Some canonical metrics on four manifolds: rigidity and existence

Giovanni Catino
Politecnico di Milano

Nonlinear Geometric PDEs, Banff, 2019

Canonical Riemannian metrics

G. Catino, P. Mastrolia, A potential generalization of some canonical Riemannian metrics, Ann. Glob.

Anal. Geom., to appear

Canonical Riemannian metrics

"It is geometers dream to find a canonical metric $g_{\text {best }}$ on a given smooth manifold M so that all topology of M will be captured by geometry." [M. Gromov]
$\left(M^{n}, g\right)$ smooth Riemannian manifold, $\operatorname{dim}\left(M^{n}\right)=n \geq 2, \partial M=\emptyset$.
g metric \rightsquigarrow Riemann $\left(\right.$ Riem $\left._{g}\right)$, Ricci $\left(R i c_{g}\right)$ and scalar curvature $\left(R_{g}\right)$ In coordinates:

Riem $_{g}=(\text { Riem })_{i j k l} \xrightarrow{\text { trace }}$ Ric $_{g}=(R i c)_{i k}=g^{j l}(R i e m)_{i j k l} \xrightarrow{\text { trace }} R_{g}=g^{i k}(R i c)_{i k}$

- Constant curvature: $\operatorname{Riem}_{g}=\lambda g \boxtimes g$
- Constant Ricci curvature: $\operatorname{Ric}_{g}=\lambda g$
- Constant scalar curvature: $R_{g}=\lambda$

Space forms

Einstein metrics
Yamabe metrics

* G. Catino, P. Mastrolia, A potential generalization of some canonical Riemannian metrics, Ann. Glob. Anal. Geom., to appear.

Einstein metrics I: variational point of view

Canonical metrics as critical points of curvature functionals. Let M closed,

On the other hand, the constrained problem in a conformal class (Yamabe nroblem) is unobstructed. More preciselv the Yamabe invariant

[^0]
Einstein metrics I: variational point of view

Canonical metrics as critical points of curvature functionals. Let M closed,

$$
\begin{aligned}
& \mathfrak{S}(g)=\operatorname{Vol}_{g}(M)^{-\frac{n-2}{n}} \int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional } \\
& g \text { is critical for } \mathfrak{S}(g) \Longleftrightarrow g \text { is Einstein, i.e. } \operatorname{Ric}_{g}=\lambda g, \lambda \in \mathbb{R} .
\end{aligned}
$$

Einstein metrics I: variational point of view

Canonical metrics as critical points of curvature functionals. Let M closed,

$$
\begin{aligned}
& \mathfrak{S}(g)=\operatorname{Vol}_{g}(M)^{-\frac{n-2}{n}} \int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional } \\
& g \text { is critical for } \mathfrak{S}(g) \Longleftrightarrow g \text { is Einstein, i.e. } \operatorname{Ric}_{g}=\lambda g, \lambda \in \mathbb{R} .
\end{aligned}
$$

- If $n=3$, then Einstein metrics have constant curvature.
- If $n=4$, it is well known that there are topological obstructions to the existence of an Einstein metric (e.g. Hitchin-Thorpe: $\chi(M) \geq \frac{3}{2}|\tau(M)|$).
- If $n>4$, still unknown.

Einstein metrics I: variational point of view

Canonical metrics as critical points of curvature functionals. Let M closed,

$$
\begin{aligned}
& \mathfrak{S}(g)=\operatorname{Vol}_{g}(M)^{-\frac{n-2}{n}} \int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional } \\
& g \text { is critical for } \mathfrak{S}(g) \Longleftrightarrow g \text { is Einstein, i.e. } \operatorname{Ric}_{g}=\lambda g, \lambda \in \mathbb{R} .
\end{aligned}
$$

- If $n=3$, then Einstein metrics have constant curvature.
- If $n=4$, it is well known that there are topological obstructions to the existence of an Einstein metric (e.g. Hitchin-Thorpe: $\chi(M) \geq \frac{3}{2}|\tau(M)|$).
- If $n>4$, still unknown.

On the other hand, the constrained problem in a conformal class (Yamabe problem) is unobstructed. More precisely the Yamabe invariant

$$
\mathcal{Y}(M,[g])=\inf _{\tilde{g} \in[g]} \mathcal{S}(\tilde{g})=\frac{4(n-1)}{n-2} \inf _{u \in W^{1,2}(M)} \frac{\int_{M}|\nabla u|^{2} d V_{g}+\frac{n-2}{4(n-1)} \int_{M} R u^{2} d V_{g}}{\left(\int_{M}|u|^{2 n /(n-2)} d V_{g}\right)^{(n-2) / n}}
$$

is always attained in every conformal class $[g]$.

Einstein metrics II: the Weyl tensor

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. decomposition of the curvature tensor

Weyl tensor. In particular, if Weylg $=0$, then $\left(M^{n}, g\right)$ is a space form

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\text { Riem }_{g}=\frac{R_{g}}{2 n(n-1)}(g \boxtimes g)+\text { Wey }_{g}
$$

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \oslash g)+\text { Wey }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor.

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \oslash g)+\text { Wey }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} I_{g}=0$, then $\left(M^{n}, g\right)$ is a space form.

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \oslash g)+\text { Wey }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} I_{g}=0$, then $\left(M^{n}, g\right)$ is a space form.
Some well known facts:

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \boxtimes g)+\text { Weyl }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} l_{g}=0$, then $\left(M^{n}, g\right)$ is a space form. Some well known facts:

- In dimension $n=3$ Weylg $_{g}=0$, so every Einstein manifold is a space form.

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \boxtimes g)+\text { Weyl }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} l_{g}=0$, then $\left(M^{n}, g\right)$ is a space form. Some well known facts:

- In dimension $n=3$ Weylg $_{g}=0$, so every Einstein manifold is a space form.
- The Weyl tensor is totally trace free, i.e. $g^{i k} W_{i j k l}=0$.

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \oslash g)+\text { Wey }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} l_{g}=0$, then $\left(M^{n}, g\right)$ is a space form.
Some well known facts:

- In dimension $n=3 W^{2} l_{g}=0$, so every Einstein manifold is a space form.
- The Weyl tensor is totally trace free, i.e. $g^{i k} W_{i j k l}=0$.
- Tracing the second Bianchi identity for Riemg: $\nabla_{t} R_{i j k l}+\nabla_{l} R_{i j t k}+\nabla_{k} R_{i j l t}=0$ and using the decomposition, we get that the Weyl tensor has zero divergence, i.e. $\nabla_{t} W_{i j k t}=0$ (harmonic Weyl curvature).

Einstein metrics II: the Weyl tensor

Let $\left(M^{n}, g\right)$ be an Einstein manifold, i.e. $R i c_{g}=\lambda g$, for some $\lambda \in \mathbb{R}$ [Besse]. In particular, by tracing, the scalar curvature is constant $R_{g}=n \lambda$. By the decomposition of the curvature tensor

$$
\operatorname{Riem}_{g}=\frac{R_{g}}{2 n(n-1)}(g \boxtimes g)+\text { Weyl }_{g}
$$

So, all the geometric information of an Einstein manifold are contained in the Weyl tensor. In particular, if $W_{e y} l_{g}=0$, then $\left(M^{n}, g\right)$ is a space form.
Some well known facts:

- In dimension $n=3$ Weylg $_{g}=0$, so every Einstein manifold is a space form.
- The Weyl tensor is totally trace free, i.e. $g^{i k} W_{i j k l}=0$.
- Tracing the second Bianchi identity for Riemg $_{g}: \nabla_{t} R_{i j k l}+\nabla_{l} R_{i j t k}+\nabla_{k} R_{i j l t}=0$ and using the decomposition, we get that the Weyl tensor has zero divergence, i.e. $\nabla_{t} W_{i j k t}=0$ (harmonic Weyl curvature).
- With some work, one can show that the Weyl tensor satisfies the second Bianchi Identity

$$
\nabla_{t} W_{i j k l}+\nabla_{l} W_{i j t k}+\nabla_{k} W_{i j l t}=0
$$

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and commuting, we get

$$
=\Delta W_{i j k l}+\nabla_{l} \nabla_{t} W_{i j t k}+\nabla_{k} \nabla_{t} W_{i j l t}+\text { Riem }_{g} * \text { Wey }_{g}
$$

$$
=\Delta W_{i j k l}+\text { Riem }_{g} * W_{\text {Wey }}^{g}
$$

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof:

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and commuting, we get

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and commuting, we get

$$
\begin{aligned}
0 & =\nabla_{t} \nabla_{t} W_{i j k l}+\nabla_{t} \nabla_{l} W_{i j t k}+\nabla_{t} \nabla_{k} W_{i j l t} \\
& =\Delta W_{i j k l}+\nabla_{l} \nabla_{t} W_{i j t k}+\nabla_{k} \nabla_{t} W_{i j l t}+\text { Riem }_{g} * W^{\prime} I_{g} \\
& =\Delta W_{i j k l}+\text { Riem }_{g} * W_{\text {ey }} I_{g}
\end{aligned}
$$

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and commuting, we get

$$
\begin{aligned}
0 & =\nabla_{t} \nabla_{t} W_{i j k l}+\nabla_{t} \nabla_{l} W_{i j t k}+\nabla_{t} \nabla_{k} W_{i j l t} \\
& =\Delta W_{i j k l}+\nabla_{l} \nabla_{t} W_{i j t k}+\nabla_{k} \nabla_{t} W_{i j l t}+\text { Riem }_{g} * \text { Weylg }_{g} \\
& =\Delta W_{i j k l}+\text { Riem }_{g} * W_{e y} I_{g}
\end{aligned}
$$

Since Riem $_{g}=\left(R_{g} / 24\right)(g \boxtimes g)+$ Weyl $_{g}$ and Wey I_{g} is trace free

Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, '83)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then

$$
\Delta W_{i j k l}=\frac{1}{2} R_{g} W_{i j k l}-4 W_{i p k q} W_{p j q l}-W_{k l p q} W_{p q i j} .
$$

In particular,

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

More in general, the last formula holds on four-manifolds with harmonic Weyl curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and commuting, we get

$$
\begin{aligned}
0 & =\nabla_{t} \nabla_{t} W_{i j k l}+\nabla_{t} \nabla_{l} W_{i j t k}+\nabla_{t} \nabla_{k} W_{i j l t} \\
& =\Delta W_{i j k l}+\nabla_{l} \nabla_{t} W_{i j t k}+\nabla_{k} \nabla_{t} W_{i j l t}+\text { Riem }_{g} * W^{2} I_{g} \\
& =\Delta W_{i j k l}+\text { Riem }_{g} * W^{2} I_{g}
\end{aligned}
$$

Since Riem $_{g}=\left(R_{g} / 24\right)(g \boxtimes g)+$ Wey $_{g}$ and Wey I_{g} is trace free $\xlongequal{\cdots} \square$

Einstein metrics IV: some applications

> Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and Yamabe-Sobolev inequality. Optimal constant: 1/6 [Gursky-Lebrun]

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$.
\qquad

Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left.I_{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$.

Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|W e y l_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}.

Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\frac{1}{2} \Delta\left|W_{e y I_{g}}\right|^{2}=\left|\nabla W e y I_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{e y I_{g}}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}. In fact, one can get the same conclusion with an integral pinching assumption. Namely, we have

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left.I_{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}. In fact, one can get the same conclusion with an integral pinching assumption. Namely, we have

Theorem (Singer, Hebey-Vaugon, Gursky, '90s)

Every four dimensional closed Einstein manifold $\left(M^{4}, g\right)$ satisfying

$$
\int_{M}\left|W e y l_{g}\right|^{2}<\frac{1}{20} \int_{M} R_{g}^{2}
$$

is isometric to a quotient of the round sphere \mathbb{S}^{4}.
\square

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left.I_{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}. In fact, one can get the same conclusion with an integral pinching assumption. Namely, we have

Theorem (Singer, Hebey-Vaugon, Gursky, '90s)

Every four dimensional closed Einstein manifold $\left(M^{4}, g\right)$ satisfying

$$
\left.\int_{M}|W e y|_{g}\right|^{2}<\frac{1}{20} \int_{M} R_{g}^{2}
$$

is isometric to a quotient of the round sphere \mathbb{S}^{4}.
Element of the proof:

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Wey }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left.I_{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}. In fact, one can get the same conclusion with an integral pinching assumption. Namely, we have

Theorem (Singer, Hebey-Vaugon, Gursky, '90s)

Every four dimensional closed Einstein manifold $\left(M^{4}, g\right)$ satisfying

$$
\int_{M}\left|W e y l_{g}\right|^{2}<\frac{1}{20} \int_{M} R_{g}^{2}
$$

is isometric to a quotient of the round sphere \mathbb{S}^{4}.
Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and Yamabe-Sobolev inequality.

Einstein metrics IV: some applications

Now let $\left(M^{4}, g\right)$ be a closed Einstein manifolds with positive (constant) scalar curvature $R_{g}>0$. We have

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Wey } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By maximum principle, if $\left\|\left.W e y\right|_{g}\right\|_{\infty} \leq c R_{g}$, for some sufficiently small c, then Weyl $=0$. Thus, $\left(M^{4}, g\right)$ is isometric to a quotient of the round sphere \mathbb{S}^{4}. In fact, one can get the same conclusion with an integral pinching assumption. Namely, we have

Theorem (Singer, Hebey-Vaugon, Gursky, '90s)

Every four dimensional closed Einstein manifold $\left(M^{4}, g\right)$ satisfying

$$
\int_{M}\left|W_{e y l_{g}}\right|^{2}<\frac{1}{20} \int_{M} R_{g}^{2}
$$

is isometric to a quotient of the round sphere \mathbb{S}^{4}.
Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and Yamabe-Sobolev inequality. Optimal constant: $1 / 6$ [Gursky-Lebrun].

Bochner type formula of high order

```
Generally speaking, we would like to understand more properties on the Weyl
tensor of Einstein manifolds (in dimension four). We start from the following
simple observation: if a smooth function u satisfies a semilinear equation
\Deltau=f(u) on a four dimensional Einstein manifold, then the classical Bochner
formula becomes
Thus, under suitable assumptions, one can deduce Liouville type results for this
class of PDEs. To this aim we comouted a Bochner-Weitzenböch formula for
the covariant derivatives of the Weyl tensor, obtaining:
```


Theorem 1 (C.-Mastrolia)

let $\left(M^{4} \sigma\right)$ he a four dimensional Einstein manifold. Then,

Bochner type formula of high order

Generally speaking, we would like to understand more properties on the Weyl tensor of Einstein manifolds (in dimension four).

Bochner type formula of high order

Generally speaking, we would like to understand more properties on the Weyl tensor of Einstein manifolds (in dimension four). We start from the following simple observation: if a smooth function u satisfies a semilinear equation $\Delta u=f(u)$ on a four dimensional Einstein manifold, then the classical Bochner formula becomes

$$
\frac{1}{2} \Delta|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\left(\frac{1}{4} R_{g}+f^{\prime}(u)\right)|\nabla u|^{2} .
$$

Bochner type formula of high order

Generally speaking, we would like to understand more properties on the Weyl tensor of Einstein manifolds (in dimension four). We start from the following simple observation: if a smooth function u satisfies a semilinear equation $\Delta u=f(u)$ on a four dimensional Einstein manifold, then the classical Bochner formula becomes

$$
\frac{1}{2} \Delta|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\left(\frac{1}{4} R_{g}+f^{\prime}(u)\right)|\nabla u|^{2} .
$$

Thus, under suitable assumptions, one can deduce Liouville type results for this class of PDEs. To this aim we computed a Bochner-Weitzenböch formula for the covariant derivatives of the Weyl tensor, obtaining:

Bochner type formula of high order

Generally speaking, we would like to understand more properties on the Weyl tensor of Einstein manifolds (in dimension four). We start from the following simple observation: if a smooth function u satisfies a semilinear equation $\Delta u=f(u)$ on a four dimensional Einstein manifold, then the classical Bochner formula becomes

$$
\frac{1}{2} \Delta|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\left(\frac{1}{4} R_{g}+f^{\prime}(u)\right)|\nabla u|^{2} .
$$

Thus, under suitable assumptions, one can deduce Liouville type results for this class of PDEs. To this aim we computed a Bochner-Weitzenböch formula for the covariant derivatives of the Weyl tensor, obtaining:

Theorem 1 (C.-Mastrolia)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold. Then,

$$
\left.\frac{1}{2} \Delta\left|\nabla W e y I_{g}\right|^{2}=\left|\nabla^{2} W_{\text {Wey }} I_{g}\right|^{2}+\frac{13}{12} R_{g} \right\rvert\, \nabla \text { Weylg }\left._{g}\right|^{2}-10 W_{i j k l} W_{i j p q, t} W_{k l p q, t} .
$$

* G. Catino and P. Mastrolia, Bochner type formulas for the Weyl tensor on four dimensional Einstein manifolds, Int. Math. Res. Not., to appear.

Einstein metrics V : applications

```
We observe that this formula
```


\qquad

```
\(\square\) curvature operators in dimension four. In fact, on an oriented Riemannian manifold of dimension four ( \(\left.M^{4}, g\right), \Lambda^{2}\) decomposes as the sum of two subbundles \(\Lambda^{2}=\Lambda^{+} \otimes \Lambda^{-}\), which are the eigenspaces of the Hodge operator \(\star: \Lambda^{2} \rightarrow \Lambda^{2}\) corresponding respectively to the eigenvalue \(\pm 1\). Since the Weyl tensor acts on \(\Lambda^{2}\), we have the decomposition
```


Einstein metrics V : applications

We observe that this formula

$$
\frac{1}{2} \Delta\left|\nabla W_{e y} l_{g}\right|^{2}=\left|\nabla^{2} W_{e y} l_{g}\right|^{2}+\left.\frac{13}{12} R_{g}\left|\nabla W_{e y}\right|_{g}\right|^{2}-10 W_{i j k l} W_{i j p q, t} W_{k l p q, t}
$$

extends to the covariant derivative level Derdzinski identity

$$
\left.\frac{1}{2} \Delta \right\rvert\, \text { Weylg }\left._{g}\right|^{2}=\mid \nabla \text { Weylg } \left.\left._{g}\right|^{2}+\frac{1}{2} R_{g} \right\rvert\, \text { Weylg }\left._{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

Einstein metrics V: applications

We observe that this formula

$$
\frac{1}{2} \Delta\left|\nabla W_{e y l_{g}}\right|^{2}=\mid \nabla^{2} \text { Weylg } \left.\left._{g}\right|^{2}+\frac{13}{12} R_{g} \right\rvert\, \nabla \text { Wey }\left._{g}\right|^{2}-10 W_{i j k l} W_{i j p q, t} W_{k l p q, t}
$$

extends to the covariant derivative level Derdzinski identity

$$
\frac{1}{2} \Delta\left|W_{e y I_{g}}\right|^{2}=\left|\nabla W_{e y I_{g}}\right|^{2}+\frac{1}{2} R_{g}\left|W_{e y l_{g}}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}
$$

By standard commutation rules, it is quite easy to derive "rough" Bochner type identity for the covariant derivative of Weyl, and, with some work, even a formula for the k-th covariant derivative $\nabla^{k} W$.

Einstein metrics V : applications

We observe that this formula

$$
\left.\frac{1}{2} \Delta \right\rvert\, \nabla \text { Weylg }\left._{g}\right|^{2}=\mid \nabla^{2} \text { Weylg } \left.\left._{g}\right|^{2}+\frac{13}{12} R_{g} \right\rvert\, \nabla \text { Weylg }\left._{g}\right|^{2}-10 W_{i j k l} W_{i j p q, t} W_{k l p q, t}
$$

extends to the covariant derivative level Derdzinski identity

$$
\frac{1}{2} \Delta\left|W_{e y I_{g}}\right|^{2}=\left|\nabla W e y I_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{e y l_{g}}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

By standard commutation rules, it is quite easy to derive "rough" Bochner type identity for the covariant derivative of Weyl, and, with some work, even a formula for the k -th covariant derivative $\nabla^{k} W$.
The proof of the theorem, instead, relies heavily on the algebraic structure of curvature operators in dimension four. In fact, on an oriented Riemannian manifold of dimension four $\left(M^{4}, g\right), \Lambda^{2}$ decomposes as the sum of two subbundles $\Lambda^{2}=\Lambda^{+} \otimes \Lambda^{-}$, which are the eigenspaces of the Hodge operator $\star: \Lambda^{2} \rightarrow \Lambda^{2}$ corresponding respectively to the eigenvalue ± 1. Since the Weyl tensor acts on Λ^{2}, we have the decomposition

$$
\text { Weyl }_{g}=W_{g}^{+}+W_{g}^{-}
$$

where the self-dual and anti-self-dual $W^{ \pm}$are trace-free endomorphisms of $\Lambda^{ \pm}$.

Einstein metrics VI: applications

As a consequence, we can show the following

Corollary 1. (C.-Mastrolia)
Let $\left(M^{4}, g\right)$ be a closed four dimensional Einstein manifold. Then

Einstein metrics VI: applications

As a consequence, we can show the following:

Corollary 1 (C.-Mastrolia)

Let $\left(M^{4}, g\right)$ be a closed four dimensional Einstein manifold. Then

$$
\begin{gathered}
\int\left|\nabla^{2} W_{g}^{ \pm}\right|^{2}-\frac{5}{3} \int\left|\Delta W_{g}^{ \pm}\right|^{2}+\frac{1}{4} R_{g} \int\left|\nabla W_{g}^{ \pm}\right|^{2}=0, \\
\int\left|\nabla^{2} W_{g}^{ \pm}\right|^{2}+\frac{23}{12} R_{g} \int\left|\nabla W_{g}^{ \pm}\right|^{2}=\frac{5}{12} \int\left|W_{g}^{ \pm}\right|^{2}\left(6\left|W_{g}^{ \pm}\right|^{2}-R_{g}^{2}\right) .
\end{gathered}
$$

Einstein metrics VI: applications

As a consequence, we can show the following:

Corollary 1 (C.-Mastrolia)

Let $\left(M^{4}, g\right)$ be a closed four dimensional Einstein manifold. Then

$$
\begin{gathered}
\int\left|\nabla^{2} W_{g}^{ \pm}\right|^{2}-\frac{5}{3} \int\left|\Delta W_{g}^{ \pm}\right|^{2}+\frac{1}{4} R_{g} \int\left|\nabla W_{g}^{ \pm}\right|^{2}=0 \\
\int\left|\nabla^{2} W_{g}^{ \pm}\right|^{2}+\frac{23}{12} R_{g} \int\left|\nabla W_{g}^{ \pm}\right|^{2}=\frac{5}{12} \int\left|W_{g}^{ \pm}\right|^{2}\left(6\left|W_{g}^{ \pm}\right|^{2}-R_{g}^{2}\right)
\end{gathered}
$$

Corollary 2 (C.-Mastrolia)

Let $\left(M^{4}, g\right)$ be a four dimensional Einstein manifold with positive scalar curvature. If

$$
\int\left|\nabla^{2} W_{g}\right|^{2} \leq \frac{1}{12} R_{g} \int\left|\nabla W_{g}\right|^{2}
$$

then $\left(M^{4}, g\right)$ is isometric to either $\mathbb{S}^{4}, \mathbb{C P}^{2}$ or quotients of $\mathbb{S}^{2} \times \mathbb{S}^{2}$.

Harmonic Weyl curvature

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl

- Einstein metrics have harmonic Weyl curvature.
- There are tonological obstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$).
- As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula holds

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds. This follows from the integral identity [Chang-Gursky-Yang]

which holds on every compact four manifolds.

Harmonic Weyl curvature

$$
\mathcal{S F} \subset{\underset{\sim}{\mathcal{E}}}_{\substack{\mathcal{H} \mathcal{W}}} \subset \mathcal{Y}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.
- There are tonological ohstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$). As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula holds

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds. This follows from the integral identity [Chang-Gursky-Yang]

Harmonic Weyl curvature

$$
\begin{aligned}
& \mathcal{S F} \subset \mathcal{E} \subset \mathcal{Y} \\
& \cap \\
& \mathcal{H W}
\end{aligned}
$$

Let M^{4} be a closed manifold.

\qquad

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \begin{gathered}
\mathcal{E} \\
\\
\\
\\
\mathcal{H W W} \\
\\
\\
\\
\end{gathered}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \underset{\sim}{\mathcal{E}} \quad \subset \mathcal{Y}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds. This follows from the integral identity [Chang-Gursky-Yang]

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \begin{gathered}
\mathcal{E} \\
\\
\\
\\
\mathcal{H W W} \\
\\
\\
\\
\end{gathered}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.
- There are topological obstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$).

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds. This follows from the integral identity [Chang-Gursky-Yang]

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \underset{\sim}{\mathcal{E}} \subset \mathcal{Y}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.
- There are topological obstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$).
- As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula holds

$$
\frac{1}{2} \Delta\left|W_{g}\right|^{2}=\left|\nabla W_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \underset{\cap}{\mathcal{E}} \subset \mathcal{Y}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.
- There are topological obstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$).
- As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula holds

$$
\frac{1}{2} \Delta\left|W_{g}\right|^{2}=\left|\nabla W_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}
$$

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds.

Harmonic Weyl curvature

$$
\mathcal{S F} \subset \underset{\cap}{\mathcal{E}} \subset \mathcal{Y}
$$

Let M^{4} be a closed manifold. A Riemannian metric g on M^{4} has harmonic Weyl curvature if

$$
\delta W=\nabla_{t} W_{i j k t}=0
$$

- Einstein metrics have harmonic Weyl curvature.
- There are topological obstructions to the existence of harmonic Weyl metrics (e.g. Bourguignon: either Einstein or $\tau(M)=0$).
- As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula holds

$$
\frac{1}{2} \Delta\left|W_{g}\right|^{2}=\left|\nabla W_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q} .
$$

Actually this formula characterizes harmonic Weyl metrics on closed four manifolds. This follows from the integral identity [Chang-Gursky-Yang]

$$
\int_{M}\left(\left|\nabla W_{g}\right|^{2}-4\left|\delta W_{g}\right|^{2}+\frac{1}{2} R_{g}\left|W_{g}\right|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}\right) d V_{g}=0
$$

which holds on every compact four manifolds.

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem. we define the conformal invariant

[^1]
A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$.

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem, we define the conformal invariant

$$
\mathcal{D}(M,[g]):=\inf _{\tilde{g} \in[g]} \mathfrak{D}(\tilde{g})
$$

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem, we define the conformal invariant

$$
\mathcal{D}(M,[g]):=\inf _{\tilde{g} \in[g]} \mathfrak{D}(\tilde{g})
$$

Questions:

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem, we define the conformal invariant

$$
\mathcal{D}(M,[g]):=\inf _{\tilde{g} \in[g]} \mathfrak{D}(\tilde{g})
$$

Questions:

1. What are the geometric properties of critical metrics in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$?

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem, we define the conformal invariant

$$
\mathcal{D}(M,[g]):=\inf _{\tilde{g} \in[g]} \mathfrak{D}(\tilde{g})
$$

Questions:

1. What are the geometric properties of critical metrics in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$?
2. Is the existence of minimizers guaranteed in every conformal class?

A new variational problem

From a variational point of view it seems natural to consider the quadratic scaling-invariant Riemannian functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Obviously harmonic Weyl metrics are critical points (absolute minima) of $\mathfrak{D}(g)$. In the same spirit of the Yamabe problem, we define the conformal invariant

$$
\mathcal{D}(M,[g]):=\inf _{\tilde{g} \in[g]} \mathfrak{D}(\tilde{g})
$$

Questions:

1. What are the geometric properties of critical metrics in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$?
2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak harmonic Weyl metric, submitted.

Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class for the functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

In this case we say that g is a weak harmonic Weyl metric.

Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class for the functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Proposition (C.-Mastrolia-Monticelli-Punzo)

A metric is critical in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$ if and only if it satisfies the Weitzenböck formula
$\frac{1}{2} \Delta|W|^{2}=|\nabla W|^{2}+\frac{1}{2} R|W|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}-8|\delta W|^{2}+\frac{4}{\operatorname{Vol}(M)} \int_{M}|\delta W|^{2} d V$

Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class for the functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Proposition (C.-Mastrolia-Monticelli-Punzo)

A metric is critical in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$ if and only if it satisfies the Weitzenböck formula
$\frac{1}{2} \Delta|W|^{2}=|\nabla W|^{2}+\frac{1}{2} R|W|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}-8|\delta W|^{2}+\frac{4}{\operatorname{Vol}(M)} \int_{M}|\delta W|^{2} d V$
In this case we say that g is a weak harmonic Weyl metric.

Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class for the functional

$$
\mathfrak{D}(g):=\operatorname{Vol}_{g}(M)^{\frac{1}{2}} \int_{M}\left|\delta_{g} W_{g}\right|_{g}^{2} d V_{g}
$$

Proposition (C.-Mastrolia-Monticelli-Punzo)

A metric is critical in the conformal class for the functional $g \mapsto \mathfrak{D}(g)$ if and only if it satisfies the Weitzenböck formula
$\frac{1}{2} \Delta|W|^{2}=|\nabla W|^{2}+\frac{1}{2} R|W|^{2}-3 W_{i j k l} W_{i j p q} W_{k l p q}-8|\delta W|^{2}+\frac{4}{\operatorname{Vol}(M)} \int_{M}|\delta W|^{2} d V$
In this case we say that g is a weak harmonic Weyl metric.
By Derdzinski formula, harmonic Weyl implies weak harmonic Weyl.

$$
\begin{array}{llcc}
\mathcal{S F} \subset & \mathcal{E} & \subset & \mathcal{Y} \\
& \cap & & \\
& \mathcal{H W} & \subset & \mathcal{W H W}
\end{array}
$$

Existence of WHW metrics

Theorem 2 (C.-Mastrolia-Monticelli-Punzo)

> Aubin proved that every closed Riemannian manifold admits a constant negative scalar curvature metric. Besides this one, Theorem 2 is the only existence result of a canonical metric, which generalizes the Einstein condition, on every four-dimensional Riemannian manifold, without any topological obstructions. Aubin, on every four-dimensional manifold M^{4} we can choose a reference metric g_{0} with $\left|W_{g_{0}}\right| g_{0}>0$. Then, we prove that on $\left(M^{4}, g_{0}\right)$ the infimum $\mathcal{D}\left(M,\left[g_{0}\right]\right)$ is attained by a conformal metric $g \in\left[g_{0}\right]$, which is a weak harmonic Weyl metric. Moreover, we show that every critical point in the conformal class [g_{0}] is necessarily a minimum point.

Existence of WHW metrics

Theorem 2 (C.-Mastrolia-Monticelli-Punzo)

On every closed four-dimensional manifold there exists a weak harmonic Weyl metric.

Existence of WHW metrics

Theorem 2 (C.-Mastrolia-Monticelli-Punzo)

On every closed four-dimensional manifold there exists a weak harmonic Weyl metric.

- Aubin proved that every closed Riemannian manifold admits a constant negative scalar curvature metric. Besides this one, Theorem 2 is the only existence result of a canonical metric, which generalizes the Einstein condition, on every four-dimensional Riemannian manifold, without any topological obstructions.

Existence of WHW metrics

Theorem 2 (C.-Mastrolia-Monticelli-Punzo)

On every closed four-dimensional manifold there exists a weak harmonic Weyl metric.

- Aubin proved that every closed Riemannian manifold admits a constant negative scalar curvature metric. Besides this one, Theorem 2 is the only existence result of a canonical metric, which generalizes the Einstein condition, on every four-dimensional Riemannian manifold, without any topological obstructions.
- The metric in Theorem 2 is constructed as follows: first, thanks to a result of Aubin, on every four-dimensional manifold M^{4} we can choose a reference metric g_{0} with $\left|W_{g_{0}}\right| g_{0}>0$. Then, we prove that on $\left(M^{4}, g_{0}\right)$ the infimum $\mathcal{D}\left(M,\left[g_{0}\right]\right)$ is attained by a conformal metric $g \in\left[g_{0}\right]$, which is a weak harmonic Weyl metric. Moreover, we show that every critical point in the conformal class [g_{0}] is necessarily a minimum point.

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

where all the geometric quantities are referred to g_{0} and the function v belongs to

 the convex cone[^2] of the nroblem

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

$$
\mathfrak{D}(v):=\mathfrak{D}\left(v^{-2} g_{0}\right)
$$

where all the geometric quantities are referred to g_{0} and the function v belongs to

 the convex cone[^3]of the problem

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

$$
\begin{aligned}
\mathfrak{D}(v) & :=\mathfrak{D}\left(v^{-2} g_{0}\right) \\
& =\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(\frac{1}{4}|W|^{2}|\nabla v|^{2}+|\delta W|^{2} v^{2}-(v)_{s}^{2} W_{s i j k} W_{p i j k, p}\right) d V,
\end{aligned}
$$

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

$$
\begin{aligned}
\mathfrak{D}(v) & :=\mathfrak{D}\left(v^{-2} g_{0}\right) \\
& =\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(\frac{1}{4}|W|^{2}|\nabla v|^{2}+|\delta W|^{2} v^{2}-(v)_{s}^{2} W_{s i j k} W_{p i j k, p}\right) d V,
\end{aligned}
$$

where all the geometric quantities are referred to g_{0} and the function v belongs to the convex cone

$$
H(M):=\left\{u \in H^{1}(M): u>0 \text { a.e. and } \int_{M} u^{-4} d V<\infty\right\} .
$$

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

$$
\begin{aligned}
\mathfrak{D}(v) & :=\mathfrak{D}\left(v^{-2} g_{0}\right) \\
& =\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(\frac{1}{4}|W|^{2}|\nabla v|^{2}+|\delta W|^{2} v^{2}-(v)_{s}^{2} W_{s i j k} W_{p i j k, p}\right) d V,
\end{aligned}
$$

where all the geometric quantities are referred to g_{0} and the function v belongs to the convex cone

$$
H(M):=\left\{u \in H^{1}(M): u>0 \text { a.e. and } \int_{M} u^{-4} d V<\infty\right\} .
$$

We define

$$
\mathcal{D}:=\inf _{u \in H(M)} \mathfrak{D}(u) .
$$

of the problem

Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M^{4} with the metric g_{0} constructed by Aubin and we consider the functional

$$
\begin{aligned}
\mathfrak{D}(v) & :=\mathfrak{D}\left(v^{-2} g_{0}\right) \\
& =\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(\frac{1}{4}|W|^{2}|\nabla v|^{2}+|\delta W|^{2} v^{2}-(v)_{s}^{2} W_{s i j k} W_{p i j k, p}\right) d V,
\end{aligned}
$$

where all the geometric quantities are referred to g_{0} and the function v belongs to the convex cone

$$
H(M):=\left\{u \in H^{1}(M): u>0 \text { a.e. and } \int_{M} u^{-4} d V<\infty\right\} .
$$

We define

$$
\mathcal{D}:=\inf _{u \in H(M)} \mathfrak{D}(u) .
$$

We note that the condition $|W|>0$ is crucial, as it implies the uniform ellipticity of the problem.

Sketch of the proof II

One has

$$
\mathfrak{D}(v)=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(a|\nabla v|^{2}+c v^{2}\right) d V=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M} v L v d V
$$

Sketch of the proof II

One has

$$
\mathfrak{D}(v)=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(a|\nabla v|^{2}+c v^{2}\right) d V=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M} v L v d V
$$

with $a \in C^{\infty}(M), a>0, c \in C^{\infty}(M)$ and the uniformly elliptic self-adjoint operator L is given by

$$
L v:=-\operatorname{div}(a \nabla v)+c v .
$$

Since, by definition, $\mathfrak{D}(v) \geq 0$, we get

Sketch of the proof II

One has

$$
\mathfrak{D}(v)=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(a|\nabla v|^{2}+c v^{2}\right) d V=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M} v L v d V
$$

with $a \in C^{\infty}(M), a>0, c \in C^{\infty}(M)$ and the uniformly elliptic self-adjoint operator L is given by

$$
L v:=-\operatorname{div}(a \nabla v)+c v .
$$

Since, by definition, $\mathfrak{D}(v) \geq 0$, we get

$$
\lambda_{1}:=\inf _{u \in H^{1}(M), u \neq 0} \frac{\int_{M}\left(a|\nabla u|^{2}+c u^{2}\right) d V}{\int_{M} u^{2} d V} \geq 0 .
$$

Sketch of the proof II

One has

$$
\mathfrak{D}(v)=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M}\left(a|\nabla v|^{2}+c v^{2}\right) d V=\left(\int_{M} v^{-4} d V\right)^{\frac{1}{2}} \int_{M} v L v d V
$$

with $a \in C^{\infty}(M), a>0, c \in C^{\infty}(M)$ and the uniformly elliptic self-adjoint operator L is given by

$$
L v:=-\operatorname{div}(a \nabla v)+c v .
$$

Since, by definition, $\mathfrak{D}(v) \geq 0$, we get

$$
\lambda_{1}:=\inf _{u \in H^{1}(M), u \neq 0} \frac{\int_{M}\left(a|\nabla u|^{2}+c u^{2}\right) d V}{\int_{M} u^{2} d V} \geq 0 .
$$

By standard elliptic theory, there exists a smooth, positive, first eigenfunction φ_{1} of L solution of $L \varphi_{1}=\lambda_{1} \varphi_{1}$.

Sketch of the proof III

We have the following (strong) maximum principle.

Sketch of the proof III

We have the following (strong) maximum principle.

Lemma 1

Let $\lambda_{1}>0$. If $u \in H^{1}(M)$ satisfies $L u \geq 0$ in the weak sense, then either $u=0$ a.e. on M or $\operatorname{essinf}_{M} u>0$.
\qquad

Sketch of the proof III

We have the following (strong) maximum principle.

Lemma 1

Let $\lambda_{1}>0$. If $u \in H^{1}(M)$ satisfies $L u \geq 0$ in the weak sense, then either $u=0$ a.e. on M or $\operatorname{essinf}_{M} u>0$.

Moreover, by Jensen, we can show a two-sided estimate on $\mathcal{D}=\inf _{u \in H(M)} \mathfrak{D}(u)$ in terms of λ_{1}

Sketch of the proof III

We have the following (strong) maximum principle.

Lemma 1

Let $\lambda_{1}>0$. If $u \in H^{1}(M)$ satisfies $L u \geq 0$ in the weak sense, then either $u=0$ a.e. on M or $\operatorname{essinf}_{M} u>0$.

Moreover, by Jensen, we can show a two-sided estimate on $\mathcal{D}=\inf _{u \in H(M)} \mathfrak{D}(u)$ in terms of λ_{1}

Lemma 2

We have

$$
\operatorname{Vol}(M)^{\frac{3}{2}} \lambda_{1} \leq \mathcal{D} \leq \frac{\int_{M} \varphi_{1}^{2} d V}{\left(\int_{M} \varphi_{1}^{-4} d V\right)^{\frac{1}{2}}} \lambda_{1}
$$

In particular $\mathcal{D}=0$ if and only if $\lambda_{1}=0$ and, if $\mathcal{D}>0$, then the maximum principle in Lemma 1 holds.

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$.

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$. Consequently, v is a (weak) solution of the Euler-Lagrange equation

$$
-\frac{1}{4} \operatorname{div}\left(|W|^{2} \nabla v\right)+\left(|\delta W|^{2}+\operatorname{div}\left(W_{s i j k} W_{p i j k, p}\right)\right) v=\mathfrak{D}(v)\left(\int_{M} v^{-4} d V\right)^{-3 / 2} \frac{1}{v^{5}},
$$

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all the geometric quantities are referred to g_{0}.

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$. Consequently, v is a (weak) solution of the Euler-Lagrange equation

$$
-\frac{1}{4} \operatorname{div}\left(|W|^{2} \nabla v\right)+\left(|\delta W|^{2}+\operatorname{div}\left(W_{s i j k} W_{p i j k, p}\right)\right) v=\mathfrak{D}(v)\left(\int_{M} v^{-4} d V\right)^{-3 / 2} \frac{1}{v^{5}},
$$

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all the geometric quantities are referred to g_{0}. Moreover, v is unique up to scaling.

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$. Consequently, v is a (weak) solution of the Euler-Lagrange equation

$$
-\frac{1}{4} \operatorname{div}\left(|W|^{2} \nabla v\right)+\left(|\delta W|^{2}+\operatorname{div}\left(W_{s i j k} W_{p i j k, p}\right)\right) v=\mathfrak{D}(v)\left(\int_{M} v^{-4} d V\right)^{-3 / 2} \frac{1}{v^{5}},
$$

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all the geometric quantities are referred to g_{0}. Moreover, v is unique up to scaling. Hence, by standard elliptic regularity theory, $v \in C^{\infty}(M)$ and

$$
\mathcal{D}\left(M,\left[g_{0}\right]\right)=\min _{0<u \in C^{\infty}(M)} \mathfrak{D}(u)=\min _{u \in H(M)} \mathfrak{D}(u)=\mathcal{D} .
$$

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$. Consequently, v is a (weak) solution of the Euler-Lagrange equation

$$
-\frac{1}{4} \operatorname{div}\left(|W|^{2} \nabla v\right)+\left(|\delta W|^{2}+\operatorname{div}\left(W_{s i j k} W_{p i j k, p}\right)\right) v=\mathfrak{D}(v)\left(\int_{M} v^{-4} d V\right)^{-3 / 2} \frac{1}{v^{5}},
$$

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all the geometric quantities are referred to g_{0}. Moreover, v is unique up to scaling. Hence, by standard elliptic regularity theory, $v \in C^{\infty}(M)$ and

$$
\mathcal{D}\left(M,\left[g_{0}\right]\right)=\min _{0<u \in C^{\infty}(M)} \mathfrak{D}(u)=\min _{u \in H(M)} \mathfrak{D}(u)=\mathcal{D} .
$$

Therefore

$$
g:=v^{-2} g_{0}
$$

is a weak harmonic Weyl metric on M^{4}. \square

Sketch of the proof IV

A variational argument shows that $u \mapsto \mathfrak{D}(u)$ admits a minimum point v in $H(M)$. Consequently, v is a (weak) solution of the Euler-Lagrange equation

$$
-\frac{1}{4} \operatorname{div}\left(|W|^{2} \nabla v\right)+\left(|\delta W|^{2}+\operatorname{div}\left(W_{s i j k} W_{p i j k, p}\right)\right) v=\mathfrak{D}(v)\left(\int_{M} v^{-4} d V\right)^{-3 / 2} \frac{1}{v^{5}},
$$

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all the geometric quantities are referred to g_{0}. Moreover, v is unique up to scaling. Hence, by standard elliptic regularity theory, $v \in C^{\infty}(M)$ and

$$
\mathcal{D}\left(M,\left[g_{0}\right]\right)=\min _{0<u \in C^{\infty}(M)} \mathfrak{D}(u)=\min _{u \in H(M)} \mathfrak{D}(u)=\mathcal{D} .
$$

Therefore

$$
g:=v^{-2} g_{0}
$$

is a weak harmonic Weyl metric on M^{4}. \square
Conclusion: if we choose a reference metric g_{0} with $\left|W_{g_{0}}\right| g_{0}>0$, then we can find a conformal metric $g=v^{-2} g_{0}, v \in C^{\infty}(M)$, minimizing the functional $\mathfrak{D}(g)$.

Degenerate case

```
What happens in the degenerate case, i.e. if }|\mp@subsup{W}{\mp@subsup{g}{0}{}}{}\mp@subsup{|}{0}{}=0\mathrm{ somewhere in M?
We can show that uniqueness (up to scaling) of smooth (C') solutions to the
equation still holds, unless g}\mp@subsup{g}{0}{}\mathrm{ is locally conformally flat, i.e. }\mp@subsup{W}{\mp@subsup{g}{0}{}}{}\equiv0\mathrm{ . Moreover
we have the following non-existence results:
    - If }|\mp@subsup{W}{\mp@subsup{g}{0}{}}{}\mp@subsup{|}{\mp@subsup{g}{0}{}}{}\equiv0\mathrm{ on some open set }\Omega\subsetM\mathrm{ , then we can show that a smooth
    metric g= v
    Wg}\equiv0\mathrm{ on M (and thus W}\mp@subsup{W}{\mp@subsup{g}{0}{}}{}\equiv0)
    - In addition, if }|\mp@subsup{W}{\mp@subsup{g}{0}{}}{}\mp@subsup{|}{\mp@subsup{g}{0}{}}{}(p)=0\mathrm{ at some point }p\inM\mathrm{ and
        | (W/ | | | (x)
    then, a smooth metric g= v
    Weyl, i.e. }\mp@subsup{\delta}{g}{}\mp@subsup{W}{g}{}\equiv0\mathrm{ on M. As we have seen, there are topological
    obstructions to the existence of such a metric.
```

The remaining case, i.e. $\left|W_{g_{0}}\right|_{g_{0}}(p)=0$ at some point $p \in M$ and

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ?

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth $\left(C^{2}\right)$ solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$.

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth (C^{2}) solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth (C^{2}) solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

- If $\left|W_{g_{0}}\right|_{g_{0}} \equiv 0$ on some open set $\Omega \subset M$,

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth $\left(C^{2}\right)$ solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

- If $\left|W_{g_{0}}\right| g_{0} \equiv 0$ on some open set $\Omega \subset M$, then we can show that a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it is locally conformally flat, i.e. $W_{g} \equiv 0$ on M (and thus $W_{g_{0}} \equiv 0$).

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth $\left(C^{2}\right)$ solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

- If $\left|W_{g_{0}}\right| g_{0} \equiv 0$ on some open set $\Omega \subset M$, then we can show that a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it is locally conformally flat, i.e. $W_{g} \equiv 0$ on M (and thus $W_{g_{0}} \equiv 0$).
- In addition, if $\left|W_{g_{0}}\right|_{g_{0}}(p)=0$ at some point $p \in M$ and

$$
\frac{\mid W_{g_{0}}{\mid g g_{0}}(x)}{\operatorname{dist}_{g_{0}}(x, p)} \rightarrow 0 \quad \text { as } \operatorname{dist}_{g_{0}}(x, p) \rightarrow 0
$$

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth (C^{2}) solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

- If $\left|W_{g_{0}}\right|_{g_{0}} \equiv 0$ on some open set $\Omega \subset M$, then we can show that a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it is locally conformally flat, i.e. $W_{g} \equiv 0$ on M (and thus $W_{g_{0}} \equiv 0$).
- In addition, if $\left|W_{g_{0}}\right|_{g_{0}}(p)=0$ at some point $p \in M$ and

$$
\frac{\mid W_{g_{0}}{\mid g g_{0}}(x)}{\operatorname{dist}_{g_{0}}(x, p)} \rightarrow 0 \quad \text { as } \operatorname{dist}_{g_{0}}(x, p) \rightarrow 0
$$

then, a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it has harmonic Weyl, i.e. $\delta_{g} W_{g} \equiv 0$ on M. As we have seen, there are topological obstructions to the existence of such a metric.

Degenerate case

What happens in the degenerate case, i.e. if $\left|W_{g_{0}}\right|_{g_{0}}=0$ somewhere in M ? We can show that uniqueness (up to scaling) of smooth (C^{2}) solutions to the equation still holds, unless g_{0} is locally conformally flat, i.e. $W_{g_{0}} \equiv 0$. Moreover we have the following non-existence results:

- If $\left|W_{g_{0}}\right|_{g_{0}} \equiv 0$ on some open set $\Omega \subset M$, then we can show that a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it is locally conformally flat, i.e. $W_{g} \equiv 0$ on M (and thus $W_{g_{0}} \equiv 0$).
- In addition, if $\left|W_{g_{0}}\right|_{g_{0}}(p)=0$ at some point $p \in M$ and

$$
\frac{\mid W_{g_{0}}{\mid g g_{0}}(x)}{\operatorname{dist}_{g_{0}}(x, p)} \rightarrow 0 \quad \text { as } \operatorname{dist}_{g_{0}}(x, p) \rightarrow 0
$$

then, a smooth metric $g=v^{-2} g_{0}$ is critical if and only if it has harmonic Weyl, i.e. $\delta_{g} W_{g} \equiv 0$ on M. As we have seen, there are topological obstructions to the existence of such a metric.
The remaining case, i.e. $\left|W_{g_{0}}\right|_{g_{0}}(p)=0$ at some point $p \in M$ and

$$
\limsup _{\operatorname{dist}_{g_{0}}(x, p) \rightarrow 0} \frac{\left|W_{g_{0}}\right| g_{0}(x)}{\operatorname{dist}_{g_{0}}(x, p)}>0
$$

is open.

Thank you.

Some references:

- T. Aubin, Metriques riemanniennes et courbure, J. Differential Geometry 4 (1970) 383-424.
- J.-P. Bourguignon, Les varietes de dimension 4 a signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), n. 2, 263-286.
- G. Catino and P. Mastrolia, Bochner type formulas for the Weyl tensor on four dimensional Einstein manifolds, Int. Math. Res. Not., to appear.
- G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak harmonic Weyl metric, submitted.
- A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), n. 3, 405-433.
- M. J. Gursky, Four-manifolds with $\delta W^{+}=0$ and Einstein constants of the sphere, Math. Ann. 318 (2000) n. 3, 417-431.
- M. J. Gursky and C. Lebrun, On Einstein manifolds of positive sectional curvature, Ann. Global Anal. Geom. 17 (1999) n. 4, 315-328.

[^0]: is always attained in every conformal class $[g]$

[^1]: Questions:

 > Mna' are the geometric properties of critical metrics in the conformal class for the functional $g \mapsto D(g)$? Is the existence of minimizers guaranteed in every conformal class? G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak harmonic Weyl metric, submitted.

[^2]: We note that the condition $|W|>0$ is crucial, as it implies the uniform ellipticity

[^3]: We note that the condition $|W|>0$ is crucial, as it implies the uniform ellipticity

