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A new family of models

I Our motivation is to abstract some recurring combinatorial themes
present in models of two-dimensional statistical mechanics

I To that end we introduce a four parameter

(q, q′, a, b) ∈ {1, 2, . . .}2 × (0, 1]2

model of
1. spins (σ, σ′)

2. height function (h, h′)

3. bond percolation (ω, ω′)

which generalizes the

• FK-random cluster and Potts models

• six-vertex model

• loop O(n) model

• random current, double random current and XOR-Ising model

I We discuss its basic properties and asymptotic behaviour
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The Potts model

Let Q be a finite set with q elements.

For a finite graph G = (V,E) and a coupling constant J, the q-state Potts
model is a probability measure on QV given by

µ(s) =
1
Z

exp
(
− J

∑
{v1,v2}∈E

1{s(v1) 6= s(v2)}
)
, s ∈ QV ,

where Z is the partition function.

We say that the model is ferromagnetic if J ≥ 0 and antiferromagnetic if
J < 0.
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The Edwards–Sokal coupling

The q-state Potts model is related to the FK(q) random cluster model by the
classical Edwards–Sokal coupling, where for each edge {v1, v2} satisfying
s(v1) = s(v2), one declares it open with probability 1− e−J and
independently of other edges.

The resulting configuration of open edges ζ is the random cluster model.

Conditioned on ζ, the spins s can be recovered by choosing a uniform spin
from Q independently for each cluster of ζ, where a cluster is a connected
component of (V, ζ), including isolated vertices.

In particular, if Q is symmetric,

〈s(v1)s(v2)〉 = µ(s2
v1

)µ(v1
ζ←→ v2),

where {v1
ζ←→ v2} is the event that v1 and v2 are in the same cluster of ω.
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The set-up

Let M be a compact, orientable surface with no boundary, or the plane.

Let G = (V,E) be a finite connected graph embedded in M in such a way
that each face is a topological disc, and let G∗ = (U,E∗) be its dual, where
U is identified with the set of faces of G.

For e ∈ E ∪ E∗, we write e∗ ∈ E ∪ E∗ for its dual edge. Similarly for
ω ⊆ E ∪ E∗, we write ω∗ = {e∗ : e ∈ ω}.

For ω ⊆ E, we write ω† = E∗ \ ω∗, and for ω′ ⊆ E∗, (ω′)† = E \ (ω′)∗.

5 / 29



1. The spin model

Fix q, q′ ∈ {1, 2, . . .} and let Q,Q′ ⊂ R satisfy

Q = −Q, Q′ = −Q′, |Q| = q, and |Q′| = q′.

A spin configuration on V (resp. U) is any function σ : V→ Q (resp.
σ′ : U→ Q′).

We define contour configurations

η(σ) = {{v1, v2}∗ : σ(v1) 6= σ(v2)} ⊆ E∗,

and η(σ′) ⊆ E in a dual fashion. A connected component of η is called a
contour.
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1. The spin model

The configuration space of our (constrained) spin model is

Σ = {(σ, σ′) ∈ QV × Q′U : η(σ)∗ ∩ η(σ′) = ∅}.

In other words, this is the set of all pairs (σ, σ′) whose interfaces do not
cross.

Equivalently,

(σ(v1)− σ(v2))(σ′(u1)− σ′(u2)) = 0 (*)

for every pair of a primal edge {v1, v2} and its dual {u1, u2}.

Note that σ is constant on η(σ′) and vice versa.

7 / 29



1. The spin model

We study a probability measure on Σ given by

P(σ, σ′) =
1
Z

a|η(σ′)|b|η(σ)|,

where a, b ∈ (0, 1], and Z is the partition function.

This is equivalent to a pair of independent primal and dual ferromagnetic
Potts models with q and q′ spins, with coupling constants

b = e−J, and a = e−J′ ,

and conditioned on Σ.
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2. The height function

{v1, u1, v2, u2} is a quad, if {v1, v2} ∈ E and {v1, v2}∗ = {u1, u2}.

Assume that M is of genus zero. For (σ, σ′) ∈ Σ, we consider a height
function H : V ∪ U→ R defined up to a constant by the rule: If u ∈ U and
v ∈ V belong to the same quad, then

H(u)− H(v) = σ(v)σ′(u).

That these relations are consistent follows from condition (*). Indeed, (*) is
equivalent to the fact that the sum of the gradients around each quad is zero.
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2. The height function

We will denote by h and h′ the restriction of H to V and U respectively. Note
that if {v1, u1, v2, u2} is a quad, then

h′(u2)− h′(u1) = σ(v1)(σ′(u2)− σ′(u1)) = σ(v2)(σ′(u2)− σ′(u1)). (**)

Hence, η(σ′) are the level lines of h′.

Remark
In higher genera one can define a height function on the universal cover
of M. Equivalently, one can talk about the increment of the height function
between two points taken along a curve, up to the homotopy of the curve.
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3. Bond percolation

Given (σ, σ′) ∈ Σ sampled according to P,

1. Declare each primal edge in η(σ′) and each dual edge in η(σ) open.

2. For each pair of a primal and its dual edge e and e∗ such that neither
e ∈ η(σ′) nor e∗ ∈ η(σ), and independently of other such pairs, declare
the state of the edges with the following probabilities:

a + b ≤ 1 a + b ≥ 1
e open, e∗ closed a 1− b
e closed, e∗ open b 1− a
both e, e∗ open 1− a− b 0

both e, e∗ closed 0 a + b− 1

Note that in both cases the probability of opening e and e∗ is 1− b and
1− a respectively.
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3. Bond percolation

A cluster of ω, resp. ω′, is a connected component of the graph (V, ω), resp.
(U, ω′), including the isolated vertices.

We define

ΩΣ = {(ω, ω′, σ, σ′) : σ constant on clusters of ω and η(σ) ⊆ ω′,
σ′ constant on clusters of ω′ and η(σ′) ⊆ ω},

where (σ, σ′) ∈ Σ, and we denote by

P(ω, ω′, σ, σ′)

the probability measure on ΩΣ given by the coupling above.

Note that

ω† ⊆ ω′ for a + b ≤ 1, and ω† ⊇ ω′ for a + b ≥ 1.
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3. Bond percolation

Relevant literature:

I C. E. Pfister and Y. Velenik, Random-cluster representation of the
Ashkin-Teller model, Journal of Statistical Physics 88 (1997Sep), no. 5,
1295–1331.

I A. Glazman and R. Peled, On the transition between the disordered and
antiferroelectric phases of the 6-vertex model, 2018. arXiv:1909.03436.

I G. Ray and Y. Spinka, Finitary codings for gradient models and a new
graphical representation for the six-vertex model, 2019.
arXiv:1908.09056.
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Edwards–Sokal property

Proposition (Conditional laws)

Conditioned on ω,

1. σ is distributed like an independent uniform assignment of a spin from
Q to each cluster of ω.

2. σ′ is distributed like the q-state Potts model with coupling constant J
satisfying e−J = a

1−b , and defined on the dual (V(ω), ω)∗.

3. in particular, σ and σ′ are independent.

14 / 29



Edwards–Sokal property

Proof.
We claim that for fixed (ω, σ′) with η(σ′) ⊆ ω, the weight of each consistent
configuration (ω, σ, σ′), i.e., such that σ is constant on the clusters of ω, is
equal to

a|η(σ′)|(1− b)|ω\η(σ′)|b|ω
†|,

and in particular is independent of σ.

Indeed each edge in
I η(σ) contributes weight b by the definition of the spin model,
I ω† \ η(σ) also contributes weight b since this is the probability that a

dual edge {u1, u2} with σ′(u1) = σ′(u2) ends up in ω† in step (2) of the
definition of the edge percolation model.

This means that conditioned on (ω, σ′), we have a uniform distribution on all
spin configurations σ such that η(σ) ⊆ ω†.
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Random cluster model (a + b = 1)

Proposition

Assume that M is of genus zero, and a + b = 1. Let

p =
q′

q′ + a−1 − 1
∈ (0, 1],

and let k(ω) be the number of clusters of ω. Then the marginal distribution
of P on ω is given by

P(ω) ∝ (qq′)k(ω)p|ω|(1− p)|E\ω|,

which is the FK(qq′) random cluster model on G with free boundary
conditions.
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Six-vertex model (q = q′ = 2)

A primal edge (solid), its dual edge (dashed), and four corresponding medial
edges (blue). The sets of yellow primal and red dual edges η and η′ are given
by a mapping of Rys ’63
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Loop O(n) model (q′ = 2, q = n, b = 1)

Proposition

Assume that G is trivalent, and q′ = 2, q = n, b = 1. Then

P(η) ∝ nk(η)a|η| ∝ n# loops in η( a
n )|η|,

which is the law of the loop O(n) model with x = a/n.
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Random currents (q′ = 2, q = 1, a2 + b2 = 1)

Proposition

Assume that M is of genus zero. Let a2 + b2 = 1, q′ = 2 and q = 1. Then

P(η, ω) ∝ a|η|(1− b)|ω\η|b|E\ω|,

which is the law of the sourceless single random current with a = tanh J.

Moreover, σ is distributed like the Ising model.

19 / 29



Double random currents and XOR-Ising model
(q′ = q = 2, a2 + b2 = 1)

Proposition

Assume that M is of genus zero. Let x ∈ (0, 1] be given by a = 2x/(1 + x2),
and let a2 + b2 = 1 and q′ = q = 2. Then

P(η, ω) ∝ 2k(ω)+|ω|x|η|(x2)|ω\η|(1− x2)|E\ω|,

which is the law of the sourceless double random current with x = tanh J, or
equivalently a = tanh 2J.

Moreover, σ and σ′ are distributed like the XOR-Ising model.

The second part of the statement was first discovered during a discussion
with Roland Bauerschmidt, Hugo Duminil-Copin, and Aran Raoufi at IHES,
Bures-sur-Yvette, in 2017.
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An unconstrained spin system

Consider a spin model on (s, s′) ∈ QV × Q′V given by the Gibbs-Boltzmann
distribution

µ̃(s, s′) ∝ exp
( ∑
{v1,v2}∈E

δs(v1),s(v2)

(
α+ βδs′(v1),s′(v2)

))
,

where

α = ln
(1− a

b

)
and β = ln

(
1 +

q′a
1− a

)
.

This is a special case of the model of Domany & Riedel ’78.

Theorem
Assume that M is of genus zero. Then the distributions of σ under P, and of
s under µ̃ are the same.
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Behaviour of height function

Consider the model on ΛN = {−N, . . . ,N}2, and let h′ = 0 on the
unbounded face of ΛN .

Question
What is the behaviour of

VarΛN [h′(u0)] as N →∞?

I variance bounded↔ localization
I variance unbounded↔ delocalizatoin

In the case when q = q′ = 2 and a = b, localization was proved for a < 1/2
(Duminil-Copin et al. ’16, Glazman & Peled ’18), and delocalization for
a = 1/2 (Duminil-Copin & Sidoravicius & Tassion, Glazman & Peled ’18),
a =
√

2/2 (Kenyon ’99) and its small neighbourhood (Giuliani &
Mastropietro & Toninelli ’14), and a = 1 (Chandgotia et al. 2018).
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Height function↔ percolation

For u1, u2 ∈ U, let N(u1, u2) be the number of clusters of ω disconnecting u1
from u2.

Theorem
For a + b ≥ 1, we have

Var[h′(u1)− h′(u2)] � E
[
N(u1, u2)

]
.
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Height function↔ percolation

Proof.
Fix u1, u2 ∈ U, and let

dh′ = h(u2)− h(u1) and dσ′C = σ′C(u2)− σ′C(u1).

Note that if C does not disconnect u1 from u2, then dσ′C = 0.
We claim that

dh′ =
∑
C
σ(C)dσ′C .

Indeed, let γ = {ũ1, . . . , ũl} be a path of faces with ũ1 = u1 and ũl = u2. Let
vj be one of the two vertices of the edge dual to {ũj, ũj+1}.
By (**), we have

dh′ =

l∑
j=1

σ(vj)(σ
′(ũj)− σ′(ũj+1)).
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Height function↔ percolation
Therefore we have

Var[dh′] =E
[(∑

C
σ(C)dσ′C

)2]
=
∑
ω⊆E

∑
C1,C2⊆ω

E[σ(C1)dσ′C1
σ(C2)dσ′C2

| ω]P(ω)

=
∑
ω⊆E

∑
C1,C2⊆ω

E[σ(C1)σ(C2) | ω]E[dσ′C1
dσ′C2

| ω]P(ω)

=E[σ2
0 ]
∑
ω⊆E

∑
C⊆ω

E[(dσ′C)
2 | ω]P(ω)

=E[σ2
0 ]E
[∑
C

(dσ′C)
2
]

=E[σ2
0 ]
∑
d 6=0

d2E
[
Nd
]

�E[N6=0],

where Nd = Nd(u1, u2) is the number of clusters C of ω such that dσ′C = d.
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Height function↔ percolation

Proposition

Assume that a + b ≥ 1. Then

E[N6=0] ≥ (1− 1
q′ )(E[N′]− 1).

Proof.

I Let C′1, . . . , C′N′ be the clusters of ω′ that disconnect u1 from u2.

I If two consecutive clusters C′l , C′l+1 are assigned different spins, then
there exists a circuit in η(σ′) disconnecting C′i from C′l+1, and hence
also disconnecting u1 from u2.
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I Conditioned on σ′ and ω′, we recover ω by choosing randomly edges
from (ω′)† and adding them to η(σ′).

I This means that for every pair C′l , C′l+1 with different spin σ′, there
exists at least one cluster C of ω, disconnecting u1 from u2.

I Moreover, at least one of these clusters must satisfy dσ′C(u1, u2) 6= 0
(since the sum of dσ′C over all such clusters is nonzero).

I This means that N6=0 is at least equal to the number of pairs C′l , C′l+1
with different spin σ′.

I The latter is equal in distribution to the number of nearest neighbour
disagreements in an i.i.d. sequence of length N′.

This finishes the proof of Proposition and Theorem.
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Height function↔ percolation

Theorem
Consider a subsequential limit PZ2 = limk→∞ PTNk

of the self-dual model
with q = q′ and a = b > 1/2, and assume that

PZ2(ω percolates) = 0.

Then

PZ2(infinitely many clusters of ω surround the origin) = 1.

and

lim
|u1−u2|→∞

lim
k→∞

VarTNk
[h′(u1)− h′(u2)] =∞,

where the height increment h′(u1)− h′(u2) is computed along one of the
shortest paths from u1 to u2 in the dual torus T∗Nk

.
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Thank you!
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