Combining the Runge approximation and the Whitney embedding theorem in hybrid imaging

Giovanni S. Alberti

University of Genoa, Department of Mathematics

Reconstruction Methods for Inverse Problems, 24-28 June 2019

Hybrid conductivity imaging [Widlak, Scherzer, 2012]

$$\begin{cases} -\operatorname{div}(\boldsymbol{a} \nabla u_i) = 0 & \text{ in } \Omega, \\ u_i = \varphi_i & \text{ on } \partial\Omega. \end{cases}$$

 $u_i(x)$ or $a(x) \nabla u_i(x)$ or $a(x) |\nabla u_i|^2(x)$ $\xrightarrow{?}$ **a**

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$\begin{cases} \Delta u_i + (\omega^2 + i\omega\sigma) u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial\Omega \\ \sigma(x) |u_i|^2(x) & \xrightarrow{?} & \sigma \end{cases}$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$\begin{cases} \operatorname{curl} E^{i} = \mathrm{i}\omega H^{i} & \text{in } \Omega, \\ \operatorname{curl} H^{i} = -\mathrm{i}(\omega\varepsilon + \mathrm{i}\sigma)E^{i} & \text{in } \Omega, \\ E^{i} \times \nu = \varphi_{i} \times \nu & \text{on } \partial\Omega \end{cases}$$

 $H^i(x) \longrightarrow arepsilon, \sigma$

Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$\left\{ egin{array}{ll} -{
m div}(a\,
abla u_i)+\mu u_i=0 & {
m in}\ \Omega, \ u_i=arphi_i & {
m on}\ \partial\Omega \end{array}
ight.$$

 $u_i(x)$ or $a(x) \nabla u_i(x)$ or $a(x) |\nabla u_i|^2(x)$ or $\mu(x) u_i(x) \xrightarrow{?} a, \mu$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$\begin{cases} \Delta u_i + (\omega^2 + i\omega\sigma) u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega \\ \sigma(x) |u_i|^2(x) \xrightarrow{?} \sigma \end{cases}$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$\begin{cases} \operatorname{curl} E^{i} = \mathrm{i}\omega H^{i} & \text{in } \Omega, \\ \operatorname{curl} H^{i} = -\mathrm{i}(\omega\varepsilon + \mathrm{i}\sigma)E^{i} & \text{in } \Omega, \\ E^{i} \times \nu = \varphi_{i} \times \nu & \text{on } \partial\Omega \end{cases}$$

 $H^i(x) \longrightarrow arepsilon, c$

Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$\left\{ egin{array}{ll} -{
m div}({a \over a}
abla u_i) + \mu u_i = 0 & {
m in } \ \Omega, \ u_i = arphi_i & {
m on } \partial \Omega \end{array}
ight.$$

 $u_i(x)$ or $a(x) \nabla u_i(x)$ or $a(x) |\nabla u_i|^2(x)$ or $\mu(x) u_i(x) \xrightarrow{?} a, \mu$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$\begin{cases} \Delta u_i + (\omega^2 + i\omega\sigma) u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial\Omega. \end{cases}$$
$$\sigma(x) |u_i|^2(x) \xrightarrow{?} \sigma$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$\begin{cases} \operatorname{curl} E^{i} = \mathrm{i}\omega H^{i} & \text{in } \Omega, \\ \operatorname{curl} H^{i} = -\mathrm{i}(\omega\varepsilon + \mathrm{i}\sigma)E^{i} & \text{in } \Omega, \\ E^{i} \times \nu = \varphi_{i} \times \nu & \text{on } \partial\Omega \end{cases}$$

 $H^{i}(x) \longrightarrow \varepsilon, \sigma$

Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$\left\{ egin{array}{ll} -{
m div}(a\,
abla u_i)+\mu u_i=0 & {
m in}\ \Omega, \ u_i=arphi_i & {
m on}\ \partial\Omega \end{array}
ight.$$

 $u_i(x)$ or $a(x) \nabla u_i(x)$ or $a(x) |\nabla u_i|^2(x)$ or $\mu(x) u_i(x) \xrightarrow{?} a, \mu$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$\begin{cases} \Delta u_i + (\omega^2 + i\omega\sigma) u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial\Omega. \end{cases}$$
$$\sigma(x) |u_i|^2(x) \xrightarrow{?} \sigma$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$\begin{cases} \operatorname{curl} E^{i} = \mathrm{i}\omega H^{i} & \text{in } \Omega, \\ \operatorname{curl} H^{i} = -\mathrm{i}(\omega\varepsilon + \mathrm{i}\sigma)E^{i} & \text{in } \Omega, \\ E^{i} \times \nu = \varphi_{i} \times \nu & \text{on } \partial\Omega \end{cases}$$

$$H^i(x) \xrightarrow{?} \varepsilon, \sigma$$

Non-vanishing gradients and Jacobians

• Consider for simplicity the hybrid conductivity problem with internal data ∇u and unknown *a*:

$$\begin{aligned} -\operatorname{div}(\boldsymbol{a} \, \nabla \boldsymbol{u}) &= 0 & \text{ in } \Omega, \\ \boldsymbol{u} &= \varphi & \text{ on } \partial \Omega. \end{aligned}$$

With 1 measurement:

$$\nabla a \cdot \nabla u = -a\Delta u \implies \nabla(\log a) \cdot \nabla u = -\Delta u$$

This equation may be solved in a if a is known on $\partial \Omega$ and if

$$abla u(x) \neq 0, \qquad x \in \Omega.$$

▶ With *d* measurements:

$$\nabla(\log a) \cdot (\nabla u_1, \cdots, \nabla u_d) = -(\Delta u_1, \dots, \Delta u_d)$$

$$\implies \nabla(\log a) = -(\Delta u_1, \dots, \Delta u_d)(\nabla u_1, \cdots, \nabla u_d)^{-1}$$

This equation may be solved in a if a is known at $x_0\in\partial\Omega$ and

det $\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

Giovanni S. Alberti (University of Genoa)

Runge and Whitney in hybrid imaging

Non-vanishing gradients and Jacobians

• Consider for simplicity the hybrid conductivity problem with internal data ∇u and unknown *a*:

$$\begin{aligned} -\operatorname{div}(\boldsymbol{a} \,\nabla \boldsymbol{u}) &= 0 & \text{ in } \Omega, \\ \boldsymbol{u} &= \varphi & \text{ on } \partial \Omega. \end{aligned}$$

With 1 measurement:

$$\nabla \boldsymbol{a} \cdot \nabla \boldsymbol{u} = -\boldsymbol{a} \Delta \boldsymbol{u} \quad \Longrightarrow \quad \nabla (\log \boldsymbol{a}) \cdot \nabla \boldsymbol{u} = -\Delta \boldsymbol{u}$$

This equation may be solved in a if a is known on $\partial \Omega$ and if

$$\nabla u(x) \neq 0, \qquad x \in \Omega.$$

▶ With *d* measurements:

$$\nabla(\log a) \cdot (\nabla u_1, \cdots, \nabla u_d) = -(\Delta u_1, \dots, \Delta u_d)$$

$$\implies \nabla(\log a) = -(\Delta u_1, \dots, \Delta u_d)(\nabla u_1, \cdots, \nabla u_d)^{-1}$$

This equation may be solved in a if a is known at $x_0\in\partial\Omega$ and

det $\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

Giovanni S. Alberti (University of Genoa)

Runge and Whitney in hybrid imaging

Non-vanishing gradients and Jacobians

• Consider for simplicity the hybrid conductivity problem with internal data ∇u and unknown *a*:

$$\begin{aligned} -\operatorname{div}(\boldsymbol{a} \,\nabla \boldsymbol{u}) &= 0 & \text{ in } \Omega, \\ \boldsymbol{u} &= \varphi & \text{ on } \partial \Omega. \end{aligned}$$

With 1 measurement:

$$\nabla \boldsymbol{a} \cdot \nabla \boldsymbol{u} = -\boldsymbol{a} \Delta \boldsymbol{u} \quad \Longrightarrow \quad \nabla (\log \boldsymbol{a}) \cdot \nabla \boldsymbol{u} = -\Delta \boldsymbol{u}$$

This equation may be solved in a if a is known on $\partial \Omega$ and if

$$\nabla u(x) \neq 0, \qquad x \in \Omega.$$

With *d* measurements:

$$\nabla(\log \mathbf{a}) \cdot (\nabla u_1, \cdots, \nabla u_d) = -(\Delta u_1, \dots, \Delta u_d)$$

$$\implies \nabla(\log \mathbf{a}) = -(\Delta u_1, \dots, \Delta u_d)(\nabla u_1, \cdots, \nabla u_d)^{-1}$$

This equation may be solved in a if a is known at $x_0 \in \partial \Omega$ and

det $\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

Is it possible to find suitable illuminations φ_i so that the corresponding solutions u_i satisfy certain non-zero constraints, such as a non-vanishing Jacobian

det
$$\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0$$
?

- ▶ In other words, this ensures that the internal data are rich enough.
- ldeally, we would like to construct the φ_i s a priori, namely independently of the unknown parameters.

Is it possible to find suitable illuminations φ_i so that the corresponding solutions u_i satisfy certain non-zero constraints, such as a non-vanishing Jacobian

det
$$\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0$$
?

In other words, this ensures that the internal data are rich enough.

Ideally, we would like to construct the φ_is a priori, namely independently of the unknown parameters.

Is it possible to find suitable illuminations φ_i so that the corresponding solutions u_i satisfy certain non-zero constraints, such as a non-vanishing Jacobian

det
$$\begin{bmatrix} \nabla u_1(x) & \cdots & \nabla u_d(x) \end{bmatrix} \neq 0$$
?

- In other words, this ensures that the internal data are rich enough.
- ldeally, we would like to construct the φ_i s a priori, namely independently of the unknown parameters.

Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method

Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- $\blacktriangleright \det \begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

• Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

$$\blacktriangleright -\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$$

- $\triangleright \nabla v(x_0) = 0$
- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$
- **b** But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

• Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

$$\blacktriangleright -\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$$

 $\triangleright \nabla v(x_0) = 0$

- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$
- **b** But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

$$-\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$$

$$\triangleright \nabla v(x_0) = 0$$

- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$
- **b** But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

• Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

- $\blacktriangleright -\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$
- $\blacktriangleright \nabla v(x_0) = 0$
- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$
- **b** But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

• Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

$$\blacktriangleright -\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$$

$$\blacktriangleright \nabla v(x_0) = 0$$

- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$
- **b** But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

• Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

•
$$-\operatorname{div}(a\nabla v) = 0$$
 in Ω

- $\blacktriangleright \nabla v(x_0) = 0$
- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$

▶ But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be bounded and convex and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u_i \in H^1(\Omega)$ solve

 $-\operatorname{div}(a\nabla u_i) = 0$ in Ω , $u_i = x_i$ on $\partial\Omega$.

Then

 $\det \begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.$

- det $\begin{bmatrix} \nabla u_1(x_0) & \nabla u_2(x_0) \end{bmatrix} = 0$
- Thus, $\alpha \nabla u_1(x_0) + \beta \nabla u_2(x_0) = 0$

Set
$$v(x) = \alpha u_1(x) + \beta u_2(x)$$
:

$$\blacktriangleright -\operatorname{div}(a\nabla v) = 0 \text{ in } \Omega$$

$$\blacktriangleright \nabla v(x_0) = 0$$

- Thus, v has a saddle point in x_0
- Then v has two oscillations on $\partial \Omega$

• But
$$v(x) = \alpha x_1 + \beta x_2$$
 on $\partial \Omega$

Giovanni S. Alberti (University of Genoa)

Runge and Whitney in hybrid imaging

The failure in 3D and for other elliptic PDEs

In three dimensions, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and Capdeboscq 2015: it is not possible to find (\$\varphi^1\$, \$\varphi^2\$, \$\varphi^3\$) independently of \$a\$ so that

det $\begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) & \nabla u_3(x) \end{bmatrix} \neq 0, \quad x \in \Omega.$

This result clearly fails also for Helmholtz type problems

 $\operatorname{div}(a\nabla u) + k^2 q u = 0$

since solutions oscillate.

The failure in 3D and for other elliptic PDEs

In three dimensions, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and Capdeboscq 2015: it is not possible to find (φ¹, φ², φ³) independently of a so that

det $\begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) & \nabla u_3(x) \end{bmatrix} \neq 0, \quad x \in \Omega.$

This result clearly fails also for Helmholtz type problems

 $\operatorname{div}(a\nabla u) + k^2 q u = 0$

since solutions oscillate.

The failure in 3D and for other elliptic PDEs

In three dimensions, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and Capdeboscq 2015: it is not possible to find (φ¹, φ², φ³) independently of a so that

det $\begin{bmatrix} \nabla u_1(x) & \nabla u_2(x) & \nabla u_3(x) \end{bmatrix} \neq 0, \quad x \in \Omega.$

This result clearly fails also for Helmholtz type problems

$$\operatorname{div}(a\nabla u) + k^2 q u = 0$$

since solutions oscillate.

Critical points in 3D

What about critical points: can we find φ independently of a so that

 $\nabla u(x) \neq 0, \qquad x \in \Omega?$

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded Lipschitz domain. Take $\varphi \in C(\partial X) \cap H^{\frac{1}{2}}(\partial X)$. There exists a (nonempty open set of) $a \in C^{\infty}(\overline{X})$ such that the solution $u \in H^1(X)$ to

$$\left(\begin{array}{cc} -\operatorname{div}(a \, \nabla u) = 0 & \text{ in } \Omega, \\ u = \varphi & \text{ on } \partial \Omega, \end{array} \right.$$

has a critical point in Ω , namely abla u(x)=0 for some $x\in \Omega$.

Can be extended to deal with:

- multiple boundary values;
- multiple critical points (located in arbitrarily small balls);
- and Neumann boundary conditions.

Critical points in 3D

What about critical points: can we find φ independently of a so that

 $\nabla u(x) \neq 0, \qquad x \in \Omega?$

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded Lipschitz domain. Take $\varphi \in C(\partial X) \cap H^{\frac{1}{2}}(\partial X)$. There exists a (nonempty open set of) $a \in C^{\infty}(\overline{X})$ such that the solution $u \in H^1(X)$ to

$$\begin{cases} -\operatorname{div}(a \,\nabla u) = 0 & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega, \end{cases}$$

has a critical point in Ω , namely $\nabla u(x) = 0$ for some $x \in \Omega$.

Can be extended to deal with:

- multiple boundary values;
- multiple critical points (located in arbitrarily small balls);
- and Neumann boundary conditions.

Critical points in 3D

What about critical points: can we find φ independently of a so that

 $\nabla u(x) \neq 0, \qquad x \in \Omega?$

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded Lipschitz domain. Take $\varphi \in C(\partial X) \cap H^{\frac{1}{2}}(\partial X)$. There exists a (nonempty open set of) $a \in C^{\infty}(\overline{X})$ such that the solution $u \in H^1(X)$ to

$$\begin{cases} -\operatorname{div}(a\,\nabla u) = 0 & \text{in }\Omega, \\ u = \varphi & \text{on }\partial\Omega, \end{cases}$$

has a critical point in Ω , namely $\nabla u(x) = 0$ for some $x \in \Omega$.

Can be extended to deal with:

- multiple boundary values;
- multiple critical points (located in arbitrarily small balls);
- and Neumann boundary conditions.

Alternative approaches

Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]

- $u^{(t)}(x) = e^{tx_m} \left(\cos(tx_l) + i\sin(tx_l) \right) (1 + \psi_t), \quad t \gg 1.$
- ▶ If $t \gg 1$ then $u^{(t)}(x) \approx e^{tx_m} (\cos(tx_l) + i\sin(tx_l))$ in C^1 [Bal and Uhlmann, 2010]
- The traces on the boundary of these solutions give the required φ_i s
- Need smooth coefficients, construction depends on coefficients.
- Only for isotropic coefficients
- Runge approximation & Whitney embedding
- Multiple frequencies

Alternative approaches

Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]

- $u^{(t)}(x) = e^{tx_m} \left(\cos(tx_l) + i\sin(tx_l) \right) (1 + \psi_t), \quad t \gg 1.$
- ▶ If $t \gg 1$ then $u^{(t)}(x) \approx e^{tx_m} (\cos(tx_l) + i\sin(tx_l))$ in C^1 [Bal and Uhlmann, 2010]
- The traces on the boundary of these solutions give the required φ_i s
- Need smooth coefficients, construction depends on coefficients.
- Only for isotropic coefficients
- Runge approximation & Whitney embedding
- Multiple frequencies

Outline of the talk

The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method

▶ Let $\Omega \subseteq \mathbb{R}^d$, $d \ge 2$ be a smooth bounded domain. Consider the elliptic PDE

 $Lu := -\operatorname{div}(a\nabla u) + b \cdot \nabla u + cu = 0$ in Ω ,

with a, b and c smooth enough so that $u \in C^{1, \alpha}$ and the unique continuation property (UCP) holds

- No restrictions on dimension or on the PDE
- Example Consider, for simplicity, the non-vanishing Jacobian constraint: look for φ_i such that

$$\det \begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0$$

$$\begin{cases} Lu_i = 0 & \text{ in } \Omega, \\ u_i = \varphi_i & \text{ on } \partial\Omega. \end{cases}$$

▶ Let $\Omega \subseteq \mathbb{R}^d$, $d \ge 2$ be a smooth bounded domain. Consider the elliptic PDE

$$Lu := -\operatorname{div}(a\nabla u) + b \cdot \nabla u + cu = 0$$
 in Ω ,

with a, b and c smooth enough so that $u \in C^{1,\alpha}$ and the unique continuation property (UCP) holds

- No restrictions on dimension or on the PDE
- \blacktriangleright Consider, for simplicity, the non-vanishing Jacobian constraint: look for $arphi_i$ such that

$$\det \begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0$$

$$\begin{cases} Lu_i = 0 & \text{ in } \Omega, \\ u_i = \varphi_i & \text{ on } \partial\Omega. \end{cases}$$

▶ Let $\Omega \subseteq \mathbb{R}^d$, $d \ge 2$ be a smooth bounded domain. Consider the elliptic PDE

$$Lu := -\operatorname{div}(a\nabla u) + b \cdot \nabla u + cu = 0$$
 in Ω ,

with a, b and c smooth enough so that $u \in C^{1,\alpha}$ and the unique continuation property (UCP) holds

No restrictions on dimension or on the PDE

\triangleright Consider, for simplicity, the non-vanishing Jacobian constraint: look for φ_i such that

$$\det \begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0$$

$$\begin{cases} Lu_i = 0 & \text{ in } \Omega, \\ u_i = \varphi_i & \text{ on } \partial\Omega. \end{cases}$$

▶ Let $\Omega \subseteq \mathbb{R}^d$, $d \ge 2$ be a smooth bounded domain. Consider the elliptic PDE

$$Lu := -\operatorname{div}(a\nabla u) + b \cdot \nabla u + cu = 0$$
 in Ω ,

with a, b and c smooth enough so that $u \in C^{1,\alpha}$ and the unique continuation property (UCP) holds

- No restrictions on dimension or on the PDE
- Consider, for simplicity, the non-vanishing Jacobian constraint: look for φ_i such that

$$\det \begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0$$

$$\begin{cases} Lu_i = 0 & \text{ in } \Omega, \\ u_i = \varphi_i & \text{ on } \partial\Omega. \end{cases}$$

Main tool: the Runge Approximation [Lax 1956]

• Let $\Omega' \subseteq \Omega$ be simply connected and $v \in H^1(\Omega')$ be a local solution:

Lv = 0 in Ω' .

In general, v cannot be extended to a global solution u, BUT:

 \blacktriangleright Runge approximation: there exist global solutions u_n to

 $Lu_n = 0$ in Ω

such that

$$\|\boldsymbol{u}_{\boldsymbol{n}}|_{\Omega'} - \boldsymbol{v}\|_{L^2(\Omega')} \to 0.$$

▶ By elliptic regularity, we get for $\Omega'' \subseteq \Omega'$:

 $\|u_n|_{\Omega'} - v\|_{C^1(\overline{\Omega''})} \to 0.$

Main tool: the Runge Approximation [Lax 1956]

• Let $\Omega' \subseteq \Omega$ be simply connected and $v \in H^1(\Omega')$ be a local solution:

$$L v = 0$$
 in Ω' .

In general, v cannot be extended to a global solution u, BUT:

 \blacktriangleright Runge approximation: there exist global solutions u_n to

 $Lu_n = 0$ in Ω

such that

$$\|\boldsymbol{u}_{\boldsymbol{n}}\|_{\Omega'} - v\|_{L^2(\Omega')} \to 0.$$

▶ By elliptic regularity, we get for $\Omega'' \subseteq \Omega'$:

 $\|u_n|_{\Omega'} - v\|_{C^1(\overline{\Omega''})} \to 0.$
Main tool: the Runge Approximation [Lax 1956]

• Let $\Omega' \subseteq \Omega$ be simply connected and $v \in H^1(\Omega')$ be a local solution:

$$L v = 0$$
 in Ω' .

In general, v cannot be extended to a global solution u, BUT:

 \blacktriangleright Runge approximation: there exist global solutions u_n to

 $Lu_n = 0$ in Ω

such that

$$\|\boldsymbol{u}_{\boldsymbol{n}}|_{\Omega'} - \boldsymbol{v}\|_{L^2(\Omega')} \to 0.$$

▶ By elliptic regularity, we get for $\Omega'' \subseteq \Omega'$:

 $\|\boldsymbol{u}_n|_{\Omega'} - v\|_{C^1(\overline{\Omega''})} \to 0.$

Main tool: the Runge Approximation [Lax 1956]

• Let $\Omega' \subseteq \Omega$ be simply connected and $v \in H^1(\Omega')$ be a local solution:

$$L v = 0$$
 in Ω' .

In general, v cannot be extended to a global solution u, BUT:

▶ Runge approximation: there exist global solutions u_n to

 $L \boldsymbol{u_n} = 0 \quad \text{in } \Omega$

such that

 $\|\boldsymbol{u}_n\|_{\Omega'} - v\|_{L^2(\Omega')} \to 0.$

• By elliptic regularity, we get for $\Omega'' \Subset \Omega'$:

 $\|u_n|_{\Omega'} - v\|_{C^1(\overline{\Omega''})} \to 0.$

Main tool: the Runge Approximation [Lax 1956]

• Let $\Omega' \subseteq \Omega$ be simply connected and $v \in H^1(\Omega')$ be a local solution:

$$Lv = 0$$
 in Ω' .

In general, v cannot be extended to a global solution u, BUT:

• Runge approximation: there exist global solutions u_n to

$$L \boldsymbol{u_n} = 0 \quad \text{in } \Omega$$

such that

$$\|\boldsymbol{u_n}|_{\Omega'} - \boldsymbol{v}\|_{L^2(\Omega')} \to 0.$$

• By elliptic regularity, we get for $\Omega'' \Subset \Omega'$:

$$\|\boldsymbol{u_n}\|_{\Omega'} - \boldsymbol{v}\|_{C^1(\overline{\Omega''})} \to 0.$$

1. Fix $x_0 \in \overline{\Omega}$ and r > 0. Consider local solutions $v_i^0 = x_i$:

$$-\operatorname{div}(a(x_0)\nabla v_i^0) = 0 \quad \text{in } B(x_0, r)$$

such that det $\begin{bmatrix} \nabla v_1^0 & \cdots & \nabla v_d^0 \end{bmatrix} \neq 0$ in $B(x_0, r)$. . Find $\tilde{r} \in (0, r]$ and v_i such that $Lv_i = 0$ in $B(x_0, \tilde{r})$ and

$$\|v_i^0 - v_i\|_{C^1(\overline{B(x_0,\tilde{r})})}$$

is arbitrarily small.

3. Runge approximation: find u_i such that $Lu_i = 0$ in Ω and $\|v_i - u_i\|_{C^1(\overline{B(x_0, \tilde{r}/2)})}$ is arbitrarily small. Thus

det $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0, \qquad x \in B(x_0, \tilde{r}/2).$

4. Covering of $\overline{\Omega}$ with N balls: $N \cdot d$ boundary conditions.

1. Fix $x_0 \in \overline{\Omega}$ and r > 0. Consider local solutions $v_i^0 = x_i$:

$$-\operatorname{div}(a(x_0)\nabla v_i^0) = 0 \quad \text{in } B(x_0, r)$$

such that det $[\nabla v_1^0 \cdots \nabla v_d^0] \neq 0$ in $B(x_0, r)$. 2. Find $\tilde{r} \in (0, r]$ and v_i such that $Lv_i = 0$ in $B(x_0, \tilde{r})$ and

$$\|v_i^0-v_i\|_{C^1\left(\overline{B(x_0, ilde{r})}
ight)}$$

is arbitrarily small.

3. Runge approximation: find u_i such that $Lu_i = 0$ in Ω and $||v_i - u_i||_{C^1(\overline{B(x_0, \tilde{r}/2)})}$ is arbitrarily small. Thus

det $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0, \qquad x \in B(x_0, \tilde{r}/2).$

4. Covering of $\overline{\Omega}$ with N balls: $N \cdot d$ boundary conditions.

1. Fix $x_0 \in \overline{\Omega}$ and r > 0. Consider local solutions $v_i^0 = x_i$:

$$-\operatorname{div}(a(x_0)\nabla v_i^0) = 0 \quad \text{in } B(x_0, r)$$

such that det $[\nabla v_1^0 \cdots \nabla v_d^0] \neq 0$ in $B(x_0, r)$. 2. Find $\tilde{r} \in (0, r]$ and v_i such that $Lv_i = 0$ in $B(x_0, \tilde{r})$ and

$$\|v_i^0 - v_i\|_{C^1(\overline{B(x_0, ilde{r})})}$$

is arbitrarily small.

3. Runge approximation: find u_i such that $Lu_i = 0$ in Ω and $\|v_i - u_i\|_{C^1(\overline{B(x_0, \tilde{r}/2)})}$ is arbitrarily small. Thus

det $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0, \qquad x \in B(x_0, \tilde{r}/2).$

4. Covering of $\overline{\Omega}$ with N balls: $N \cdot d$ boundary conditions

1. Fix $x_0 \in \overline{\Omega}$ and r > 0. Consider local solutions $v_i^0 = x_i$:

$$-\operatorname{div}(a(x_0)\nabla v_i^0) = 0 \quad \text{in } B(x_0, r)$$

such that det $\begin{bmatrix} \nabla v_1^0 & \cdots & \nabla v_d^0 \end{bmatrix} \neq 0$ in $B(x_0, r)$.

2. Find $\tilde{r} \in (0,r]$ and v_i such that $Lv_i = 0$ in $B(x_0,\tilde{r})$ and

$$\|v_i^0-v_i\|_{C^1\left(\overline{B(x_0, ilde{r})}
ight)}$$

is arbitrarily small.

3. Runge approximation: find u_i such that $Lu_i = 0$ in Ω and $\|v_i - u_i\|_{C^1(\overline{B(x_0, \tilde{r}/2)})}$ is arbitrarily small. Thus

det $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0, \qquad x \in B(x_0, \tilde{r}/2).$

4. Covering of $\overline{\Omega}$ with N balls: $N \cdot d$ boundary conditions

1. Fix $x_0 \in \overline{\Omega}$ and r > 0. Consider local solutions $v_i^0 = x_i$:

$$-\operatorname{div}(a(x_0)\nabla v_i^0) = 0 \quad \text{in } B(x_0, r)$$

such that $\det \begin{bmatrix} \nabla v_1^0 & \cdots & \nabla v_d^0 \end{bmatrix} \neq 0$ in $B(x_0, r)$.

2. Find $\tilde{r} \in (0,r]$ and v_i such that $Lv_i = 0$ in $B(x_0,\tilde{r})$ and

$$\|v_i^0 - v_i\|_{C^1\left(\overline{B(x_0,\tilde{r})}\right)}$$

is arbitrarily small.

3. Runge approximation: find u_i such that $Lu_i = 0$ in Ω and $\|v_i - u_i\|_{C^1(\overline{B(x_0, \tilde{r}/2)})}$ is arbitrarily small. Thus

det $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} (x) \neq 0, \qquad x \in B(x_0, \tilde{r}/2).$

4. Covering of $\overline{\Omega}$ with N balls: $N \cdot d$ boundary conditions.

> You need a large number of measurements to satisfy the constraint

$$\operatorname{rank} \begin{bmatrix} \nabla u_1 & \nabla u_2 & \cdots & \nabla u_{Nd} \end{bmatrix} = d$$

everywhere.

▶ The suitable solutions, and so their boundary values, are not explicitly contructed (axiom of choice).

> You need a large number of measurements to satisfy the constraint

$$\operatorname{rank} \begin{bmatrix} \nabla u_1 & \nabla u_2 & \cdots & \nabla u_{Nd} \end{bmatrix} = d$$

everywhere.

▶ The suitable solutions, and so their boundary values, are not explicitly contructed (axiom of choice).

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u_1, \ldots, u_k be solutions to $Lu_i = 0$ in Ω such that

rank $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_k \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$

Then, for almost every $a \in \mathbb{R}^{k-1}$, we have

 $\operatorname{rank} \begin{bmatrix} \nabla (u_1 - a_1 u_k) & \nabla (u_2 - a_2 u_k) & \cdots & \nabla (u_{k-1} - a_{k-1} u_k) \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u_1, \ldots, u_k be solutions to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_k \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Then, for almost every $a \in \mathbb{R}^{k-1}$, we have

$$\operatorname{rank} \begin{bmatrix} \nabla (u_1 - a_1 u_k) & \nabla (u_2 - a_2 u_k) & \cdots & \nabla (u_{k-1} - a_{k-1} u_k) \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u_1, \ldots, u_k be solutions to $Lu_i = 0$ in Ω such that

rank $\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_k \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$

Then, for almost every $a \in \mathbb{R}^{k-1}$, we have

$$\operatorname{rank} \begin{bmatrix} \nabla (u_1 - a_1 u_k) & \nabla (u_2 - a_2 u_k) & \cdots & \nabla (u_{k-1} - a_{k-1} u_k) \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u_1, \ldots, u_k be solutions to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_k \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Then, for almost every $a \in \mathbb{R}^{k-1}$, we have

$$\operatorname{rank} \begin{bmatrix} \nabla (u_1 - a_1 u_k) & \nabla (u_2 - a_2 u_k) & \cdots & \nabla (u_{k-1} - a_{k-1} u_k) \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof.

Open. The rank is stable under small perturbations of u_i

Dense. Take $ilde u_1,\ldots, ilde u_{2d}$ solutions to $L ilde u_i=0.$ By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

$$\operatorname{rank} \begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof. $\ensuremath{\textit{Open.}}$ The rank is stable under small perturbations of $u_i.$

Dense. Take $\tilde{u}_1, \ldots, \tilde{u}_{2d}$ solutions to $L\tilde{u}_i = 0$. By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

rank
$$\begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof.

Open. The rank is stable under small perturbations of u_i .

Dense. Take $\tilde{u}_1, \ldots, \tilde{u}_{2d}$ solutions to $L\tilde{u}_i = 0$. By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

$$\operatorname{rank} \begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof.

Open. The rank is stable under small perturbations of u_i .

Dense. Take $\tilde{u}_1, \ldots, \tilde{u}_{2d}$ solutions to $L\tilde{u}_i = 0$. By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

$$\operatorname{rank} \begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof.

Open. The rank is stable under small perturbations of u_i .

Dense. Take $\tilde{u}_1, \ldots, \tilde{u}_{2d}$ solutions to $L\tilde{u}_i = 0$. By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

$$\operatorname{rank} \begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Theorem (GSA and Capdeboscq 2019)

The set of 2d solutions u_1, \ldots, u_{2d} to $Lu_i = 0$ in Ω such that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{2d} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega},$$

is open and dense in the set of 2d solutions to $Lu_i = 0$ in Ω .

Proof.

Open. The rank is stable under small perturbations of u_i .

Dense. Take $\tilde{u}_1, \ldots, \tilde{u}_{2d}$ solutions to $L\tilde{u}_i = 0$. By Runge, we have a large number of solutions so that

rank
$$\begin{bmatrix} \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

In particular

$$\operatorname{rank} \begin{bmatrix} \nabla \tilde{u}_1 & \cdots & \nabla \tilde{u}_{2d} & \nabla u_1 & \cdots & \nabla u_{Nd} \end{bmatrix} (x) = d, \qquad x \in \overline{\Omega}.$$

Remarks on the result

As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere is open and dense.

▶ The approach is very general, and works with many other constraints, like

$$\begin{split} |u_1|(x) > 0 \text{ (nodal set)} & d+1 \text{ solutions} \\ |\det \begin{bmatrix} \nabla u_1 & \cdots & \nabla u_d \end{bmatrix} | (x) > 0 \text{ (Jacobian)} & 2d \text{ solutions} \\ |\det \begin{bmatrix} u_1 & \cdots & u_{d+1} \\ \nabla u_1 & \cdots & \nabla u_{d+1} \end{bmatrix} | (x) > 0 \text{ ("augmented" Jacobian)} & 2d+1 \text{ solutions} \end{split}$$

which appear in several hybrid problems.

Remarks on the result

- As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere is open and dense.
- ▶ The approach is very general, and works with many other constraints, like

$$\begin{split} &|u_1|\left(x\right) > 0 \text{ (nodal set)} & d+1 \text{ solutions} \\ &|\det\left[\nabla u_1 \quad \cdots \quad \nabla u_d\right]|(x) > 0 \text{ (Jacobian)} & 2d \text{ solutions} \\ &|\det\left[\begin{matrix}u_1 \quad \cdots \quad u_{d+1} \\ \nabla u_1 \quad \cdots \quad \nabla u_{d+1}\end{matrix}\right]|(x) > 0 \text{ ("augmented" Jacobian)} & 2d+1 \text{ solutions} \end{split}$$

which appear in several hybrid problems.

Outline of the talk

The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method

The Helmholtz equation

► We now consider the Helmholtz equation

$$\left\{ \begin{array}{ll} \Delta u^i_\omega + \left(\omega^2\varepsilon + \mathrm{i}\omega\sigma\right)u^i_\omega = 0 & \quad \mathrm{in}\ \Omega,\\ u^i_\omega = \varphi_i & \quad \mathrm{on}\ \partial\Omega. \end{array} \right.$$

where
$$\Omega \subseteq \mathbb{R}^d$$
, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon \geq \Lambda^{-1}$.

We are interested in the constraints:

1.
$$|u_{\omega}^{l}|(x) > 0$$
 (nodal set)
2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1}\right]|(x) > 0$ (Jacobian)
3. $|\det \begin{bmatrix} u_{\omega}^{1} \cdots u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} \cdots \nabla u_{\omega}^{d+1} \end{bmatrix}|(x) > 0$ ("augmented" Jacobian)

The Helmholtz equation

We now consider the Helmholtz equation

$$\left\{ \begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + \mathrm{i} \omega \sigma) \, u^i_\omega = 0 & \quad \text{in } \Omega, \\ u^i_\omega = \varphi_i & \quad \text{on } \partial \Omega. \end{array} \right.$$

where $\Omega \subseteq \mathbb{R}^d$, d = 2, 3, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon \geq \Lambda^{-1}$.

▶ We are interested in the constraints:

1.
$$|u_{\omega}^{1}|(x) > 0$$
 (nodal set)
2. $|\det [\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1}]|(x) > 0$ (Jacobian)
3. $|\det \begin{bmatrix} u_{\omega}^{1} \cdots u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} \cdots \nabla u_{\omega}^{d+1} \end{bmatrix}|(x) > 0$ ("augmented" Jacobian)

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

Theorem (GSA, IP 2013 & CPDE 2015)

There exist C > 0 and $n \in \mathbb{N}^*$ depending only on Ω , Λ and \mathcal{A} such that the following is true. Take $\varphi_1 = 1, \qquad \varphi_2 = x_1, \qquad \dots \qquad \varphi_{d+1} = x_d.$

There exists an open cover

$$\overline{\Omega} = \bigcup_{\omega \in K^{(n)}} \Omega_{\omega}$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_\omega$ we have

1.
$$|u_{\omega}^{1}|(x) \geq C$$
,
2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1}\right]|(x) \geq C$,
3. $|\det \left[\begin{matrix}u_{\omega}^{1} \cdots & u_{\omega}^{d+1}\\ \nabla u^{1} \cdots & \nabla u^{d+1}\end{matrix}\right]|(x) \geq C$.

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

Theorem (GSA, IP 2013 & CPDE 2015)

There exist C > 0 and $n \in \mathbb{N}^*$ depending only on Ω , Λ and \mathcal{A} such that the following is true. Take $\varphi_1 = 1, \qquad \varphi_2 = x_1, \qquad \dots \qquad \varphi_{d+1} = x_d.$

There exists an open cover

$$\overline{\Omega} = \bigcup_{\omega \in K^{(n)}} \Omega_{\omega}$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_\omega$ we have

1.
$$|u_{\omega}^{1}|(x) \geq C$$
,
2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1}\right]|(x) \geq C$,
3. $|\det \left[\begin{matrix}u_{\omega}^{1} \cdots & u_{\omega}^{d+1}\\ \nabla u^{1} \cdots & \nabla u^{d+1}\end{matrix}\right]|(x) \geq C$.

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

Theorem (GSA, IP 2013 & CPDE 2015)

There exist C > 0 and $n \in \mathbb{N}^*$ depending only on Ω , Λ and \mathcal{A} such that the following is true. Take

$$\varphi_1 = 1, \qquad \varphi_2 = x_1, \qquad \dots \qquad \varphi_{d+1} = x_d.$$

There exists an open cover

$$\overline{\Omega} = \bigcup_{\omega \in K^{(n)}} \Omega_{\omega}$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_{\omega}$ we have

1.
$$|u_{\omega}^{1}|(x) \geq C$$
,
2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1}\right]|(x) \geq C$,
3. $|\det \begin{bmatrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} \cdots & \nabla u_{\omega}^{d+1} \end{bmatrix}|(x) \geq C$.

Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with $\varepsilon = 1$ and $\sigma = 0$. 1. $|u_{\omega}^{1}(x)| \geq C$: the zero set of u_{ω}^{1} moves when ω varies:

Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with $\varepsilon = 1$ and $\sigma = 0$. 1. $|u_{\omega}^1(x)| \ge C$: the zero set of u_{ω}^1 moves when ω varies:

Multi-Frequency Approach: basic idea II

1. $|u_{\omega}^1(x)| \ge C$: the zero set of u_{ω}^1 may not move if the boundary condition is not suitably chosen:

Multi-Frequency Approach: basic idea II

1. $|u_{\omega}^{1}(x)| \geq C$: the zero set of u_{ω}^{1} may not move if the boundary condition is not suitably chosen:

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| > 0$ everywhere for $\omega = 0 \implies$ the zeros "move"

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| \neq 0$ everywhere for $\omega = 0 \implies$ some zeros may "get stuck"

t seems that all depends on the $\omega = 0$ case: the unknowns ε and σ disappear!

Giovanni S. Alberti (University of Genoa)

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| \neq 0$ everywhere for $\omega = 0 \implies$ some zeros may "get stuck"

It seems that all depends on the $\omega = 0$ case: the unknowns ε and σ disappear!

Giovanni S. Alberti (University of Genoa)

What happens in $\omega = 0$?

$$\left\{ \begin{array}{ll} \Delta u^i_\omega + \left(\omega^2\varepsilon + \mathrm{i}\omega\sigma\right)u^i_\omega = 0 \quad \text{in } \Omega,\\ u^i_\omega = \varphi_i \quad \text{on } \partial\Omega. \end{array} \right.$$

1.
$$|u_{\omega}^{1}|(x) \geq C > 0,$$

2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1} \right] |(x) \geq C > 0,$
3. $|\det \left[\begin{matrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} \cdots & \nabla u_{\omega}^{d+1} \end{matrix} \right] |(x) \geq C > 0.$

These conditions are immediately satisfied by choosing the boundary values

 $\varphi_1 = 1,$ $\varphi_2 = x_1,$ \vdots $\varphi_{d+1} = x_d.$

Finally, use holomorphicity of $\omega \mapsto u_{\omega}$ to obtain the result.
$$\left\{ \begin{array}{ll} \Delta u_0^i=0 & \quad \mbox{in } \Omega, \\ u_0^i=\varphi_i & \quad \mbox{on } \partial\Omega. \end{array} \right.$$

1.
$$|u_{\omega}^{1}|(x) \geq C > 0,$$

2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1} \right]|(x) \geq C > 0,$
3. $|\det \left[\begin{matrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} \cdots & \nabla u_{\omega}^{d+1} \end{matrix} \right]|(x) \geq C > 0.$

These conditions are immediately satisfied by choosing the boundary values

 $\varphi_1 = 1,$ $\varphi_2 = x_1,$ \vdots $\varphi_{d+1} = x_d.$

Finally, use holomorphicity of $\omega \mapsto u_{\omega}$ to obtain the result.

$$\left\{ \begin{array}{ll} \Delta u_0^i=0 & \quad \mbox{in } \Omega, \\ u_0^i=\varphi_i & \quad \mbox{on } \partial\Omega. \end{array} \right.$$

1.
$$|u_{\omega}^{1}|(x) \geq C > 0,$$

2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1} \right] |(x) \geq C > 0,$
3. $|\det \left[\begin{matrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} & \cdots & \nabla u_{\omega}^{d+1} \end{matrix} \right] |(x) \geq C > 0.$

These conditions are immediately satisfied by choosing the boundary values

 $\varphi_1 = 1,$ $\varphi_2 = x_1,$ \vdots $\varphi_{d+1} = x_d.$

Finally, use holomorphicity of $\omega \mapsto u_{\omega}$ to obtain the result.

$$\left\{ \begin{array}{ll} \Delta u_0^i = 0 & \text{ in } \Omega, \\ u_0^i = \varphi_i & \text{ on } \partial \Omega. \end{array} \right.$$

1.
$$|u_{\omega}^{1}|(x) \geq C > 0,$$

2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1} \right] |(x) \geq C > 0,$
3. $|\det \left[\begin{matrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} & \cdots & \nabla u_{\omega}^{d+1} \end{matrix} \right] |(x) \geq C > 0.$

These conditions are immediately satisfied by choosing the boundary values

$$\begin{split} \varphi_1 &= 1, \\ \varphi_2 &= x_1, \\ \vdots \\ \varphi_{d+1} &= x_d. \end{split}$$

Finally, use holomorphicity of $\omega \mapsto u_{\omega}$ to obtain the result.

$$\left\{ \begin{array}{ll} \Delta u_0^i=0 & \quad \mbox{in }\Omega,\\ u_0^i=\varphi_i & \quad \mbox{on }\partial\Omega. \end{array} \right.$$

1.
$$|u_{\omega}^{1}|(x) \geq C > 0,$$

2. $|\det \left[\nabla u_{\omega}^{2} \cdots \nabla u_{\omega}^{d+1} \right] |(x) \geq C > 0,$
3. $|\det \left[\begin{matrix} u_{\omega}^{1} \cdots & u_{\omega}^{d+1} \\ \nabla u_{\omega}^{1} & \cdots & \nabla u_{\omega}^{d+1} \end{matrix} \right] |(x) \geq C > 0.$

These conditions are immediately satisfied by choosing the boundary values

$$\varphi_1 = 1,$$

$$\varphi_2 = x_1,$$

$$\vdots$$

$$\varphi_{d+1} = x_d.$$

Finally, use holomorphicity of $\omega\mapsto u_\omega$ to obtain the result.

Maxwell's equations (GSA, JDE 2015)

Ammari et al. (2016) have successfully adapted this method to

 $\operatorname{div}((\omega\varepsilon + \mathrm{i}\sigma)\nabla u^i_{\omega}) = 0.$

▶ In 2D, everything works with $a \in C^{0,\alpha}(\Omega; \mathbb{R}^{2 \times 2})$ and

$$\operatorname{div}(a\,\nabla u^i_{\omega}) + (\omega^2\varepsilon + \mathrm{i}\omega\sigma)u^i_{\omega} = 0$$

by using the absence of critical points for the conductivity equation.

Maxwell's equations (GSA, JDE 2015)

Ammari et al. (2016) have successfully adapted this method to

 $\operatorname{div}((\omega\varepsilon + \mathrm{i}\sigma)\nabla u^i_{\omega}) = 0.$

▶ In 2D, everything works with $a \in C^{0,\alpha}(\Omega; \mathbb{R}^{2 \times 2})$ and

$$\operatorname{div}(a\,\nabla u^i_{\omega}) + (\omega^2 \varepsilon + \mathrm{i}\omega\sigma)u^i_{\omega} = 0$$

by using the absence of critical points for the conductivity equation.

- Maxwell's equations (GSA, JDE 2015)
- Ammari et al. (2016) have successfully adapted this method to

 $\operatorname{div}((\omega\varepsilon + \mathrm{i}\sigma)\nabla u^i_{\omega}) = 0.$

▶ In 2D, everything works with $a \in C^{0,\alpha}(\Omega; \mathbb{R}^{2 \times 2})$ and

 $\operatorname{div}(a\,\nabla u^i_{\omega}) + (\omega^2 \varepsilon + \mathrm{i}\omega\sigma) u^i_{\omega} = 0$

by using the absence of critical points for the conductivity equation.

- Maxwell's equations (GSA, JDE 2015)
- Ammari et al. (2016) have successfully adapted this method to

 $\operatorname{div}((\omega\varepsilon + \mathrm{i}\sigma)\nabla u^i_{\omega}) = 0.$

▶ In 2D, everything works with $a \in C^{0,\alpha}(\Omega; \mathbb{R}^{2 \times 2})$ and

$$\operatorname{div}(a\,\nabla u^i_{\omega}) + (\omega^2\varepsilon + \mathrm{i}\omega\sigma)u^i_{\omega} = 0$$

by using the absence of critical points for the conductivity equation.

What if $a \not\approx 1$ in 3D?

The case $\omega = 0$ may not be needed for the theory to work:

Theorem (GSA, ARMA 2016)

Suppose $a, \varepsilon \in C^2(\mathbb{R}^3)$ and $\sigma = 0$. For a generic C^2 bounded domain Ω and a generic $\varphi \in C^1(\overline{\Omega})$ there exists a finite $K \subseteq \mathcal{A}$ such that

$$\sum_{\omega \in K} |\nabla u_{\omega}(x)| > 0, \qquad x \in \Omega.$$

Giovanni S. Alberti (University of Genoa)

Runge and Whitney in hybrid imaging

What if $a \not\approx 1$ in 3D?

The case $\omega = 0$ may not be needed for the theory to work:

Theorem (GSA, ARMA 2016)

Suppose $a, \varepsilon \in C^2(\mathbb{R}^3)$ and $\sigma = 0$. For a generic C^2 bounded domain Ω and a generic $\varphi \in C^1(\overline{\Omega})$ there exists a finite $K \subseteq \mathcal{A}$ such that

$$\sum_{\omega \in K} \left| \nabla u_{\omega}(x) \right| > 0, \qquad x \in \Omega.$$

Model

$$\left\{\begin{array}{l} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{array}\right.$$

Internal data:

 $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_{\omega}[\varepsilon](\rho)\| \geq C \|\rho\|, \qquad \rho \in H^{1}(\Omega),$

or equivalently $\ker D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \ {\rm in} \ \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \ {\rm on} \ \partial \Omega. \end{array} \right.$

Internal data:

 $|\psi_{\omega}=|u_{\omega}|^2
ablaarepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_{\omega}[\varepsilon](\rho)\| \geq C \|\rho\|, \qquad \rho \in H^{1}(\Omega),$

or equivalently ker $D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \ {\rm in} \ \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \ {\rm on} \ \partial \Omega. \end{array} \right.$

Internal data:

 $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_{\omega}[\varepsilon](\rho)\| \geq C \|\rho\|, \qquad \rho \in H^{1}(\Omega),$

or equivalently ker $D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \ {\rm in} \ \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \ {\rm on} \ \partial \Omega. \end{array} \right.$

Internal data:

 $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto\rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_{\omega}[\varepsilon](\rho)\| \geq C \|\rho\|, \qquad \rho \in H^{1}(\Omega),$

or equivalently ker $D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \text{ in } \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \text{ on } \partial \Omega. \end{array} \right.$

Internal data:

 $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto\rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_{\omega}[\varepsilon](\rho)\| \geq C \left\|\rho\right\|, \qquad \rho \in H^{1}(\Omega),$

or equivalently $\ker D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \text{ in } \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \text{ on } \partial \Omega. \end{array} \right.$

Internal data:

 $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\sum_{\substack{\omega \in K \\ \omega \in K}} \|D\psi_{\omega}[\varepsilon](\rho)\| \ge C_K \|\rho\|, \qquad \rho \in H^1(\Omega),$ or equivalently $\cap_{\omega \in K} \ker D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Model

 $\left\{ \begin{array}{l} \Delta u_\omega + \omega^2 \varepsilon u_\omega = 0 \ {\rm in} \ \Omega, \\ \frac{\partial u_\omega}{\partial \nu} - i \omega u_\omega = \varphi \ {\rm on} \ \partial \Omega. \end{array} \right.$

Internal data:

$$\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$$

• Linearised problem: $D\psi_{\omega}[\varepsilon](\rho)\mapsto\rho$

In order to have well-posedness of the linearised inverse problem we need

 $\sum_{\substack{\omega \in K \\ \varphi \in K}} \|D\psi_{\omega}[\varepsilon](\rho)\| \ge C_K \|\rho\|, \qquad \rho \in H^1(\Omega),$ or equivalently $\cap_{\omega \in K} \ker D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Numerical experiments

(c) $K = \{20\}$

Giovanni S. Alberti (University of Genoa)

0.2

0.8

(b) $K = \{15\}$

Numerical experiments

(b) $K = \{15\}$

(d) $K = \{10, 15, 20\}$

Giovanni S. Alberti (University of Genoa)

Runge and Whitney in hybrid imaging

The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.

- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- **Future prospectives for Runge & Whitney:**
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - move from open and dense to high probability (or 1) with random boundary conditions

- The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- Future prospectives for Runge & Whitney:
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - b move from open and dense to high probability (or 1) with random boundary conditions

- The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- Future prospectives for Runge & Whitney:
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - move from open and dense to high probability (or 1) with random boundary conditions

- The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- Future prospectives for Runge & Whitney:
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - > move from open and dense to high probability (or 1) with random boundary conditions

- The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- Future prospectives for Runge & Whitney:
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - move from open and dense to high probability (or 1) with random boundary conditions

- The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
 - ▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
 - CGO solutions
 - Runge & Whitney
 - The multi-frequency approach
- Future prospectives for Runge & Whitney:
 - complex coefficients
 - other PDEs (Maxwell, elasticity, etc.)
 - move from open and dense to high probability (or 1) with random boundary conditions

Summer School on Applied Harmonic Analysis and Machine Learning

Genoa, September 9-13, 2019

Home Outline Schedule Info Registration

[~] Three minicourses on Signal Analysis and Big Data

School speakers:

Rima Alaifari (ETH Zurich) Gabriel Peyré (École Normale Supérieure, Paris) José Luis Romero (University of Vienna, Austrian Academy of Sciences)

Workshop speakers:

Massimo Fornasier (Technical University of Munich) Anders Hansen (University of Cambridge)

Giovanni S. Alberti Filippo De Mari Ernesto De Vito Lorenzo Rosasco Matteo Santacesaria Silvia Villa

Organizers:

Sponsors: DIMA

🔂 Università di **Genova**

Malga Machine kick-off event

July 1, 2019 | aula magna - via Balbi 5, Genova

9.30 am Registration 9.30 am Welcome addresses 10.00 am Lorenzo Rosasco | UniGe Nicolò Cesa-Bianchi | UniMi 10.30 am 11.10 am Coffee Break Yair Weiss | The Hebrew University of Jerusalem 11.40 am 12.20 pm Tomaso Poggio | MIT 1.00 pm Lunch buffet Presentation of the research units 2.30 pm