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Internal data in quantitative hybrid imaging problems
I Hybrid conductivity imaging [Widlak, Scherzer, 2012]{

−div(a∇ui) = 0 in Ω,
ui = ϕi on ∂Ω.

ui(x) or a(x)∇ui(x) or a(x) |∇ui|2 (x)
?−→ a

I Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]{
∆ui + (ω2 + iωσ)ui = 0 in Ω,
ui = ϕi on ∂Ω.

σ(x) |ui|2 (x)
?−→ σ

I MREIT [Seo et al., 2012, Bal and Guo, 2013] curlEi = iωHi in Ω,
curlHi = −i(ωε+ iσ)Ei in Ω,
Ei × ν = ϕi × ν on ∂Ω.

Hi(x)
?−→ ε, σ
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Non-vanishing gradients and Jacobians
I Consider for simplicity the hybrid conductivity problem with internal data ∇u and unknown a:{

−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω.

I With 1 measurement:

∇a · ∇u = −a∆u =⇒ ∇(log a) · ∇u = −∆u

This equation may be solved in a if a is known on ∂Ω and if

∇u(x) 6= 0, x ∈ Ω.

I With d measurements:

∇(log a) · (∇u1, · · · ,∇ud) = −(∆u1, . . . ,∆ud)

=⇒ ∇(log a) = −(∆u1, . . . ,∆ud)(∇u1, · · · ,∇ud)−1

This equation may be solved in a if a is known at x0 ∈ ∂Ω and

det
[
∇u1(x) · · · ∇ud(x)

]
6= 0, x ∈ Ω.
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Main question

Is it possible to find suitable illuminations ϕi so that the corresponding solutions ui satisfy certain
non-zero constraints, such as a non-vanishing Jacobian

det
[
∇u1(x) · · · ∇ud(x)

]
6= 0 ?

I In other words, this ensures that the internal data are rich enough.
I Ideally, we would like to construct the ϕis a priori, namely independently of the unknown

parameters.
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Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method
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The Radó-Kneser-Choquet theorem
Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let Ω ⊆ R2 be bounded and convex and a ∈ C0,α(Ω;R2×2) be uniformly elliptic. Let ui ∈ H1(Ω) solve

−div(a∇ui) = 0 in Ω, ui = xi on ∂Ω.

Then
det
[
∇u1(x) ∇u2(x)

]
6= 0, x ∈ Ω.

Ω

I det
[
∇u1(x0) ∇u2(x0)

]
= 0

I Thus, α∇u1(x0) + β∇u2(x0) = 0

I Set v(x) = αu1(x) + βu2(x):
I −div(a∇v) = 0 in Ω
I ∇v(x0) = 0

I Thus, v has a saddle point in x0

I Then v has two oscillations on ∂Ω

I But v(x) = αx1 + βx2 on ∂Ω
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The failure in 3D and for other elliptic PDEs

I In three dimensions, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004
and Capdeboscq 2015: it is not possible to find (ϕ1, ϕ2, ϕ3) independently of a so that

det
[
∇u1(x) ∇u2(x) ∇u3(x)

]
6= 0, x ∈ Ω.

I This result clearly fails also for Helmholtz type problems

div(a∇u) + k2qu = 0

since solutions oscillate.
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Critical points in 3D
What about critical points: can we find ϕ independently of a so that

∇u(x) 6= 0, x ∈ Ω?

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let Ω ⊆ R3 be a bounded Lipschitz domain. Take ϕ ∈ C(∂X) ∩H 1
2 (∂X). There exists a (nonempty

open set of) a ∈ C∞(X) such that the solution u ∈ H1(X) to{
−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω,

has a critical point in Ω, namely ∇u(x) = 0 for some x ∈ Ω.

Can be extended to deal with:
I multiple boundary values;
I multiple critical points (located in arbitrarily small balls);
I and Neumann boundary conditions.
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O ∇u(O) ≈ 0

X1 a→∞ =⇒ u ≈ 1

Z

X2

Ω

a→∞ =⇒ u ≈ 2

x(2) ϕ(x(2)) = 2

x(1) ϕ(x(1)) = 1
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Alternative approaches

I Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]
I u(t)(x) = etxm (cos(txl) + i sin(txl)) (1 + ψt), t� 1.
I If t� 1 then u(t)(x) ≈ etxm (cos(txl) + i sin(txl)) in C1 [Bal and Uhlmann, 2010]
I The traces on the boundary of these solutions give the required ϕis
I Need smooth coefficients, construction depends on coefficients.
I Only for isotropic coefficients

I Runge approximation & Whitney embedding

I Multiple frequencies
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The model problem

I Let Ω ⊆ Rd, d ≥ 2 be a smooth bounded domain. Consider the elliptic PDE

Lu := −div(a∇u) + b · ∇u+ cu = 0 in Ω,

with a, b and c smooth enough so that u ∈ C1,α and the unique continuation property (UCP)
holds

I No restrictions on dimension or on the PDE

I Consider, for simplicity, the non-vanishing Jacobian constraint: look for ϕi such that

det
[
∇u1 · · · ∇ud

]
(x) 6= 0

possibly locally, where {
Lui = 0 in Ω,
ui = ϕi on ∂Ω.
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Main tool: the Runge Approximation [Lax 1956]

Ω′

Lv = 0

Ω

I Let Ω′ ⊆ Ω be simply connected and v ∈ H1(Ω′) be a
local solution:

Lv = 0 in Ω′.

In general, v cannot be extended to a global solution u,
BUT:

I Runge approximation: there exist global solutions un to

Lun = 0 in Ω

such that
‖un|Ω′ − v‖L2(Ω′) → 0.

I By elliptic regularity, we get for Ω′′ b Ω′:

‖un|Ω′ − v‖C1(Ω′′) → 0.
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The Runge approximation and non-zero constraints [Bal and Uhlmann 2013]

x0

BrL0v
0
i = 0

Ω

1. Fix x0 ∈ Ω and r > 0. Consider local solutions v0
i = xi:

−div(a(x0)∇v0
i ) = 0 in B(x0, r)

such that det
[
∇v0

1 · · · ∇v0
d

]
6= 0 in B(x0, r).

2. Find r̃ ∈ (0, r] and vi such that Lvi = 0 in B(x0, r̃) and

‖v0
i − vi‖C1(B(x0,r̃))

is arbitrarily small.
3. Runge approximation: find ui such that Lui = 0 in Ω

and ‖vi − ui‖C1(B(x0,r̃/2)) is arbitrarily small. Thus

det
[
∇u1 · · · ∇ud

]
(x) 6= 0, x ∈ B(x0, r̃/2).

4. Covering of Ω with N balls: N · d boundary conditions.
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Two main issues

I You need a large number of measurements to satisfy the constraint

rank
[
∇u1 ∇u2 · · · ∇uNd

]
= d

everywhere.
I The suitable solutions, and so their boundary values, are not explicitly contructed (axiom of choice).
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u1, . . . , uk be solutions to Lui = 0 in Ω such that

rank
[
∇u1 · · · ∇uk

]
(x) = d, x ∈ Ω.

Then, for almost every a ∈ Rk−1, we have

rank
[
∇ (u1 − a1uk) ∇ (u2 − a2uk) · · · ∇ (uk−1 − ak−1uk)

]
(x) = d, x ∈ Ω.

In other words: we can almost always reduce the number of solutions (until 2d) and keep the constraint.
In particular, arbitrarily small weights a can be used.
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Main result

Theorem (GSA and Capdeboscq 2019)
The set of 2d solutions u1, . . . , u2d to Lui = 0 in Ω such that

rank
[
∇u1 · · · ∇u2d

]
(x) = d, x ∈ Ω,

is open and dense in the set of 2d solutions to Lui = 0 in Ω.

Proof.
Open. The rank is stable under small perturbations of ui.
Dense. Take ũ1, . . . , ũ2d solutions to Lũi = 0. By Runge, we have a large number of solutions so that

rank
[
∇u1 · · · ∇uNd

]
(x) = d, x ∈ Ω.

In particular
rank

[
∇ũ1 · · · ∇ũ2d ∇u1 · · · ∇uNd

]
(x) = d, x ∈ Ω.

Apply Whitney reduction lemma with small weights a multiple (Nd) times, until you reach 2d solutions.

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 18 / 34



Main result

Theorem (GSA and Capdeboscq 2019)
The set of 2d solutions u1, . . . , u2d to Lui = 0 in Ω such that

rank
[
∇u1 · · · ∇u2d

]
(x) = d, x ∈ Ω,

is open and dense in the set of 2d solutions to Lui = 0 in Ω.

Proof.
Open. The rank is stable under small perturbations of ui.
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Remarks on the result

I As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere
is open and dense.

I The approach is very general, and works with many other constraints, like

|u1| (x) > 0 (nodal set) d+ 1 solutions∣∣det
[
∇u1 · · · ∇ud

]∣∣(x) > 0 (Jacobian) 2d solutions∣∣det

[
u1 · · · ud+1

∇u1 · · · ∇ud+1

]∣∣(x) > 0 (“augmented” Jacobian) 2d+ 1 solutions

which appear in several hybrid problems.
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Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 The multi-frequency method
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The Helmholtz equation

I We now consider the Helmholtz equation{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

where Ω ⊆ Rd, d = 2, 3, ε, σ ∈ L∞(Ω), σ, ε ≤ Λ, ε ≥ Λ−1.

I We are interested in the constraints:
1.

∣∣u1
ω

∣∣ (x) > 0 (nodal set)
2.

∣∣det
[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) > 0 (Jacobian)

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) > 0 (“augmented” Jacobian)

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 21 / 34



The Helmholtz equation

I We now consider the Helmholtz equation{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

where Ω ⊆ Rd, d = 2, 3, ε, σ ∈ L∞(Ω), σ, ε ≤ Λ, ε ≥ Λ−1.

I We are interested in the constraints:
1.

∣∣u1
ω

∣∣ (x) > 0 (nodal set)
2.

∣∣det
[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) > 0 (Jacobian)

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) > 0 (“augmented” Jacobian)

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 21 / 34



Multi-Frequency Approach: main result
K(n): uniform partition of A = [Kmin,Kmax] with n points

0
√
λ1

√
λN

√
λN+1

√
λN+2A

Theorem (GSA, IP 2013 & CPDE 2015)
There exist C > 0 and n ∈ N∗ depending only on Ω, Λ and A such that the following is true. Take

ϕ1 = 1, ϕ2 = x1, . . . ϕd+1 = xd.

There exists an open cover
Ω =

⋃
ω∈K(n)

Ωω

such that for every ω ∈ K(n) and every x ∈ Ωω we have
1.
∣∣u1
ω

∣∣ (x) ≥ C,
2.
∣∣det

[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) ≥ C,

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) ≥ C.
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Multi-Frequency Approach: basic idea I
As an example, let us consider the 1D case with ε = 1 and σ = 0.
1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω moves when ω varies:

u1
ω

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: basic idea II

1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω may not move if the boundary condition is not suitably chosen:

u1
ω

ϕ(−π) = −1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: ω = 0

1.
∣∣u1

0(x)
∣∣ > 0 everywhere for ω = 0 =⇒ the zeros “move”

u1
ω

u1
0

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1

Thus, we study first the ω = 0 case.
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0(x)
∣∣ ≯ 0 everywhere for ω = 0 =⇒ some zeros may “get stuck”

u1
ω

u1
0

ϕ(−π) = −1, ϕ(π) = 1

−π π

1

−1

It seems that all depends on the ω = 0 case: the unknowns ε and σ disappear!
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What happens in ω = 0?{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

1.
∣∣u1
ω

∣∣ (x) ≥ C > 0, 2.
∣∣det

[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) ≥ C > 0,

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) ≥ C > 0.

These conditions are immediately satisfied by choosing the boundary values

ϕ1 = 1,

ϕ2 = x1,

...
ϕd+1 = xd.

Finally, use holomorphicity of ω 7→ uω to obtain the result.
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Some related works

I Maxwell’s equations (GSA, JDE 2015)
I Ammari et al. (2016) have successfully adapted this method to

div((ωε+ iσ)∇uiω) = 0.

I In 2D, everything works with a ∈ C0,α(Ω;R2×2) and

div(a∇uiω) + (ω2ε+ iωσ)uiω = 0

by using the absence of critical points for the conductivity equation.
I In 3D, we already know that in general for ω = 0 we may have critical points. What can we do?
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What if a 6≈ 1 in 3D?
The case ω = 0 may not be needed for the theory to work:

Theorem (GSA, ARMA 2016)

Suppose a, ε ∈ C2(R3) and σ = 0. For a generic C2 bounded domain Ω and a generic ϕ ∈ C1(Ω) there
exists a finite K ⊆ A such that ∑

ω∈K

∣∣∇uω(x)
∣∣ > 0, x ∈ Ω.
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Acousto-electromagnetic tomography (Ammari et al., 2012)

I Model{
∆uω + ω2εuω = 0 in Ω,
∂uω

∂ν − iωuω = ϕ on ∂Ω.

I Internal data:

ψω = |uω|2∇ε

I Linearised problem:

Dψω[ε](ρ) 7→ ρ

In order to have well-posedness of the linearised inverse problem we need∑
ω∈K
‖Dψω[ε](ρ)‖ ≥ C ‖ρ‖ , ρ ∈ H1(Ω),

or equivalently kerDψω[ε] = {0}.
Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability
constant CK .
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Numerical experiments

(a) K = {10} (b) K = {15}

(c) K = {20}

(d) K = {10, 15, 20}
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Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of the unknown
coefficients), but certain techniques are available:
I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
I CGO solutions
I Runge & Whitney
I The multi-frequency approach

I Future prospectives for Runge & Whitney:
I complex coefficients
I other PDEs (Maxwell, elasticity, etc.)
I move from open and dense to high probability (or 1) with random boundary conditions

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 32 / 34



Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 33 / 34



Registration
Welcome addresses
Lorenzo Rosasco | UniGe
Nicolò Cesa-Bianchi | UniMi
Coffee Break
Yair Weiss | The Hebrew University of Jerusalem
TTomaso Poggio | MIT
Lunch buffet
Presentation of the research units

am
am
am
am
am
am
ppm
pm
pm

  9.30
  9.30
10.00
10.30
11.10
11.40
112.20
  1.00
  2.30

+VMZ��������]�BVMB�NBHOB���WJB�#BMCJ���(FOPWB

.B-(B��
LJDL�PGG�
FWFOU

-PSFN�*QTVN

MACHINE 
LEARNING 
GENOA 
CENTER 

Giovanni S. Alberti (University of Genoa) Runge and Whitney in hybrid imaging BIRS, 24-28 June 2019 34 / 34


	The Radó-Kneser-Choquet theorem
	Runge approximation & Whitney embedding
	The multi-frequency method

	anm1: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


