Spins, percolation and height functions

Marcin Lis

University of Vienna
October 1, 2019

A new family of models

- Our motivation is to abstract some recurring combinatorial themes present in models of two-dimensional statistical mechanics
- To that end we introduce a four parameter

$$
\left(q, q^{\prime}, a, b\right) \in\{1,2, \ldots\}^{2} \times(0,1]^{2}
$$

model of

1. spins (σ, σ^{\prime})
2. height function $\left(h, h^{\prime}\right)$
3. bond percolation $\left(\omega, \omega^{\prime}\right)$
which generalizes the

- FK-random cluster and Potts models
- six-vertex model
- loop $O(n)$ model
- random current, double random current and XOR-Ising model
- We discuss its basic properties and asymptotic behaviour

The Potts model

Let Q be a finite set with q elements.

For a finite graph $G=(V, E)$ and a coupling constant \boldsymbol{J}, the q-state Potts model is a probability measure on Q^{V} given by

$$
\mu(\mathrm{s})=\frac{1}{Z} \exp \left(-J \sum_{\left\{v_{1}, v_{2}\right\} \in E} \mathbf{1}\left\{\mathrm{~s}\left(v_{1}\right) \neq \mathrm{s}\left(v_{2}\right)\right\}\right), \quad \mathrm{s} \in Q^{V},
$$

where Z is the partition function.
We say that the model is ferromagnetic if $J \geq 0$ and antiferromagnetic if $J<0$.

The Edwards-Sokal coupling

The q-state Potts model is related to the $\mathrm{FK}(q)$ random cluster model by the classical Edwards-Sokal coupling, where for each edge $\left\{v_{1}, v_{2}\right\}$ satisfying $\mathrm{s}\left(v_{1}\right)=\mathrm{s}\left(v_{2}\right)$, one declares it open with probability $1-e^{-J}$ and independently of other edges.

The resulting configuration of open edges ζ is the random cluster model.
Conditioned on ζ, the spins s can be recovered by choosing a uniform spin from Q independently for each cluster of ζ, where a cluster is a connected component of (V, ζ), including isolated vertices.

In particular, if Q is symmetric,

$$
\left\langle\mathrm{s}\left(v_{1}\right) \mathrm{s}\left(v_{2}\right)\right\rangle=\mu\left(\mathrm{s}_{v_{1}}^{2}\right) \mu\left(v_{1} \stackrel{\zeta}{\leftrightarrows} v_{2}\right),
$$

where $\left\{v_{1} \stackrel{\zeta}{\longleftrightarrow} v_{2}\right\}$ is the event that v_{1} and v_{2} are in the same cluster of ω.

The set-up

Let M be a compact, orientable surface with no boundary, or the plane.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a finite connected graph embedded in M in such a way that each face is a topological disc, and let $\mathrm{G}^{*}=\left(\mathrm{U}, \mathrm{E}^{*}\right)$ be its dual, where U is identified with the set of faces of G .

For $e \in \mathrm{E} \cup \mathrm{E}^{*}$, we write $e^{*} \in \mathrm{E} \cup \mathrm{E}^{*}$ for its dual edge. Similarly for $\omega \subseteq \mathrm{E} \cup \mathrm{E}^{*}$, we write $\omega^{*}=\left\{e^{*}: e \in \omega\right\}$.

For $\omega \subseteq \mathrm{E}$, we write $\omega^{\dagger}=\mathrm{E}^{*} \backslash \omega^{*}$, and for $\omega^{\prime} \subseteq \mathrm{E}^{*},\left(\omega^{\prime}\right)^{\dagger}=\mathrm{E} \backslash\left(\omega^{\prime}\right)^{*}$.

1. The spin model

Fix $q, q^{\prime} \in\{1,2, \ldots\}$ and let $Q, Q^{\prime} \subset \mathbb{R}$ satisfy

$$
Q=-Q, \quad Q^{\prime}=-Q^{\prime}, \quad|Q|=q, \quad \text { and } \quad\left|Q^{\prime}\right|=q^{\prime} .
$$

A spin configuration on V (resp. U) is any function $\sigma: \mathrm{V} \rightarrow Q$ (resp. $\left.\sigma^{\prime}: U \rightarrow Q^{\prime}\right)$.

We define contour configurations

$$
\eta(\sigma)=\left\{\left\{v_{1}, v_{2}\right\}^{*}: \sigma\left(v_{1}\right) \neq \sigma\left(v_{2}\right)\right\} \subseteq \mathrm{E}^{*},
$$

and $\eta\left(\sigma^{\prime}\right) \subseteq \mathrm{E}$ in a dual fashion. A connected component of η is called a contour.

1. The spin model

The configuration space of our (constrained) spin model is

$$
\Sigma=\left\{\left(\sigma, \sigma^{\prime}\right) \in Q^{\mathrm{V}} \times Q^{\prime} \mathrm{U}: \eta(\sigma)^{*} \cap \eta\left(\sigma^{\prime}\right)=\emptyset\right\}
$$

In other words, this is the set of all pairs $\left(\sigma, \sigma^{\prime}\right)$ whose interfaces do not cross.

Equivalently,

$$
\begin{equation*}
\left(\sigma\left(v_{1}\right)-\sigma\left(v_{2}\right)\right)\left(\sigma^{\prime}\left(u_{1}\right)-\sigma^{\prime}\left(u_{2}\right)\right)=0 \tag{*}
\end{equation*}
$$

for every pair of a primal edge $\left\{v_{1}, v_{2}\right\}$ and its dual $\left\{u_{1}, u_{2}\right\}$.
Note that σ is constant on $\eta\left(\sigma^{\prime}\right)$ and vice versa.

1. The spin model

We study a probability measure on Σ given by

$$
\mathbf{P}\left(\sigma, \sigma^{\prime}\right)=\frac{1}{\mathcal{Z}} a^{\left|\eta\left(\sigma^{\prime}\right)\right|} b^{|\eta(\sigma)|},
$$

where $a, b \in(0,1]$, and \mathcal{Z} is the partition function.
This is equivalent to a pair of independent primal and dual ferromagnetic Potts models with q and q^{\prime} spins, with coupling constants

$$
b=e^{-J}, \quad \text { and } \quad a=e^{-J^{\prime}}
$$

and conditioned on Σ.

2. The height function

$\left\{v_{1}, u_{1}, v_{2}, u_{2}\right\}$ is a quad, if $\left\{v_{1}, v_{2}\right\} \in \mathrm{E}$ and $\left\{v_{1}, v_{2}\right\}^{*}=\left\{u_{1}, u_{2}\right\}$.
Assume that M is of genus zero. For $\left(\sigma, \sigma^{\prime}\right) \in \Sigma$, we consider a height function $H: V \cup U \rightarrow \mathbb{R}$ defined up to a constant by the rule: If $u \in \mathrm{U}$ and $v \in \mathrm{~V}$ belong to the same quad, then

$$
H(u)-H(v)=\sigma(v) \sigma^{\prime}(u) .
$$

That these relations are consistent follows from condition $\left({ }^{*}\right)$. Indeed, $\left({ }^{*}\right)$ is equivalent to the fact that the sum of the gradients around each quad is zero.

2. The height function

We will denote by h and h^{\prime} the restriction of H to V and U respectively. Note that if $\left\{v_{1}, u_{1}, v_{2}, u_{2}\right\}$ is a quad, then

$$
\begin{equation*}
h^{\prime}\left(u_{2}\right)-h^{\prime}\left(u_{1}\right)=\sigma\left(v_{1}\right)\left(\sigma^{\prime}\left(u_{2}\right)-\sigma^{\prime}\left(u_{1}\right)\right)=\sigma\left(v_{2}\right)\left(\sigma^{\prime}\left(u_{2}\right)-\sigma^{\prime}\left(u_{1}\right)\right) . \tag{**}
\end{equation*}
$$

Hence, $\eta\left(\sigma^{\prime}\right)$ are the level lines of h^{\prime}.

Remark

In higher genera one can define a height function on the universal cover of M. Equivalently, one can talk about the increment of the height function between two points taken along a curve, up to the homotopy of the curve.

3. Bond percolation

Given $\left(\sigma, \sigma^{\prime}\right) \in \Sigma$ sampled according to \mathbf{P},

1. Declare each primal edge in $\eta\left(\sigma^{\prime}\right)$ and each dual edge in $\eta(\sigma)$ open.
2. For each pair of a primal and its dual edge e and e^{*} such that neither $e \in \eta\left(\sigma^{\prime}\right)$ nor $e^{*} \in \eta(\sigma)$, and independently of other such pairs, declare the state of the edges with the following probabilities:

	$a+b \leq 1$	$a+b \geq 1$
e open, e^{*} closed	a	$1-b$
e closed, e^{*} open	b	$1-a$
both e, e^{*} open	$1-a-b$	0
both e, e^{*} closed	0	$a+b-1$

Note that in both cases the probability of opening e and e^{*} is $1-b$ and $1-a$ respectively.

3. Bond percolation

A cluster of ω, resp. ω^{\prime}, is a connected component of the graph (V, ω), resp. $\left(\mathrm{U}, \omega^{\prime}\right)$, including the isolated vertices.

We define

$$
\begin{aligned}
\Omega \Sigma=\left\{\left(\omega, \omega^{\prime}, \sigma, \sigma^{\prime}\right):\right. & \sigma \text { constant on clusters of } \omega \text { and } \eta(\sigma) \subseteq \omega^{\prime}, \\
& \left.\sigma^{\prime} \text { constant on clusters of } \omega^{\prime} \text { and } \eta\left(\sigma^{\prime}\right) \subseteq \omega\right\},
\end{aligned}
$$

where $\left(\sigma, \sigma^{\prime}\right) \in \Sigma$, and we denote by

$$
\mathbf{P}\left(\omega, \omega^{\prime}, \sigma, \sigma^{\prime}\right)
$$

the probability measure on $\Omega \Sigma$ given by the coupling above.
Note that

$$
\omega^{\dagger} \subseteq \omega^{\prime} \text { for } a+b \leq 1, \quad \text { and } \quad \omega^{\dagger} \supseteq \omega^{\prime} \text { for } a+b \geq 1
$$

3. Bond percolation

Relevant literature:

- C. E. Pfister and Y. Velenik, Random-cluster representation of the Ashkin-Teller model, Journal of Statistical Physics 88 (1997Sep), no. 5, 1295-1331.
- A. Glazman and R. Peled, On the transition between the disordered and antiferroelectric phases of the 6-vertex model, 2018. arXiv:1909.03436.
- G. Ray and Y. Spinka, Finitary codings for gradient models and a new graphical representation for the six-vertex model, 2019. arXiv:1908.09056.

Edwards-Sokal property

Proposition (Conditional laws)

Conditioned on ω,

1. σ is distributed like an independent uniform assignment of a spin from Q to each cluster of ω.
2. σ^{\prime} is distributed like the q-state Potts model with coupling constant J satisfying $e^{-J}=\frac{a}{1-b}$, and defined on the dual $(\mathrm{V}(\omega), \omega)^{*}$.
3. in particular, σ and σ^{\prime} are independent.

Edwards-Sokal property

Proof.

We claim that for fixed (ω, σ^{\prime}) with $\eta\left(\sigma^{\prime}\right) \subseteq \omega$, the weight of each consistent configuration $\left(\omega, \sigma, \sigma^{\prime}\right)$, i.e., such that σ is constant on the clusters of ω, is equal to

$$
a^{\left|\eta\left(\sigma^{\prime}\right)\right|}(1-b)^{\left|\omega \backslash \eta\left(\sigma^{\prime}\right)\right|} b^{\left|\omega^{\dagger}\right|}
$$

and in particular is independent of σ.
Indeed each edge in

- $\eta(\sigma)$ contributes weight b by the definition of the spin model,
- $\omega^{\dagger} \backslash \eta(\sigma)$ also contributes weight b since this is the probability that a dual edge $\left\{u_{1}, u_{2}\right\}$ with $\sigma^{\prime}\left(u_{1}\right)=\sigma^{\prime}\left(u_{2}\right)$ ends up in ω^{\dagger} in step (2) of the definition of the edge percolation model.
This means that conditioned on $\left(\omega, \sigma^{\prime}\right)$, we have a uniform distribution on all spin configurations σ such that $\eta(\sigma) \subseteq \omega^{\dagger}$.

Random cluster model $(a+b=1)$

Proposition

Assume that M is of genus zero, and $a+b=1$. Let

$$
p=\frac{q^{\prime}}{q^{\prime}+a^{-1}-1} \in(0,1],
$$

and let $k(\omega)$ be the number of clusters of ω. Then the marginal distribution of \mathbf{P} on ω is given by

$$
\mathbf{P}(\omega) \propto\left(q q^{\prime}\right)^{k(\omega)} p^{|\omega|}(1-p)^{|\mathrm{E} \backslash \omega|}
$$

which is the $\mathrm{FK}\left(q q^{\prime}\right)$ random cluster model on G with free boundary conditions.

Six-vertex model $\left(q=q^{\prime}=2\right)$

A primal edge (solid), its dual edge (dashed), and four corresponding medial edges (blue). The sets of yellow primal and red dual edges η and η^{\prime} are given by a mapping of Rys ' 63

Loop $O(n)$ model $\left(q^{\prime}=2, q=n, b=1\right)$

Proposition

Assume that G is trivalent, and $q^{\prime}=2, q=n, b=1$. Then

$$
\mathbf{P}(\eta) \propto n^{k(\eta)} a^{|\eta|} \propto n^{\# \text { loops in } \eta}\left(\frac{a}{n}\right)^{|\eta|}
$$

which is the law of the loop $O(n)$ model with $x=a / n$.

Random currents $\left(q^{\prime}=2, q=1, a^{2}+b^{2}=1\right)$

Proposition

Assume that M is of genus zero. Let $a^{2}+b^{2}=1, q^{\prime}=2$ and $q=1$. Then

$$
\mathbf{P}(\eta, \omega) \propto a^{|\eta|}(1-b)^{|\omega \backslash \eta|} b^{|\mathrm{E} \backslash \omega|},
$$

which is the law of the sourceless single random current with $a=\tanh J$.
Moreover, σ is distributed like the Ising model.

Double random currents and XOR-Ising model

 $\left(q^{\prime}=q=2, a^{2}+b^{2}=1\right)$
Proposition

Assume that M is of genus zero. Let $x \in(0,1]$ be given by $a=2 x /\left(1+x^{2}\right)$, and let $a^{2}+b^{2}=1$ and $q^{\prime}=q=2$. Then

$$
\mathbf{P}(\eta, \omega) \propto 2^{k(\omega)+|\omega|} x^{|\eta|}\left(x^{2}\right)^{|\omega \backslash \eta|}\left(1-x^{2}\right)^{|E \backslash \omega|},
$$

which is the law of the sourceless double random current with $x=\tanh J$, or equivalently $a=\tanh 2 J$.

Moreover, σ and σ^{\prime} are distributed like the XOR-Ising model.

The second part of the statement was first discovered during a discussion with Roland Bauerschmidt, Hugo Duminil-Copin, and Aran Raoufi at IHES, Bures-sur-Yvette, in 2017.

An unconstrained spin system

Consider a spin model on $\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in Q^{\mathrm{V}} \times Q^{\prime \vee}$ given by the Gibbs-Boltzmann distribution

$$
\tilde{\mu}\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \propto \exp \left(\sum_{\left\{v_{1}, v_{2}\right\} \in \mathbf{E}} \delta_{\mathrm{s}\left(v_{1}\right), s\left(v_{2}\right)}\left(\alpha+\beta \delta_{\mathbf{s}^{\prime}\left(v_{1}\right), s^{\prime}\left(v_{2}\right)}\right)\right),
$$

where

$$
\alpha=\ln \left(\frac{1-a}{b}\right) \quad \text { and } \quad \beta=\ln \left(1+\frac{q^{\prime} a}{1-a}\right) .
$$

This is a special case of the model of Domany \& Riedel ' 78 .

Theorem

Assume that M is of genus zero. Then the distributions of σ under \mathbf{P}, and of s under $\tilde{\mu}$ are the same.

Behaviour of height function

Consider the model on $\Lambda_{N}=\{-N, \ldots, N\}^{2}$, and let $h^{\prime}=0$ on the unbounded face of Λ_{N}.

Question

What is the behaviour of

$$
\operatorname{Var}_{\Lambda_{N}}\left[h^{\prime}\left(u_{0}\right)\right] \quad \text { as } \quad N \rightarrow \infty ?
$$

- variance bounded \leftrightarrow localization
- variance unbounded \leftrightarrow delocalizatoin

In the case when $q=q^{\prime}=2$ and $a=b$, localization was proved for $a<1 / 2$ (Duminil-Copin et al. '16, Glazman \& Peled '18), and delocalization for $a=1 / 2$ (Duminil-Copin \& Sidoravicius \& Tassion, Glazman \& Peled '18), $a=\sqrt{2} / 2$ (Kenyon '99) and its small neighbourhood (Giuliani \& Mastropietro \& Toninelli '14), and $a=1$ (Chandgotia et al. 2018).

Height function \leftrightarrow percolation

For $u_{1}, u_{2} \in \mathrm{U}$, let $N\left(u_{1}, u_{2}\right)$ be the number of clusters of ω disconnecting u_{1} from u_{2}.

Theorem

For $a+b \geq 1$, we have

$$
\operatorname{Var}\left[h^{\prime}\left(u_{1}\right)-h^{\prime}\left(u_{2}\right)\right] \asymp \mathbf{E}\left[N\left(u_{1}, u_{2}\right)\right] .
$$

Height function \leftrightarrow percolation

Proof.
Fix $u_{1}, u_{2} \in \mathbf{U}$, and let

$$
d h^{\prime}=h\left(u_{2}\right)-h\left(u_{1}\right) \quad \text { and } \quad d \sigma_{\mathcal{C}}^{\prime}=\sigma_{\mathcal{C}}^{\prime}\left(u_{2}\right)-\sigma_{\mathcal{C}}^{\prime}\left(u_{1}\right)
$$

Note that if \mathcal{C} does not disconnect u_{1} from u_{2}, then $d \sigma_{\mathcal{C}}^{\prime}=0$.
We claim that

$$
d h^{\prime}=\sum_{\mathcal{C}} \sigma(\mathcal{C}) d \sigma_{\mathcal{C}}^{\prime}
$$

Indeed, let $\gamma=\left\{\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right\}$ be a path of faces with $\tilde{u}_{1}=u_{1}$ and $\tilde{u}_{l}=u_{2}$. Let v_{j} be one of the two vertices of the edge dual to $\left\{\tilde{u}_{j}, \tilde{u}_{j+1}\right\}$. By (**), we have

$$
d h^{\prime}=\sum_{j=1}^{l} \sigma\left(v_{j}\right)\left(\sigma^{\prime}\left(\tilde{u}_{j}\right)-\sigma^{\prime}\left(\tilde{u}_{j+1}\right)\right)
$$

Height function \leftrightarrow percolation

Therefore we have

$$
\begin{aligned}
\operatorname{Var}\left[d h^{\prime}\right] & =\mathbf{E}\left[\left(\sum_{\mathcal{C}} \sigma(\mathcal{C}) d \sigma_{\mathcal{C}}^{\prime}\right)^{2}\right] \\
& =\sum_{\omega \subseteq E} \sum_{\mathcal{C}_{1}, \mathcal{C}_{2} \subseteq \omega} \mathbf{E}\left[\sigma\left(\mathcal{C}_{1}\right) d \sigma_{\mathcal{C}_{1}}^{\prime} \sigma\left(\mathcal{C}_{2}\right) d \sigma_{\mathcal{C}_{2}}^{\prime} \mid \omega\right] \mathbf{P}(\omega) \\
& =\sum_{\omega \subseteq E} \sum_{\mathcal{C}_{1}, \mathcal{C}_{2} \subseteq \omega} \mathbf{E}\left[\sigma\left(\mathcal{C}_{1}\right) \sigma\left(\mathcal{C}_{2}\right) \mid \omega\right] \mathbf{E}\left[d \sigma_{\mathcal{C}_{1}}^{\prime} d \sigma_{\mathcal{C}_{2}}^{\prime} \mid \omega\right] \mathbf{P}(\omega) \\
& =\mathbf{E}\left[\sigma_{0}^{2}\right] \sum_{\omega \subseteq E} \sum_{\mathcal{C} \subseteq \omega} \mathbf{E}\left[\left(d \sigma_{\mathcal{C}}^{\prime}\right)^{2} \mid \omega\right] \mathbf{P}(\omega) \\
& =\mathbf{E}\left[\sigma_{0}^{2}\right] \mathbf{E}\left[\sum_{\mathcal{C}}\left(d \sigma_{\mathcal{C}}^{\prime}\right)^{2}\right] \\
& =\mathbf{E}\left[\sigma_{0}^{2}\right] \sum_{d \neq 0} d^{2} \mathbf{E}\left[N_{d}\right] \\
& \asymp \mathbf{E}\left[N_{\neq 0}\right]
\end{aligned}
$$

where $N_{d}=N_{d}\left(u_{1}, u_{2}\right)$ is the number of clusters \mathcal{C} of ω such that $d \sigma_{\mathcal{C}}^{\prime}=d$.

Height function \leftrightarrow percolation

Proposition

Assume that $a+b \geq 1$. Then

$$
\mathbf{E}\left[N_{\neq 0}\right] \geq\left(1-\frac{1}{q^{\prime}}\right)\left(\mathbf{E}\left[N^{\prime}\right]-1\right)
$$

Proof.

- Let $\mathcal{C}_{1}^{\prime}, \ldots, \mathcal{C}_{N^{\prime}}^{\prime}$ be the clusters of ω^{\prime} that disconnect u_{1} from u_{2}.
- If two consecutive clusters $\mathcal{C}_{l}^{\prime}, \mathcal{C}_{l+1}^{\prime}$ are assigned different spins, then there exists a circuit in $\eta\left(\sigma^{\prime}\right)$ disconnecting \mathcal{C}_{i}^{\prime} from $\mathcal{C}_{l+1}^{\prime}$, and hence also disconnecting u_{1} from u_{2}.
- Conditioned on σ^{\prime} and ω^{\prime}, we recover ω by choosing randomly edges from $\left(\omega^{\prime}\right)^{\dagger}$ and adding them to $\eta\left(\sigma^{\prime}\right)$.
- This means that for every pair $\mathcal{C}_{l}^{\prime}, \mathcal{C}_{l+1}^{\prime}$ with different spin σ^{\prime}, there exists at least one cluster \mathcal{C} of ω, disconnecting u_{1} from u_{2}.
- Moreover, at least one of these clusters must satisfy $d \sigma_{\mathcal{C}}^{\prime}\left(u_{1}, u_{2}\right) \neq 0$ (since the sum of $d \sigma_{\mathcal{C}}^{\prime}$ over all such clusters is nonzero).
- This means that $N_{\neq 0}$ is at least equal to the number of pairs $\mathcal{C}_{l}^{\prime}, \mathcal{C}_{l+1}^{\prime}$ with different spin σ^{\prime}.
- The latter is equal in distribution to the number of nearest neighbour disagreements in an i.i.d. sequence of length N^{\prime}.

This finishes the proof of Proposition and Theorem. $\quad \square$

Height function \leftrightarrow percolation

Theorem

Consider a subsequential limit $\mathbf{P}_{\mathbb{Z}^{2}}=\lim _{k \rightarrow \infty} \mathbf{P}_{\mathbb{N}_{N_{k}}}$ of the self-dual model with $q=q^{\prime}$ and $a=b>1 / 2$, and assume that

$$
\mathbf{P}_{\mathbb{Z}^{2}}(\omega \text { percolates })=0 .
$$

Then

$$
\mathbf{P}_{\mathbb{Z}^{2}}(\text { infinitely many clusters of } \omega \text { surround the origin })=1
$$

and

$$
\lim _{\left|u_{1}-u_{2}\right| \rightarrow \infty} \lim _{k \rightarrow \infty} \operatorname{Var}_{\mathbb{T}_{N_{k}}}\left[h^{\prime}\left(u_{1}\right)-h^{\prime}\left(u_{2}\right)\right]=\infty,
$$

where the height increment $h^{\prime}\left(u_{1}\right)-h^{\prime}\left(u_{2}\right)$ is computed along one of the shortest paths from u_{1} to u_{2} in the dual torus $\mathbb{T}_{N_{k}}^{*}$.

Thank you!

