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Goals 4 2day

1. Show a lot of pictures

and discuss their content

2. Demonstrate analogies (functors) b/2 the
depictions

3. Propose glyphographic notation for alg/top
contexts

4. Demonstrate the topological meaning (See
item 1)

5. Archive within the beamer slides the diagrams.
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Principles

1. Different things are not equal,

at best nat.
isom.

2. (higher order) Arrows in a cat. context are
used to compare.

3. “Doing” and then “undoing” may or may not
be the same as “not doing.”

4. Simultaneity is illusory.

5. Change followed by exchange is comparable to
exchange followed by change via a higher order
arrow.
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Example 1

Frobenius Algebra axioms:
W is a vector space E

W W

W

W W
, 
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=
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a unit
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Example 2
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Example 3

Empty
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Example 4

D(i,j) D(i,j) D(i,j)

D(i,j)

D(i,j)

D(i,j)

F(i,j) F(i,j)
D(i,j) D(i,j)

D(i,j) D(i,j)

F(i,j) F(i,j)

F(i,j)F(i,j)

D(i+1,j) D(i+1,j)

D(i+1,j) D(i+1,j)

D(i,1+j)

D(i,1+j)



Satoh-Shima,Inoue,Kawamura



A knotted p2



Models



In the Frob. Alg case,

categorify. Obj. FA:

N = {0, 1, 2, . . .}. 1↔ • . Id on α

α
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α strings

Thus

α
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β

α + β α β
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β α

α β

all repr. id. on α + β.
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Def. 1-arrows, part 1

The diagrams here

,, , , , , ,&

are arrows.



Def 1-arrows, part 2

if A and B are arrows with suitable sources and
targets, then each of the diagrams here

B

A
,

(i)

A

(ii)

, A

(iii)

,

(v)(iv)

,&

α β

α + β α β

α + β

is an arrow.



Forms of 1-arrows

A

B
,

A

B
,

A

B
,

A

B
,&

A

B



Before we continue with FA, in particular,

note that
the previous 2 slides apply in general. So let’s look
in a general context to address the lack of
simultaneity.
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Exchanger axiom. Suppose that γ
F←− α and

ζ
G←− β are arrows. There is a natural family X

of 2-arrows

X : (F ⊗ Iζ) ◦ (Iα ⊗G)⇒ (Iγ ⊗G) ◦ (F ⊗ Iβ)

which are 2-isomorphisms. Here
(F ⊗ Iζ) ◦ (Iα ⊗G) and (Iγ ⊗G) ◦ (F ⊗ Iβ) are
algebraic expressions of the graphic:

F

G

and
F

G

.



R

R

R

G

H

G

F

G

H

XR

G

H

G

F

X

G

F

G

F

G

F

G

H

G

F

G

H

G

H

R

R

Change followed by exchange is comparable to
exchange followed by change.



F
G F

G

F G,  arrows

Exchanger

+

-

projectX

 (+)

 (-)
= I

X

X

 (+)X

= 

 (+)

 (-)

= 

X

X

ζ

αα ββ

γγ ζ

β ζ

γα



The 1-arrows Y,

Y

,

U

, and U are secretly 2-arrows

b/c the object set N is a monoid. So we’ll consider
things from a 2-cat POV.
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• •F⇑

f0

f1

t(f0) = t(f1) s(f0) = s(f1)

is the same as

s(f0)t(f0)

t(f1) s(f1)

F⇑

,
and such 2-arrows are composed globularly

• •
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f0 = g1
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We also have skew compositions. So write

b d

b dc
F

b d

c

=
F

a c
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b

FF

a c

b

=

and allow

b

a

a

a d

b d

d

c

c

F

F
a

a

c

a d

d

d

b

b

c

F′

F′

un-directed edges are identities.
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These are also written as

F F

a c

b d

F′F′

b

a c

d

.



Disallow:

• • •

f0

f1

g0

g1

F G



Replace with

• • •

• • •

• • •

f0

f1

f0

g0

g1

g1

If0

F

G

t(f0)

t(f0)

t(f1) =

s(g1)

= s(g0)

t(f1)

s(g0)

Ig1

s(f0) = t(g0)

s(f1) = t(g1) s(g1)

It(f0)

It(f1)

Is(g0)

Is(g1)It(g1)

s(f0)
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t(g0)

t(g1)

Is(f0)

Then the
exchanger X is a triple arrow.
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I’ll be bouncing b/2 descr. things as
double and triple arrows. Since n-arrows form a
cat., there are always identity (n+ 1)-arrows.e.g.
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right rightleft left

=

LHS
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bottom top
right

left
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Inductive Step
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• Cusps correspond to critical (handle)
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interesting. Last picture.

• The construction grows exponentially.

• I’ll skip a step and go to the highest level that
we have computed.
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Thank you


