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Multiscale decomposition of images

Tadmor, Nezzar & Vese (2004)



The Rudin-Osher-Fatemi model for denoising

Ω ⊂ R2 fixed bounded domain; ∂Ω Lipschitz

f ∈ L2(Ω) noisy image

ROF model
λ0 > 0 fixed parameter. Solve

min
{
λ0‖f− u‖2L2(Ω) + |u|BV(Ω) : u ∈ L

2(Ω)
}

u0 is the (unique) minimiser; v0 = f− u0 is the remainder

Remark:

|u|BV(Ω) = TV(u) = |Du|(Ω); ‖u‖BV(Ω) = ‖u‖L1(Ω) + |u|BV(Ω)



The role of parameter λ0

ROF model
λ0 > 0 fixed parameter. Solve

min
{
λ0‖f− u‖2L2(Ω) + |u|BV(Ω) : u ∈ L

2(Ω)
}

u0 is the (unique) minimiser; v0 = f− u0 is the remainder

λ0 small: total variation of u0 more penalised ;
u0 has smaller total variation (blocky reconstruction); most noise but
also more detailed features are removed

λ0 big: fidelity term ‖f− u0‖ more penalised ;
u0 is closer to f; more detailed features are preserved, less noise is
removed



The T-N-V multiscale procedure: starting point

Start with a (relatively) small λ0 > 0. Solve

min
{
λ0‖f− u‖2 + |u| : u ∈ L2(Ω)

}
u0 is the (unique) minimiser; v0 = f− u0 is the remainder

f = u0 + v0. Let σ0 = u0, hence f = σ0 + v0

Remark: here and in what follows

‖ · ‖ = ‖ · ‖L2(Ω) and | · | = | · |BV(Ω)



The T-N-V multiscale procedure: second step

We have

f = u0 + v0. Let σ0 = u0, hence f = σ0 + v0

Raise the parameter λ. Take λ0<λ1 and replace f by the remainder
v0. Solve

min
{
λ1‖v0 − u‖2 + |u| : u ∈ L2(Ω)

}
that is

min
{
λ1‖f− (u0 + u)‖2 + |u| : u ∈ L2(Ω)

}
u1 is the (unique) minimiser; v1 = v0 − u1 is the remainder



The T-N-V multiscale procedure: second step

We have

f = u0 + v0. Let σ0 = u0, hence f = σ0 + v0

Raise the parameter λ. Take λ0<λ1 and replace f by the remainder
v0. Solve

min
{
λ1‖v0 − u‖2 + |u| : u ∈ L2(Ω)

}
that is

min
{
λ1‖f− (σ0 + u)‖2 + |u| : u ∈ L2(Ω)

}
u1 is the (unique) minimiser; v1 = v0 − u1 is the remainder

f = u0 + u1 + v1. Let σ1 = u0 + u1, hence f = σ1 + v1



The T-N-V multiscale procedure: iteration

Take 0 < λ0 < λ1 < . . . < λn < . . .. By induction, for any n > 1
define

σn−1 =

n−1∑
i=0

ui and vn−1 = f− σn−1, hence f = σn−1 + vn−1,

and solve

min
{
λn‖vn−1 − u‖2 + |u| : u ∈ L2(Ω)

}
that is

min
{
λn‖f− (σn−1 + u)‖2 + |u| : u ∈ L2(Ω)

}
un is the (unique) minimiser; vn = vn−1 − un is the remainder

and

σn =

n∑
i=0

ui and vn = f− σn, hence f = σn + vn



The T-N-V multiscale decomposition

Take 0 < λ0 < λ1 < . . . < λn < . . .. For any n > 0 we have

f = u0 + u1 + . . .+ un + vn = σn + vn.

Theorem — Tadmor, Nezzar & Vese (2004)
λ0 > 0 fixed parameter. Let

λn = 2nλ0 for any n > 0.

If f ∈ BV(Ω) then lim
n
vn = 0 in L2(Ω)

that is, f has the following multiscale decomposition

f = lim
n
σn =

∞∑
i=0

ui in the L2(Ω) sense

Remark: it holds also for f in some intermediate space between L2(Ω)
and BV(Ω)



Extension to nonlinear inverse problems

The Calderón inverse problem



Electrical Impedance Tomography: the conducting body

Ω ⊂ RN (N > 2) fixed bounded domain; ∂Ω Lipschitz

0 < c0 < c1 fixed constants

Classes of conductivity tensors
The anisotropic case:
Msym(c0, c1) class of symmetric conductivity tensors σ, that is,
σ ∈ L∞(Ω,MN×N

sym (R)) satisfying the uniform ellipticity condition

0 < c0IN 6 σ(x) 6 c1IN for a.e. x ∈ Ω

The isotropic case:
Mscal(c0, c1) class of scalar conductivities σ, that is, σ ∈ L∞(Ω)
satisfying the uniform ellipticity condition

0 < c0 6 σ(x) 6 c1 for a.e. x ∈ Ω



The Neumann-to-Dirichlet map

Conductivity in Ω: σ ∈Msym(c0, c1)

Prescribed current density on the boundary ∂Ω:

g ∈ L2∗(∂Ω) =
{
ψ ∈ L2(∂Ω) :

∫
∂Ω

ψ = 0
}

Electrostatic potential in Ω: U solution to the Neumann problem
div(σ∇U) = 0 in Ω
σ∇U · ν = g on ∂Ω∫
∂Ω

U = 0

Neumann-to-Dirichlet map

Λ(σ) : L2∗(∂Ω)→ L2∗(∂Ω) where

Λ(σ)[g] = U|∂Ω ∈ L
2
∗(∂Ω) for any g ∈ L2∗(∂Ω)



Electrical Impedance Tomography: the inverse problem

Inverse conductivity problem — Calderón (1980)

Determine the conductivity tensor σ from electrostatic measurements on
the boundary, that is, by measuring the Neumann-to-Dirichlet map Λ(σ)

The forward operator:

Λ : M → L(L2∗(∂Ω),L2∗(∂Ω))
σ 7→ Λ(σ)

where M = Msym or M = Mscal

Uniqueness issue
Does the Neumann-to-Dirichlet map Λ(σ) uniquely determine the
conductivity tensor σ? Is the forward operator Λ injective?



Uniqueness for scalar conductivities

N = 3; σ ∈Mscal

Kohn & Vogelius (1984) — Sylvester & Uhlmann (1987) — Isakov (1988)
Haberman & Tataru (2013) — Caro & Rogers (2016)
Haberman (2015) σ ∈W1,3

N = 2; σ ∈Mscal, Ω simply connected
Nachman (1995)
Astala & Päivärinta (2006) σ ∈ L∞
N = 2; σ ∈Msym, Ω simply connected
Astala, Päivärinta & Lassas (2005) σ ∈ L∞

If Λ(σ) = Λ(σ1) then ∃ϕ quasiconformal mapping

with ϕ = Id on ∂Ω such that σ1 = ϕ∗(σ).



Setup of the inverse problem: reconstruction

Unknown: σ̃0 ∈M, M = Msym(c0, c1) or M = Mscal(c0, c1)

Exact data: Λ0 = Λ(σ̃0)

Reconstruction
Numerically reconstruct σ̃0 from (an approximation of) Λ(σ̃0)

Available (measured) data: Λ̃ ∈ L(L2∗(∂Ω),L2∗(∂Ω)) with

‖Λ̃−Λ0‖ 6 ε, ε > 0 is the noise level

where ‖ · ‖ = ‖ · ‖L2-L2 = ‖ · ‖L(L2∗(∂Ω),L2∗(∂Ω))

Main issues
Nonlinearity
Ill-posedness



Variational approach: regularised minimisation problem

Regularised variational problem
µ0 > 0 fixed parameter. Solve

min
{
‖Λ̃−Λ(σ)‖2 + µ0R(σ) : σ ∈M

}
R regularisation operator; µ0 regularisation coefficient

Choice of the regularisation operator: total variation penalisation

R(σ) = |σ|BV(Ω) = |σ|

Hence, for λ0 = 1/µ0, solve

min
{
λ0‖Λ̃−Λ(σ)‖2 + |σ| : σ ∈M

}
σ0 = u0 is a minimiser



Why the L2-L2-norm instead of the natural one?

Continuity with respect to G-convergence – R. (2015)
Let σn, σ ∈Msym(c0, c1) such that σn G-converges to σ. Then

‖Λ(σn) −Λ(σ)‖L2-L2 → 0.

Hölder continuity with respect to the L1 norm
For any σ1, σ2 ∈Msym(c0, c1), we have, for some 0 < β < 1 and C0 > 0,

‖Λ(σ1) −Λ(σ2)‖L2-L2 6 C0‖σ1 − σ2‖βL1(Ω)
.

Remark: the L2-L2 norm controls the error on the so-called experimental
measurements introduced by Somersalo, Cheney, & Isaacson (1992).
R. (2015): if R(σ) is the resistance matrix associated to σ, we have

‖R(σ1) − R(σ2)‖ 6 C‖Λ(σ1) −Λ(σ2)‖L2-L2



Multiscale approach for nonlinear inverse problems

The Calderón inverse problem



Functional setting

X Banach space with norm ‖ · ‖X

X = L1(Ω,MN×N
sym (R)) or X = L1(Ω) with norm ‖ · ‖L1(Ω)

E ⊂ X suitable closed subset

E = M with M = Msym(c0, c1) or M = Mscal(c0, c1)

Y metric space with distance dY

Y = L(L2∗(∂Ω),L2∗(∂Ω))

with dY induced by its norm ‖ · ‖ = ‖ · ‖L2-L2



Functional setting and starting point

Λ : E→ Y continuous and Λ̃ ∈ Y

Λ : M → L(L2∗(Ω),L2∗(Ω))
σ 7→ Λ(σ)

Λ̃ ∈ L(L2∗(∂Ω),L2∗(∂Ω)) is the measured Neumann-to-Dirichlet map

Regularisation operator

R = | · | : X→ [0,+∞]

R = | · | = | · |BV(Ω) : L
1(Ω,MN×N

sym (R))→ [0,+∞]

Solve, for λ0 > 0 and a0 > 0,

min
{
λ0

[
‖Λ̃−Λ(σ)‖2 + a0|σ|

]
+ |σ| : σ ∈M

}
σ0 = u0 is a minimiser



Multiscale procedure: iteration

Take 0 < λ0 < λ1 < . . . < λn < . . . and
0 6 . . . 6 an 6 . . . 6 a1 6 a0. By induction, for any n > 1 define

σn−1 =

n−1∑
i=0

ui

and solve

min
{
λn

[
‖Λ̃−Λ(σn−1 + u)‖2+an|σn−1 + u|

]
+ |u| : (σn−1 + u) ∈M

}
un is a minimiser

and

σn =

n∑
i=0

ui



Main remark and notation

min
{
λn

[
‖Λ̃−Λ(σn−1 + u)‖2+an|σn−1 + u|

]
+ |u| : (σn−1 + u) ∈M

}
By taking u = 0 and using an 6 an−1, we observe that for any n > 1

‖Λ̃−Λ(σn)‖2 + an|σn| 6 ‖Λ̃−Λ(σn−1)‖2 + an−1|σn−1|

Let

δ0 = lim
n

[
‖Λ̃−Λ(σn)‖2 + an|σn|

]1/2
and

ε0 = inf
{
‖Λ̃−Λ(σ)‖ : σ ∈M

}
Clearly

ε0 6 δ0



Convergence in the data space

Theorem: convergence of Λ(σn)
Assume

an 6 an−1 for any n > 1, lim
n
an = 0 and lim sup

n

2n

λn
< +∞.

Then
ε0 = δ0

and
lim
n
‖Λ̃−Λ(σn)‖ = ε0 = inf

{
‖Λ̃−Λ(σ)‖ : σ ∈M

}

Remark: it is enough to take λ0 > 0 fixed parameter and let

an = 0 and λn = 2nλ0 for any n > 0



Multiscale decomposition in a general setting

Additive case



General abstract setting

X Banach space with norm ‖ · ‖X; E ⊂ X suitable closed subset

Y metric space with distance dY

Λ : E→ Y continuous and Λ̃ ∈ Y

Regularisation operator

R = | · | : X→ [0,+∞] such that

|0| = 0 and |− u| = |u| ∀ u ∈ X

|u1 + u2| 6 |u1|+ |u2| ∀ u1,u2 ∈ X

{u ∈ X : |u| < +∞} dense in X

| · | sequentially lower semicontinuous on X, with respect to the
convergence in X

{u ∈ X : |u| 6 b} sequentially compact in X ∀ b ∈ R



Examples of admissible regularisations

Ω ⊂ RN (N > 1) fixed bounded domain; ∂Ω Lipschitz

BV regularisation:
X = L1(Ω), with norm ‖ · ‖L1(Ω); E ⊂ X suitable closed subset

R(u) = |u| = ‖u‖BV(Ω) ∀ u ∈ L1(Ω)

W1,2 regularisation:
X = L2(Ω), with norm ‖ · ‖L2(Ω); E ⊂ X suitable closed subset

R(u) = |u| = ‖u‖W1,2(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω) ∀ u ∈ L2(Ω)

C0,α regularisation, 0 < α 6 1:
X = C0(Ω), with the sup norm; E ⊂ X suitable closed subset

R(u) = |u| = ‖u‖C0,α(Ω) = ‖u‖L∞(Ω) + |u|C0,α(Ω) ∀ u ∈ C0(Ω)



Example: denoising of images or signals

Setting:

X Banach space with norm ‖ · ‖X; E ⊂ X suitable closed subset
Y metric space with distance dY
Λ : E→ Y continuous and Λ̃ ∈ Y
Regularisation R = | · | : X→ [0,+∞]

Denoising of images or signals:
Ω ⊂ RN, N > 1, fixed bounded domain; ∂Ω Lipschitz

X = L2(Ω), with norm ‖ · ‖L2(Ω); E = X = L2(Ω)

Y = X = L2(Ω) with distance induced by its norm

Λ = Id : L2(Ω)→ L2(Ω) and Λ̃ = f ∈ L2(Ω)

As regularisation, with small modifications,

R = | · | = | · |BV(Ω) : L
2(Ω)→ [0,+∞]



The T-N-V multiscale decomposition: reprise

λ0 > 0 fixed parameter. Let

λn = 2nλ0 and an = 0 for any n > 0.

For any n > 0 we have

f = u0 + u1 + . . .+ un + vn = σn + vn.

Theorem — Modin, Nachman & R. (2019)

If f ∈ L2(Ω) then lim
n
vn = 0 in L2(Ω),

that is, f has the following multiscale decomposition

f = lim
n
σn =

∞∑
i=0

ui in the L2(Ω) sense

Remark: it holds for any dimension N > 1



Multiscale approach for the Calderón problem

Convergence in the unknowns space



Convergence in the unknowns space

We know that

lim
n
‖Λ̃−Λ(σn)‖ = ε0 = inf

{
‖Λ̃−Λ(σ)‖ : σ ∈M

}
Remark: if lim

n
σn = σ∞ in L1 or in the G-convergence sense, then

‖Λ̃−Λ(σ∞)‖ = ε0 = min
{
‖Λ̃−Λ(σ)‖ : σ ∈M

}
Necessary condition:

∃ min
{
‖Λ̃−Λ(σ)‖ : σ ∈M

}
Question: is this a sufficient condition?



Main properties of G-convergence

M = Msym = Msym(c0, c1)

Properties of G-convergence

Msym is (sequentially) compact with respect to G-convergence

Λ is (sequentially) continuous with respect to G-convergence

Consequence: the necessary condition

∃ min
{
‖Λ̃−Λ(σ)‖ : σ ∈Msym

}
is satisfied.

Remark: Mscal is not (sequentially) compact with respect to
G-convergence



G-convergence result

Theorem: G-convergence of the decomposition
Let M = Msym = Msym(c0, c1).
Assume

an 6 an−1 for any n > 1, lim
n
an = 0 and lim sup

n

2n

λn
< +∞.

By the multiscale procedure, we construct

σn =

n∑
i=0

ui

Then ∃ a subsequence {σnk}k and ∃ σ∞ ∈Msym such that

σnk G-converges to σ∞ as k→∞ and

Λ(σ∞) = min
{
‖Λ̃−Λ(σ)‖ : σ ∈Msym

}



Assumption for convergence in L1

M = Mscal = Mscal(c0, c1), R = | · | = | · |BV(Ω)

Remark: the necessary condition is NOT sufficient, we need a stronger
assumption

Crucial assumptions
Assume ∃ σ̃ ∈Mscal ∩ BV(Ω) (i.e. with |σ̃|BV(Ω) < +∞) such that

‖Λ̃−Λ(σ̃)‖ = min
{
‖Λ̃−Λ(σ)‖ : σ ∈Mscal

}
= ε0

that is

∃ min { |σ|BV(Ω) : σ ∈Mscal and ‖Λ̃−Λ(σ)‖ = ε0 } = R0 < +∞
an 6 an−1 for n > 1, lim

n
an = 0 and lim sup

n

2n

anλn
< +∞.



The main theorem: convergence of σn
Let S be the set of optimal solutions

S = { σ ∈Mscal : ‖Λ̃−Λ(σ)‖ = ε0 and |σ|BV(Ω) = R0 }

Remark: S is sequentially compact in L1(Ω)

Theorem
Under the crucial assumptions, ∃ a subsequence {σnk}k and ∃ σ∞ ∈ S
such that

σ∞ = lim
k
σnk in L1(Ω),

lim
n

|σn|BV(Ω) = |σ∞|BV(Ω) = R0 and lim
n

dist(σn,S) = 0

Finally, if S =
{
σ̃
}

then

σ̃ = lim
n
σn =

∞∑
i=0

ui in L1(Ω)

(e.g. N = 2 and Λ̃ = Λ(σ0) with σ0 = σ̃ ∈Mscal ∩ BV(Ω))


