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Why Self-exciting Point Processes?

Studies have shown certain types of crime, e.g. burglaries and gang
violence are more likely to occur soon after a previous crime has been
committed.

‘Repeat victimisation’ and ‘near repeat victimisation’ - offences target
past victims or occur in nearby locations.

Self-exciting point processes used in earthquake modelling (e.g.
Vere-Jones 1970) - aftershocks occur in the vicinity of the primary
earthquake.

These types of models have been more recently used in the context of
crimes (e.g. Mohler 2011).
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Self-exciting Point Processes

Self-exciting point processes can be defined by the conditional
intensity function

λ(t) = lim
∆t→0

E(N(t, t + ∆t)|Ht)

∆t
.

Poisson process

λ(t) = µ.

Hawkes process (Hawkes 1971)

λ(t) = µ+
∑
ti<t

g(t − ti ).
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Self-Exciting Point Process

Craig Gilmour Mathematical Criminology and Security Monday 17th March 4 / 24



Self-Exciting Point Process
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Self-Exciting Point Process
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Self-Exciting Point Process
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Parametric Formulation

Often a parametric form is assumed for the triggering function, e.g.

g(t − ti ) = αωe−ω(t−ti )

λ(t) = µ+
∑
ti<t

αωe−ω(t−ti )

Given a point process (t1, t2, . . . , tn) on an interval [0,T ), the
likelihood function is given by

L =

(
n∏

i=1

λ(ti )

)
exp

(
−
∫ T

0
λ(t) dt

)
.

For the above ETAS model the log-likelihood can be given as

log L =
n∑

i=1

log

µ+ αω
∑
tj<ti

e−ω(ti−tj )

− µT +
n∑

i=1

α(e−ω(T−ti ) − 1).
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Model Calibration

Often the log-likelihood function is very flat, meaning standard
iterative methods may not be suitable.

The model can be viewed instead as an incomplete data problem
where we don’t know whether an event is a background event or has
been triggered by a previous event.

For the above ETAS model the log-likelihood can be given as

log L =
n∑

i=1

pii log(µ(ti ))−
∫ T

0
µ(t)dt

+
n∑

i=1

∑
tj<ti

pij log(g(ti − tj))−
n∑

i=1

∫ T

tj

g(t − ti )dt

.
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EM-algorithm

For a spatio-temporal point process

λ(x , y , t) = µ(x , y) +
∑
t>ti

g(t − ti )f (x − xi , y − yi )

g(t)f (x , y) = αωe−ωt · 1

2πσ2
e−(x2+y2)/2σ2

We can create the following EM-algorithm

µ =

∑n
i=1 pii
T

, α =

∑n
i=1

∑i−1
j=1 pij

n
,

ω =

∑n
i=1

∑i−1
j=1 pij∑n

i=1

∑i−1
j=1 pij(ti − tj)

,

σ2 =

∑n
i=1

∑i−1
j=1 pij((xi − xj)

2 + (yi − yj)
2)∑n

i=1

∑i−1
j=1 2pij(ti − tj)

.
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EM-Algorithm

We iterate between this maximisation step, and the following
expectation step until convergence

pii =
µ

µ+
∑i−1

j=1 g(ti − tj)
,

pij =
g(ti − tj)

µ+
∑i−1

j=1 g(ti − tj)
.
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Crime Data

Crime data from Chicago is publicly available at
https://data.cityofchicago.org/

Data includes locations and details of every crime recorded in Chicago
since 2001.
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Voronoi Residual Analysis

We can use Voronoi residual analysis to assess the fit of a
spatio-temporal point process (Bray 2014).

For an event (xi , yi ), the associated Voronoi cell Ci can be defined as

Ci = {(x , y) | d((x , y), (xi , yi )) ≤ d((x , y), (xj , yj)) ∀i 6= j},

We can evaluate Voronoi residuals R i
vor for each Voronoi cell i , where

R i
vor = 1−

T∫
0

∫ ∫
(x ,y)∈Ci

λ(x , y , t) dx dy dt.
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Voronoi Residual Analysis
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Voronoi Residual Analysis
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Voronoi Residual Analysis
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Modelling crime with a homogeneous background rate is not suitable.
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Non-parametric Methods

Marsan and Lengliné (2008) introduced Model Independent
Stochastic Declustering (MISD) in order to find a non-parametric
form for the triggering function without any prior assumptions.

This has been used to model crime events (e.g. Mohler et al. 2011).

We use different adaptations of this to model crime in Chicago.
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Non-parametric Methods
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We model the crime assuming isotropy in the triggering component.
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Results on Chicago Data
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Results using model from Mohler et al. 2011.

λ(x , y , t|Ht) = ν(t)µ(x , y) +
∑
t>ti

g(x − xi , y − yi , t − ti ).
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Results on Chicago Data
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Results when assuming isotropy.

λ(x , y , t|Ht) = ν(t)µ(x , y) +
∑
t>ti

g(r − ri , t − ti ).
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Non-parametric Methods
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We also model the triggering function using Manhattan distance to
measure the distance between events.
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Results on Chicago Data
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Results when using Manhattan distance.

λ(x , y , t|Ht) = ν(t)µ(x , y) +
∑
t>ti

g(d − di , t − ti ).
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Summary

Tested self-exciting point process models on Chicago crime data

Tested variants of the standard approaches

Could maintain predictive power with reduced dimensionality
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The End
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