A multiscale approach for inverse problems

Luca RONDI

Università di Milano

Joint work with Klas MODIN and Adrian NACHMAN

BIRS Workshop "Reconstruction Methods for Inverse Problems" Banff, 23–28 June 2019

Multiscale decomposition of images

Tadmor, Nezzar & Vese (2004)

The Rudin-Osher-Fatemi model for denoising

- $\Omega \subset \mathbb{R}^2$ fixed bounded domain; $\partial \Omega$ Lipschitz
- $\mathbf{f}\in L^2(\Omega)$ noisy image

ROF model $\lambda_0 > 0$ fixed parameter. Solve

$$\min\left\{\lambda_{0}\|\mathbf{f}-\boldsymbol{\mathfrak{u}}\|_{L^{2}(\Omega)}^{2}+|\boldsymbol{\mathfrak{u}}|_{BV(\Omega)}:\,\boldsymbol{\mathfrak{u}}\in L^{2}(\Omega)\right\}$$

 \mathfrak{u}_0 is the (unique) minimiser; $\mathfrak{v}_0 = \mathfrak{f} - \mathfrak{u}_0$ is the remainder

Remark:

 $|\mathfrak{u}|_{BV(\Omega)} = TV(\mathfrak{u}) = |D\mathfrak{u}|(\Omega); \quad \|\mathfrak{u}\|_{BV(\Omega)} = \|\mathfrak{u}\|_{L^1(\Omega)} + |\mathfrak{u}|_{BV(\Omega)}$

The role of parameter λ_0

ROF model

 $\lambda_0 > 0$ fixed parameter. Solve

$$\min\left\{\lambda_0\|f-\mathfrak{u}\|_{L^2(\Omega)}^2+|\mathfrak{u}|_{BV(\Omega)}:\ \mathfrak{u}\in L^2(\Omega)\right\}$$

 u_0 is the (unique) minimiser; $v_0 = f - u_0$ is the remainder

- λ₀ small: total variation of u₀ more penalised
 u₀ has smaller total variation (blocky reconstruction); most noise but also more detailed features are removed
- λ₀ big: fidelity term ||f u₀|| more penalised
 u₀ is closer to f; more detailed features are preserved, less noise is removed

The T-N-V multiscale procedure: starting point

• Start with a (relatively) small $\lambda_0 > 0$. Solve

$$\min\left\{\lambda_0\|f-u\|^2+|u|:\ u\in L^2(\Omega)\right\}$$

 u_0 is the (unique) minimiser; $v_0 = f - u_0$ is the remainder

$$f = u_0 + v_0$$
. Let $\sigma_0 = u_0$, hence $f = \sigma_0 + v_0$

Remark: here and in what follows

$$\|\cdot\| = \|\cdot\|_{L^2(\Omega)}$$
 and $|\cdot| = |\cdot|_{BV(\Omega)}$

The T-N-V multiscale procedure: second step

We have

$$f = u_0 + v_0$$
. Let $\sigma_0 = u_0$, hence $f = \sigma_0 + v_0$

• Raise the parameter λ . Take $\lambda_0 < \lambda_1$ and replace f by the remainder ν_0 . Solve

$$\min\left\{\lambda_1\|\nu_0-\mathfrak{u}\|^2+|\mathfrak{u}|:\ \mathfrak{u}\in L^2(\Omega)\right\}$$

that is

$$\min\left\{\lambda_1\|f-(u_0+u)\|^2+|u|:\ u\in L^2(\Omega)\right\}$$

 u_1 is the (unique) minimiser; $v_1 = v_0 - u_1$ is the remainder

The T-N-V multiscale procedure: second step

We have

$$f = u_0 + v_0$$
. Let $\sigma_0 = u_0$, hence $f = \sigma_0 + v_0$

• Raise the parameter λ . Take $\lambda_0 < \lambda_1$ and replace f by the remainder ν_0 . Solve

$$\min\left\{\lambda_1\|\nu_0-\mathfrak{u}\|^2+|\mathfrak{u}|:\ \mathfrak{u}\in L^2(\Omega)\right\}$$

that is

$$\min\left\{\lambda_1\|f-(\sigma_0+u)\|^2+|u|:\ u\in L^2(\Omega)\right\}$$

 u_1 is the (unique) minimiser; $v_1 = v_0 - u_1$ is the remainder

 $f = u_0 + u_1 + v_1$. Let $\sigma_1 = u_0 + u_1$, hence $f = \sigma_1 + v_1$

The T-N-V multiscale procedure: iteration

• Take $0<\lambda_0<\lambda_1<\ldots<\lambda_n<\ldots$ By induction, for any $n\geqslant 1$ define

$$\sigma_{n-1} = \sum_{i=0}^{n-1} u_i \quad \text{and} \quad \nu_{n-1} = f - \sigma_{n-1}, \text{ hence } f = \sigma_{n-1} + \nu_{n-1},$$

and solve

that is

$$\begin{split} &\min\left\{\lambda_{n}\|\nu_{n-1}-u\|^{2}+|u|:\ u\in L^{2}(\Omega)\right\}\\ &\min\left\{\lambda_{n}\|f-(\sigma_{n-1}+u)\|^{2}+|u|:\ u\in L^{2}(\Omega)\right\} \end{split}$$

 u_n is the (unique) minimiser; $\nu_n=\nu_{n-1}-u_n$ is the remainder and

$$\sigma_n = \sum_{i=0}^n u_i \quad \text{and} \quad \nu_n = f - \sigma_n, \text{ hence } f = \sigma_n + \nu_n$$

The T-N-V multiscale decomposition

Take $0<\lambda_0<\lambda_1<\ldots<\lambda_n<\ldots$. For any $n\geqslant 0$ we have

$$\mathbf{f} = \mathbf{u}_0 + \mathbf{u}_1 + \ldots + \mathbf{u}_n + \mathbf{v}_n = \mathbf{\sigma}_n + \mathbf{v}_n.$$

Theorem — Tadmor, Nezzar & Vese (2004)

 $\lambda_0 > 0$ fixed parameter. Let

 $\lambda_n = 2^n \lambda_0$ for any $n \ge 0$.

If $f \in BV(\Omega)$ then $\lim_{n} \nu_n = 0$ in $L^2(\Omega)$ that is, f has the following multiscale decomposition

$$f = \lim_n \sigma_n = \sum_{i=0}^\infty \mathfrak{u}_i \quad \text{in the } L^2(\Omega) \text{ sense}$$

Remark: it holds also for f in some intermediate space between $L^2(\Omega)$ and $BV(\Omega)$

Extension to nonlinear inverse problems

The Calderón inverse problem

Electrical Impedance Tomography: the conducting body

 $\Omega \subset \mathbb{R}^{\mathsf{N}}$ (N \geqslant 2) fixed bounded domain; $\partial \Omega$ Lipschitz

 $0 < c_0 < c_1$ fixed constants

Classes of conductivity tensors

The anisotropic case:

 $\mathfrak{M}_{sym}(c_0, c_1)$ class of symmetric conductivity tensors σ , that is, $\sigma \in L^{\infty}(\Omega, \mathbb{M}_{sym}^{N \times N}(\mathbb{R}))$ satisfying the uniform ellipticity condition

 $0 < c_0 I_N \leqslant \sigma(x) \leqslant c_1 I_N \quad \text{for a.e. } x \in \Omega$

The isotropic case:

 $\mathcal{M}_{scal}(c_0, c_1)$ class of scalar conductivities σ , that is, $\sigma \in L^{\infty}(\Omega)$ satisfying the uniform ellipticity condition

 $0 < c_0 \leqslant \sigma(x) \leqslant c_1 \quad \text{for a.e. } x \in \Omega$

The Neumann-to-Dirichlet map

- Conductivity in Ω : $\sigma \in \mathcal{M}_{sym}(c_0, c_1)$
- Prescribed current density on the boundary $\partial \Omega$:

$$g\in L^2_*(\partial\Omega)=\left\{\psi\in L^2(\partial\Omega):\,\int_{\partial\Omega}\psi=0\right\}$$

Electrostatic potential in Ω: U solution to the Neumann problem

$$\begin{cases} \operatorname{div}(\sigma \nabla U) = 0 & \text{in } \Omega \\ \sigma \nabla U \cdot \nu = g & \text{on } \partial \Omega \\ \int_{\partial \Omega} U = 0 \end{cases}$$

Neumann-to-Dirichlet map

 $\Lambda(\sigma): L^2_*(\partial\Omega) \to L^2_*(\partial\Omega)$ where

 $\Lambda(\sigma)[g] = U|_{\partial\Omega} \in L^2_*(\partial\Omega) \quad \text{for any } g \in L^2_*(\partial\Omega)$

Inverse conductivity problem — Calderón (1980)

Determine the conductivity tensor σ from electrostatic measurements on the boundary, that is, by measuring the Neumann-to-Dirichlet map $\Lambda(\sigma)$

The forward operator:

$$\begin{array}{rcl} \Lambda: \mathfrak{M} & \to & \mathcal{L}(\mathrm{L}^{2}_{*}(\partial\Omega), \mathrm{L}^{2}_{*}(\partial\Omega)) \\ \sigma & \mapsto & \Lambda(\sigma) \end{array}$$

where $\mathcal{M}=\mathcal{M}_{sym}$ or $\mathcal{M}=\mathcal{M}_{scal}$

Uniqueness issue

Does the Neumann-to-Dirichlet map $\Lambda(\sigma)$ uniquely determine the conductivity tensor σ ? Is the forward operator Λ injective?

Uniqueness for scalar conductivities

 $N = 3; \sigma \in \mathcal{M}_{scal}$

Kohn & Vogelius (1984) — Sylvester & Uhlmann (1987) — Isakov (1988) Haberman & Tataru (2013) — Caro & Rogers (2016) Haberman (2015) $\sigma \in W^{1,3}$

N = 2; $\sigma \in \mathcal{M}_{scal}$, Ω simply connected

Nachman (1995) Astala & Päivärinta (2006) $\sigma \in L^{\infty}$

N = 2; $\sigma \in \mathcal{M}_{sym}$, Ω simply connected

Astala, Päivärinta & Lassas (2005) $\sigma \in L^{\infty}$

If $\Lambda(\sigma)=\Lambda(\sigma_1)$ then $\exists \phi$ quasiconformal mapping

with $\varphi = Id$ on $\partial\Omega$ such that $\sigma_1 = \varphi_*(\sigma)$.

Setup of the inverse problem: reconstruction

• Unknown: $\tilde{\sigma}_0 \in \mathcal{M}$, $\mathcal{M} = \mathcal{M}_{sym}(c_0, c_1)$ or $\mathcal{M} = \mathcal{M}_{scal}(c_0, c_1)$ • Exact data: $\Lambda_0 = \Lambda(\tilde{\sigma}_0)$

Reconstruction Numerically reconstruct $\tilde{\sigma}_0$ from (an approximation of) $\Lambda(\tilde{\sigma}_0)$

• Available (measured) data: $\widetilde{\Lambda} \in \mathcal{L}(L^2_*(\partial\Omega), L^2_*(\partial\Omega))$ with $\|\widetilde{\Lambda} - \Lambda_0\| \leq \varepsilon, \quad \varepsilon > 0$ is the noise level where $\|\cdot\| = \|\cdot\|_{L^2-L^2} = \|\cdot\|_{\mathcal{L}(L^2_*(\partial\Omega), L^2_*(\partial\Omega))}$

Main issues

- Nonlinearity
- Ill-posedness

Variational approach: regularised minimisation problem

Regularised variational problem

 $\mu_0 > 0$ fixed parameter. Solve

$$\min\left\{\|\widetilde{\Lambda} - \Lambda(\sigma)\|^2 + \mu_0 R(\sigma): \ \sigma \in \mathcal{M}\right\}$$

R regularisation operator; µ0 regularisation coefficient

Choice of the regularisation operator: total variation penalisation

$$\mathbf{R}(\sigma) = |\sigma|_{\mathbf{BV}(\Omega)} = |\sigma|$$

Hence, for $\lambda_0 = 1/\mu_0$, solve

$$\min\left\{\lambda_0\|\widetilde{\Lambda} - \Lambda(\sigma)\|^2 + |\sigma|: \ \sigma \in \mathfrak{M}\right\}$$

 $\sigma_0 = u_0$ is a minimiser

Why the L^2 - L^2 -norm instead of the natural one?

Continuity with respect to G-convergence – R. (2015)

Let σ_n , $\sigma \in \mathcal{M}_{sym}(c_0, c_1)$ such that σ_n G-converges to σ . Then

 $\|\Lambda(\sigma_n) - \Lambda(\sigma)\|_{L^2 \cdot L^2} \to 0.$

Hölder continuity with respect to the L¹ norm

For any σ_1 , $\sigma_2 \in \mathcal{M}_{sym}(c_0, c_1)$, we have, for some $0 < \beta < 1$ and $C_0 > 0$,

$$\|\Lambda(\sigma_1) - \Lambda(\sigma_2)\|_{\mathsf{L}^2 - \mathsf{L}^2} \leq C_0 \|\sigma_1 - \sigma_2\|_{\mathsf{L}^1(\Omega)}^{\beta}.$$

Remark: the L²-L² norm controls the error on the so-called experimental measurements introduced by Somersalo, Cheney, & Isaacson (1992). **R.** (2015): if $R(\sigma)$ is the resistance matrix associated to σ , we have

$$\|\mathbf{R}(\sigma_1) - \mathbf{R}(\sigma_2)\| \leqslant C \|\Lambda(\sigma_1) - \Lambda(\sigma_2)\|_{L^2 - L^2}$$

Multiscale approach for nonlinear inverse problems

The Calderón inverse problem

• X Banach space with norm $\| \cdot \|_X$

 $X = L^{1}(\Omega, \mathbb{M}_{sym}^{N \times N}(\mathbb{R}))$ or $X = L^{1}(\Omega)$ with norm $\| \cdot \|_{L^{1}(\Omega)}$

• $E \subset X$ suitable closed subset

 $E = \mathcal{M}$ with $\mathcal{M} = \mathcal{M}_{sym}(c_0, c_1)$ or $\mathcal{M} = \mathcal{M}_{scal}(c_0, c_1)$

• Y metric space with distance d_Y

 $\mathbf{Y} = \mathcal{L}(\mathbf{L}^2_*(\partial\Omega), \mathbf{L}^2_*(\partial\Omega))$

with d_Y induced by its norm $\|\,\cdot\,\|=\|\,\cdot\,\|_{L^2\text{-}L^2}$

Functional setting and starting point

• $\Lambda : E \to Y$ continuous and $\widetilde{\Lambda} \in Y$

$$\begin{array}{rcl} \Lambda: \mathfrak{M} & \to & \mathcal{L}(\mathrm{L}^2_*(\Omega), \mathrm{L}^2_*(\Omega)) \\ \sigma & \mapsto & \Lambda(\sigma) \end{array}$$

 $\widetilde{\Lambda}\in\mathcal{L}(L^2_*(\partial\Omega),L^2_*(\partial\Omega))$ is the measured Neumann-to-Dirichlet map

Regularisation operator

 $\mathbf{R} = |\cdot| : \mathbf{X} \to [\mathbf{0}, +\infty]$

 $\mathbf{R} = |\cdot| = |\cdot|_{\mathbf{BV}(\Omega)} : \mathrm{L}^{1}(\Omega, \mathbb{M}^{\mathsf{N} \times \mathsf{N}}_{sym}(\mathbb{R})) \to [0, +\infty]$

Solve, for $\lambda_0 > 0$ and $a_0 \ge 0$,

$$\min \left\{ \lambda_0 \left[\|\widetilde{\Lambda} - \Lambda(\sigma)\|^2 + a_0 |\sigma| \right] + |\sigma| : \sigma \in \mathcal{M} \right\}$$

Multiscale procedure: iteration

• Take $0 < \lambda_0 < \lambda_1 < \ldots < \lambda_n < \ldots$ and $0 \leq \ldots \leq a_n \leq \ldots \leq a_1 \leq a_0$. By induction, for any $n \ge 1$ define

$$\sigma_{n-1} = \sum_{i=0}^{n-1} u_i$$

and solve

$$\begin{split} \min \Big\{ &\lambda_n \Big[\|\widetilde{\Lambda} - \Lambda(\sigma_{n-1} + \mathfrak{u})\|^2 + \mathfrak{a}_n |\sigma_{n-1} + \mathfrak{u}| \Big] + |\mathfrak{u}| : \ (\sigma_{n-1} + \mathfrak{u}) \in \mathfrak{M} \Big\} \\ & \mathfrak{u}_n \text{ is a minimiser} \end{split}$$

and

$$\sigma_n = \sum_{i=0}^n u_i$$

$$\min\left\{\lambda_{n}\Big[\|\widetilde{\Lambda}-\Lambda(\sigma_{n-1}+\mathfrak{u})\|^{2}+\mathfrak{a}_{n}|\sigma_{n-1}+\mathfrak{u}|\Big]+|\mathfrak{u}|:\ (\sigma_{n-1}+\mathfrak{u})\in\mathcal{M}\right\}$$

By taking u=0 and using $a_n\leqslant a_{n-1},$ we observe that for any $n\geqslant 1$

$$\|\widetilde{\Lambda} - \Lambda(\sigma_n)\|^2 + \mathbf{a}_n |\sigma_n| \leq \|\widetilde{\Lambda} - \Lambda(\sigma_{n-1})\|^2 + \mathbf{a}_{n-1} |\sigma_{n-1}|$$

Let

$$\delta_{0} = \lim_{n} \left[\|\widetilde{\Lambda} - \Lambda(\sigma_{n})\|^{2} + a_{n} |\sigma_{n}| \right]^{1/2}$$

and

$$\epsilon_0 = \inf \left\{ \| \widetilde{\Lambda} - \Lambda(\sigma) \| : \ \sigma \in \mathfrak{M} \right\}$$

Clearly

 $\epsilon_0 \leqslant \delta_0$

Theorem: convergence of $\Lambda(\sigma_n)$

Assume

а

$$\begin{split} a_n \leqslant a_{n-1} \text{ for any } n \geqslant 1, \quad & \lim_n a_n = 0 \quad \text{and} \quad & \limsup_n \frac{2^{n}}{\lambda_n} < +\infty. \end{split}$$
Then
$$\epsilon_0 = \delta_0$$
and
$$& \lim_n \|\widetilde{\Lambda} - \Lambda(\sigma_n)\| = \epsilon_0 = \inf \left\{ \|\widetilde{\Lambda} - \Lambda(\sigma)\| : \ \sigma \in \mathcal{M} \right\}$$

<u>0</u>m

Remark: it is enough to take $\lambda_0 > 0$ fixed parameter and let

$$a_n = 0$$
 and $\lambda_n = 2^n \lambda_0$ for any $n \ge 0$

Multiscale decomposition in a general setting

Additive case

General abstract setting

- X Banach space with norm $\|\cdot\|_X$; $E \subset X$ suitable closed subset
- Y metric space with distance d_Y
- $\Lambda : E \to Y$ continuous and $\widetilde{\Lambda} \in Y$

Regularisation operator

- $R = |\cdot| : X \to [0, +\infty]$ such that
 - |0| = 0 and $|-\mathfrak{u}| = |\mathfrak{u}| \quad \forall \ \mathfrak{u} \in X$
 - $|\mathfrak{u}_1 + \mathfrak{u}_2| \leq |\mathfrak{u}_1| + |\mathfrak{u}_2| \quad \forall \mathfrak{u}_1, \mathfrak{u}_2 \in X$
 - $\{u \in X : |u| < +\infty\}$ dense in X
 - | · | sequentially lower semicontinuous on X, with respect to the convergence in X
 - $\{u \in X : |u| \leq b\}$ sequentially compact in $X \quad \forall \ b \in \mathbb{R}$

Examples of admissible regularisations

 $\Omega \subset \mathbb{R}^N \ (N \geqslant 1)$ fixed bounded domain; $\partial \Omega$ Lipschitz

• BV regularisation: $X = L^1(\Omega)$, with norm $\| \cdot \|_{L^1(\Omega)}$; $E \subset X$ suitable closed subset

$$\mathbf{R}(\mathbf{u}) = |\mathbf{u}| = \|\mathbf{u}\|_{\mathbf{BV}(\Omega)} \quad \forall \, \mathbf{u} \in \mathbf{L}^{1}(\Omega)$$

- $W^{1,2}$ regularisation: $X = L^2(\Omega)$, with norm $\|\cdot\|_{L^2(\Omega)}$; $E \subset X$ suitable closed subset $R(\mathfrak{u}) = |\mathfrak{u}| = \|\mathfrak{u}\|_{W^{1,2}(\Omega)} = \|\mathfrak{u}\|_{L^2(\Omega)} + \|\nabla\mathfrak{u}\|_{L^2(\Omega)} \quad \forall \, \mathfrak{u} \in L^2(\Omega)$
- $C^{0,\alpha}$ regularisation, $0 < \alpha \leq 1$: $X = C^0(\overline{\Omega})$, with the sup norm; $E \subset X$ suitable closed subset $R(\mathfrak{u}) = |\mathfrak{u}| = ||\mathfrak{u}||_{C^{0,\alpha}(\Omega)} = ||\mathfrak{u}||_{L^{\infty}(\Omega)} + |\mathfrak{u}|_{C^{0,\alpha}(\Omega)} \quad \forall \, \mathfrak{u} \in C^0(\overline{\Omega})$

Setting:

- X Banach space with norm $\|\cdot\|_X$; $E \subset X$ suitable closed subset
- Y metric space with distance d_Y
- $\Lambda : E \to Y$ continuous and $\widetilde{\Lambda} \in Y$
- Regularisation $R = |\cdot| : X \to [0, +\infty]$

Denoising of images or signals:

 $\Omega \subset \mathbb{R}^N$, $N \ge 1$, fixed bounded domain; $\partial \Omega$ Lipschitz

- $X = L^2(\Omega)$, with norm $\| \cdot \|_{L^2(\Omega)}$; $E = X = L^2(\Omega)$
- $Y = X = L^2(\Omega)$ with distance induced by its norm
- $\Lambda = Id : L^2(\Omega) \to L^2(\Omega)$ and $\widetilde{\Lambda} = f \in L^2(\Omega)$
- As regularisation, with small modifications,

$$\mathbf{R} = |\cdot| = |\cdot|_{\mathbf{BV}(\Omega)} : L^2(\Omega) \to [0, +\infty]$$

The T-N-V multiscale decomposition: reprise

 $\lambda_0 > 0$ fixed parameter. Let

 $\lambda_n = 2^n \lambda_0$ and $a_n = 0$ for any $n \ge 0$.

For any $n \ge 0$ we have

$$\mathbf{f} = \mathbf{u}_0 + \mathbf{u}_1 + \ldots + \mathbf{u}_n + \mathbf{v}_n = \mathbf{\sigma}_n + \mathbf{v}_n.$$

 $\begin{array}{ll} \mbox{Theorem} & - \mbox{ Modin, Nachman \& R. (2019)} \\ \mbox{If } f \in L^2(\Omega) \mbox{ then } & \lim_n \nu_n = 0 \mbox{ in } L^2(\Omega), \\ \mbox{that is, f has the following multiscale decomposition} \end{array}$

$$f = \lim_n \sigma_n = \sum_{i=0}^\infty \mathfrak{u}_i \quad \text{in the } L^2(\Omega) \text{ sense}$$

Remark: it holds for any dimension $N \ge 1$

Multiscale approach for the Calderón problem

Convergence in the unknowns space

Convergence in the unknowns space

We know that

$$\lim_{n} \|\widetilde{\Lambda} - \Lambda(\sigma_{n})\| = \varepsilon_{0} = \inf \left\{ \|\widetilde{\Lambda} - \Lambda(\sigma)\| : \sigma \in \mathcal{M} \right\}$$

Remark: if $\lim_{n} \sigma_n = \sigma_{\infty}$ in L¹ or in the G-convergence sense, then

$$\|\widetilde{\Lambda} - \Lambda(\sigma_{\infty})\| = \epsilon_0 = \min \Big\{ \|\widetilde{\Lambda} - \Lambda(\sigma)\| : \ \sigma \in \mathcal{M} \Big\}$$

Necessary condition:

$$\exists \min \left\{ \|\widetilde{\Lambda} - \Lambda(\sigma)\| : \sigma \in \mathcal{M} \right\}$$

Question: is this a sufficient condition?

Main properties of G-convergence

$$\mathcal{M} = \mathcal{M}_{sym} = \mathcal{M}_{sym}(c_0, c_1)$$

Properties of G-convergence

• M_{sym} is (sequentially) compact with respect to G-convergence

A is (sequentially) continuous with respect to G-convergence

Consequence: the necessary condition

$$\exists \min \left\{ \|\widetilde{\Lambda} - \Lambda(\sigma)\| : \sigma \in \mathcal{M}_{sym} \right\}$$

is satisfied.

Remark: \mathcal{M}_{scal} is not (sequentially) compact with respect to G-convergence

G-convergence result

Theorem: G-convergence of the decomposition Let $\mathcal{M} = \mathcal{M}_{sym} = \mathcal{M}_{sym}(c_0, c_1)$. Assume

 $a_n \leqslant a_{n-1}$ for any $n \geqslant 1$, $\lim_n a_n = 0$ and $\limsup_n \frac{2^n}{\lambda_n} < +\infty$.

By the multiscale procedure, we construct

$$\sigma_n = \sum_{i=0}^n u_i$$

Then \exists a subsequence $\{\sigma_{n_k}\}_k$ and $\exists \sigma_{\infty} \in \mathcal{M}_{sym}$ such that

 $\begin{array}{l} \sigma_{n_k} \text{ G-converges to } \sigma_{\infty} \text{ as } k \to \infty \quad \text{ and} \\ \Lambda(\sigma_{\infty}) = \min\Bigl\{\|\widetilde{\Lambda} - \Lambda(\sigma)\|: \ \sigma \in \mathfrak{M}_{\texttt{sym}} \Bigr\} \end{array}$

Assumption for convergence in L¹

$$\mathcal{M} = \mathcal{M}_{scal} = \mathcal{M}_{scal}(c_0, c_1), \qquad R = |\cdot| = |\cdot|_{BV(\Omega)}$$

Remark: the necessary condition is NOT sufficient, we need a stronger assumption

Crucial assumptions

• Assume $\exists \ \widetilde{\sigma} \in \mathcal{M}_{scal} \cap BV(\Omega)$ (i.e. with $|\widetilde{\sigma}|_{BV(\Omega)} < +\infty$) such that

$$\|\widetilde{\Lambda} - \Lambda(\widetilde{\sigma})\| = \min\Big\{\|\widetilde{\Lambda} - \Lambda(\sigma)\|: \ \sigma \in \mathfrak{M}_{\texttt{scal}}\Big\} = \epsilon_0$$

that is

$$\exists \min \{ |\sigma|_{BV(\Omega)} : \sigma \in \mathcal{M}_{scal} \text{ and } \|\widetilde{\Lambda} - \Lambda(\sigma)\| = \varepsilon_0 \} = R_0 < +\infty$$

• $a_n \leqslant a_{n-1}$ for $n \geqslant 1$, $\lim_n a_n = 0$ and $\limsup_n \frac{2^n}{a_n \lambda_n} < +\infty$.

The main theorem: convergence of σ_n

Let S be the set of optimal solutions

$$S = \{ \sigma \in \mathcal{M}_{scal} : \|\widetilde{\Lambda} - \Lambda(\sigma)\| = \varepsilon_0 \text{ and } |\sigma|_{BV(\Omega)} = R_0 \}$$

Remark: S is sequentially compact in $L^1(\Omega)$

Theorem

Under the crucial assumptions, \exists a subsequence $\{\sigma_{n_k}\}_k$ and $\exists \ \sigma_\infty \in S$ such that

$$\begin{split} \sigma_{\infty} &= \lim_k \sigma_{n_k} \quad \text{in } L^1(\Omega), \\ \lim_n |\sigma_n|_{BV(\Omega)} &= |\sigma_{\infty}|_{BV(\Omega)} = R_0 \quad \text{and} \quad \lim_n \text{dist}(\sigma_n, S) = 0 \end{split}$$

Finally, if $S=\left\{ \begin{array}{c} \widetilde{\sigma} \end{array} \right\}$ then

$$\widetilde{\sigma} = \lim_n \sigma_n = \sum_{i=0}^\infty u_i \quad \text{in } L^1(\Omega)$$

(e.g. N = 2 and $\widetilde{\Lambda} = \Lambda(\sigma_0)$ with $\sigma_0 = \widetilde{\sigma} \in \mathcal{M}_{scal} \cap BV(\Omega)$)