leftarrow \mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}} \preceq \mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; c}
$$

Domain $\mathcal{D} \backslash \partial \mathcal{D}$ is odd. Monotonicity in the boundary parameter c_{b} :

$$
\mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; c} \preceq \mathrm{HF}_{c, \mathcal{D} \backslash \partial \mathcal{D}}^{0,1 ; e^{\lambda / 2}} \rightarrow \mathrm{HF}_{c, o d d}^{0,1 ; e^{\lambda / 2}}
$$

Proof, step 3.1: $\mathrm{HF}^{0,1 ; \mathrm{e}^{\lambda / 2}} \succ \mathrm{HF}^{0,1 ; \mathrm{e}^{\lambda / 2}}$

Consider \mathbb{T}° : each odd site (i, j) is linked to $(i, j \pm 1)$, $(i \pm 1, j),(i \pm 2, j)$. This is a triangular lattice. By duality and extremality, one of the following holds:

$$
\begin{align*}
& \left.\mathrm{HF}_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { (around every box, exists a } \mathbb{T}^{\circ} \text {-circuit of height } \geq 1\right)=1 \tag{3}\\
& \left.\mathrm{HF}_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { (exists an infinite } \mathbb{T}^{\circ} \text {-cluster of height } \leq-1\right)=1 \tag{4}
\end{align*}
$$

Proof, step 3.1: $\mathrm{HF}_{c, 1, \mathrm{e}^{\lambda / 2}}^{0, \mathrm{HF}_{c}^{0,1 ; \mathrm{e}^{\lambda / 2}}}$

Consider \mathbb{T}° : each odd site (i, j) is linked to $(i, j \pm 1),(i \pm 1, j),(i \pm 2, j)$. This is a triangular lattice. By duality and extremality, one of the following holds:

$$
\begin{align*}
& \left.H F_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { (around every box, exists a } \mathbb{T}^{\circ} \text {-circuit of height } \geq 1\right)=1 \tag{3}\\
& \left.H F_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { (exists an infinite } \mathbb{T}^{\circ} \text {-cluster of height } \leq-1\right)=1 \tag{4}
\end{align*}
$$

If (4) occurs, then the same holds for heights ≥ 1 (FKG for the heights). Such coexistence is excluded [Sheffiled '05], [Duminil-Copin-Raoufi-Tassion '18]

Proof, step 3.1: $\mathrm{HF}_{c, \text { even }}^{0,1 e^{\lambda / 2}} \succeq \mathrm{HF}_{c, 1 \mathrm{e}^{1 / 2}}^{0,1 \mathrm{e}^{\lambda / 2}}$

Consider \mathbb{T}° : each odd site (i, j) is linked to $(i, j \pm 1)$, $(i \pm 1, j),(i \pm 2, j)$. This is a triangular lattice. By duality and extremality, one of the following holds:

$$
\begin{align*}
& \left.\mathrm{HF}_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { around every box, exists a } \mathbb{T}^{\circ} \text {-circuit of height } \geq 1\right)=1 \tag{3}\\
& \left.\mathrm{HF}_{c, \text { even }}^{0,1 ; e^{\lambda / 2}} \text { (exists an infinite } \mathbb{T}^{\circ} \text {-cluster of height } \leq-1\right)=1 \tag{4}
\end{align*}
$$

If (4) occurs, then the same holds for heights ≥ 1 (FKG for the heights). Such coexistence is excluded [Sheffiled '05], [Duminil-Copin-Raoufi-Tassion '18] Hence (3) occurs. Modifying locally, obtain \mathbb{T}°-circuits of height 1.

Proof, step 3.2: $\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}} \succeq \mathrm{HF}_{c, 0 \mathrm{odd}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$

Similarly, for $H F_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ and \mathbb{T}^{\bullet}-circuits of height 0 . We get:
$\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}°-circuit of height 1) $=1$
$\mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}^{\bullet}-circuit of height 0$)=1$
Couple $f \sim \mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ and $g \sim \mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ in the following way:

Proof, step 3.2: $\mathrm{HF}_{c, \text { even }}^{0,1 \mathrm{e}^{\lambda / 2}} \succeq \mathrm{HF}_{c, \text { odd }}^{0,1, \mathrm{e}^{\lambda / 2}}$

Similarly, for $\mathrm{HF}_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ and \mathbb{T}^{\bullet}-circuits of height 0 . We get:
$\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}°-circuit of height 1) $=1$
$\mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}^{\bullet}-circuit of height 0$)=1$
Couple $f \sim \mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ and $g \sim \mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ in the following way:

- outside of the outermost \mathbb{T}^{\bullet}-circuit of height 0 contained in a box $N \times N$:

$$
g(i, j):=1-f(i-1, j)
$$

Proof, step 3.2: $\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}} \succeq \mathrm{HF}_{c, 0 \mathrm{odd}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$

Similarly, for $\mathrm{HF}_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ and \mathbb{T}^{\bullet}-circuits of height 0 . We get:
$\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ (around every box, exists a \mathbb{T}°-circuit of height 1) $=1$
$\mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}^{\bullet}-circuit of height 0$)=1$
Couple $f \sim \mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ and $g \sim \mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ in the following way:

- outside of the outermost \mathbb{T}^{\bullet}-circuit of height 0 contained in a box $N \times N$:

$$
g(i, j):=1-f(i-1, j)
$$

- inside of this circuit, f and g are independent.

(3)	(2)
(-1) 0 (-1$)^{-1}$ (1) (1) (2) 3 ${ }^{(4)}$	(3) (2) (1) (2) (1) (2) (1) 0 - $-1{ }^{-2}$
(1) (1) (1) (1) (2) (1) (3)	(2) (1) 0 (1) (1) (1) (1) -1 (${ }^{-1}$
(1) (2) (1) (1) (2)	(1) 0 (-1) $0 \bigcirc$ (1) 0
	(2) (1) 1 (1) (1) (1)
(-1) 0 (1) ${ }^{(1)} 0$ (1) 0	(3) 2 (1)(1) ${ }^{(1) 1} 1$
(1) (2) (1) (2) 1 (1) 0 (-1	(2) (1) 0 (-1) (1) - -1 (1) 0 (1)
(1) (2) (3) (2) (3) (2) (1) 0 - -1) $^{-2}$	(1) (0) - -2 $^{-1}$ (2) (-1) 0 (1) (2)

Proof, step 3.2: $\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}} \succeq \mathrm{HF}_{c, 0 \mathrm{odd}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$

Similarly, for $\mathrm{HF}_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ and \mathbb{T}^{\bullet}-circuits of height 0 . We get:
$\mathrm{HF}_{c, \text { even }}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ (around every box, exists a \mathbb{T}°-circuit of height 1) $=1$
$\mathrm{HF}_{c, \text { odd }}^{0,1 ; \mathrm{e}^{\lambda / 2}}\left(\right.$ around every box, exists a \mathbb{T}^{\bullet}-circuit of height 0$)=1$
Couple $f \sim \mathrm{HF}_{c, \text { even }}^{0,1, e^{\lambda / 2}}$ and $g \sim \mathrm{HF}_{c, \text { odd }}^{0,1 ; e^{\lambda / 2}}$ in the following way:

- outside of the outermost \mathbb{T}^{\bullet}-circuit of height 0 contained in a box $N \times N$:

$$
g(i, j):=1-f(i-1, j)
$$

- inside of this circuit, f and g are independent.

(2) (-1) (-2) - -10 (1) (2) (3) (4) (3)		
		(3) 2 (1) (2) (1) (2) 0 (-1) -2
(1) (1) (1) 0 (1) (2) (1) (3)	On the	(2) (1) (0) (1) (1) (1) -1 0 (-1)
(2) (1) (1) (1) 2	red	(1) 0 (1) $0 \bigcirc 0$ (1) 0
0 (1) - (1) (1) 0 (1)	domain:	(2) (1) (1) $\times 1$ (1) (2)
1) 0 (1) 0 (1) 0	$f \succeq g!$	(3) (2) (1) (1) (1) 0
(1) (1) (1) (2) (1) (1) 0 (-1)		(2) (1) 0 (-1) (1) - -1 (1) (1) 0 (1)
(1) (2) (3) (2) (3) (2) (1) 0 -1) -2		(1) 0 (-1) -2 (-1) (-2) ${ }^{-1}$ (1) (2)

End of the proof: $\mathbb{P}\left(u \stackrel{\xi^{*}}{\leftrightarrows} v\right) \leq e^{-\alpha|u-v|}$

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.

End of the proof: $\mathbb{P}\left(u \stackrel{\xi^{*}}{\mapsto} v\right) \leq e^{-\alpha|u-v|}$

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.
- The limit exhibits unique infinite clusters of height 0 and 1 , with logarithmically small holes.

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.
- The limit exhibits unique infinite clusters of height 0 and 1 , with logarithmically small holes.
- The same holds for the + -clusters in σ^{\bullet} and σ° under + b.c.

End of the proof: $\mathbb{P}\left(u \stackrel{\xi^{*}}{\leftrightarrows} v\right) \leq e^{-\alpha|u-v|}$

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.
- The limit exhibits unique infinite clusters of height 0 and 1 , with logarithmically small holes.
- The same holds for the + -clusters in σ^{\bullet} and σ° under + b.c.
- $\sigma^{\circ} \leftrightarrow$ is obtained by assigning + and - to the clusters of ξ independently w.p. $1 / 2$. Hence, ξ has an infinite cluster and all other clusters are logarithmically small.

End of the proof: $\mathbb{P}\left(u \stackrel{\xi^{*}}{\leftrightarrows} v\right) \leq e^{-\alpha|u-v|}$

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.
- The limit exhibits unique infinite clusters of height 0 and 1 , with logarithmically small holes.
- The same holds for the + -clusters in σ^{\bullet} and σ° under + b.c.
- $\sigma^{\circ} \leftrightarrow$ is obtained by assigning + and - to the clusters of ξ independently w.p. $1 / 2$. Hence, ξ has an infinite cluster and all other clusters are logarithmically small.
- ξ is FKG.

End of the proof: $\mathbb{P}\left(u \stackrel{\xi^{*}}{\leftrightarrows} v\right) \leq e^{-\alpha|u-v|}$

- Limit of $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; \mathrm{e}^{\lambda / 2}}$ over even and odd domains is the same.
- By monotonicity, the same holds for $\mathrm{HF}_{c, \mathcal{D}}^{0,1 ; c}$ and any domains.
- The limit exhibits unique infinite clusters of height 0 and 1 , with logarithmically small holes.
- The same holds for the + -clusters in σ^{\bullet} and σ° under + b.c.
- $\sigma^{\circ} \leftrightarrow$ is obtained by assigning + and - to the clusters of ξ independently w.p. $1 / 2$. Hence, ξ has an infinite cluster and all other clusters are logarithmically small.
- ξ is FKG.
- If $p_{n}:=\mathbb{P}\left(0 \stackrel{\xi^{*}}{\longleftrightarrow} \partial \Lambda_{n}\right)$, then $\left(\frac{p_{n}}{4 n}\right)^{12} \leq \mathbb{P}\left(\Lambda_{n} \nLeftarrow \infty\right) \leq e^{-\alpha n}$.

Open questions

- Intermediate behaviour of the Ashkin-Teller model on an interval of parameters.
- Phase transition of the FK-model in terms of boundary-cluster weight q_{b}.
- Phase transition of the six-vertex model in terms of the boundary weight c_{b}.
- Properties of the FK-Ising-type representation ξ, other b.c.

