A Potporri of Diagrams

J. Scott Carter

De-institutionalized

Banff, BIRS, Nov 2019

1. Based on a book project with Seiichi Kamada

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

1. Based on a book project with Seiichi Kamada

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

2. Initial work with Masahico Saito

1. Based on a book project with Seiichi Kamada

- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)

1. Based on a book project with Seiichi Kamada

- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons

1. Based on a book project with Seiichi Kamada

- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons
- 5. JSPS # L18511

- 1. Based on a book project with Seiichi Kamada
- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons
- 5. JSPS # L18511 (Aug 2018 May 2019)

- 1. Based on a book project with Seiichi Kamada
- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons
- 5. JSPS # L18511 (Aug 2018 May 2019)

6. ICERM

- 1. Based on a book project with Seiichi Kamada
- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons
- 5. JSPS # L18511 (Aug 2018 May 2019)

6. ICERM (Sept 2019 – Dec 2019)

- 1. Based on a book project with Seiichi Kamada
- 2. Initial work with Masahico Saito
- 3. Brain Pool Trust (2012-2013)
- 4. Simons
- 5. JSPS # L18511 (Aug 2018 May 2019)
- 6. ICERM (Sept 2019 Dec 2019)
- 7. And of course, Alex, Jeff, and BIRS 19w5118

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

1. Show a lot of pictures

1. Show a lot of pictures and discuss their content

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

1. Show a lot of pictures and discuss their content

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

2. Demonstrate analogies

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors)

1. Show a lot of pictures and discuss their content

2. Demonstrate analogies (functors) b/2 the depictions

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors) b/2 the depictions
- 3. Propose glyphographic notation for alg/top contexts

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors) b/2 the depictions
- 3. Propose glyphographic notation for alg/top contexts

4. Demonstrate the topological meaning

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors) b/2 the depictions
- 3. Propose glyphographic notation for alg/top contexts
- 4. Demonstrate the topological meaning (See item 1)

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors) b/2 the depictions
- 3. Propose glyphographic notation for alg/top contexts
- 4. Demonstrate the topological meaning (See item 1)
- 5. Archive within the beamer slides the diagrams.

- 1. Show a lot of pictures and discuss their content
- 2. Demonstrate analogies (functors) b/2 the depictions
- 3. Propose glyphographic notation for alg/top contexts
- 4. Demonstrate the topological meaning (See item 1)
- 5. Archive within the beamer slides the diagrams.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

1. Different things are not equal,

1. Different things are not equal, at best nat. isom.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.

ション ふゆ く は マ く ほ マ く し マ

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.

ション ふゆ く は マ く ほ マ く し マ

3. "Doing"

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.

3. "Doing" and then "undoing"

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.

3. "Doing" and then "undoing" may

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.
- 3. "Doing" and then "undoing" may or may not be the same as

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.
- 3. "Doing" and then "undoing" may or may not be the same as "not doing."

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.
- 3. "Doing" and then "undoing" may or may not be the same as "not doing."

4. Simultaneity is illusory.

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.
- 3. "Doing" and then "undoing" may or may not be the same as "not doing."
- 4. Simultaneity is illusory.
- 5. Change followed by exchange is comparable to exchange followed by change

- 1. Different things are not equal, at best nat. isom.
- 2. (higher order) Arrows in a cat. context are used to compare.
- 3. "Doing" and then "undoing" may or may not be the same as "not doing."
- 4. Simultaneity is illusory.
- 5. Change followed by exchange is comparable to exchange followed by change via a higher order arrow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• We'll work in a multi-category

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. *n*-arrows

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. *n*-arrows
- We'll be finicky about horizontal composition

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. *n*-arrows
- We'll be finicky about horizontal composition

Finicky:

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. *n*-arrows
- We'll be finicky about horizontal composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Finicky:

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. *n*-arrows
- We'll be finicky about horizontal composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Finicky:

Gratuitous internet cat picture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

900

æ

Satoh-Shima, Inoue, Kawamura

A knotted p2

・ロト ・四ト ・ヨト ・ヨト

æ

Models

Sac

In the Frob. Alg case,

In the Frob. Alg case, categorify.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

In the Frob. Alg case, categorify. Obj. FA:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

In the Frob. Alg case, categorify. Obj. FA:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

 $\mathbb{N} = \{0, 1, 2, \ldots\}.$

In the Frob. Alg case, categorify. Obj. FA:

 $\mathbb{N} = \{0, 1, 2, \ldots\}. \ 1 \leftrightarrow -\bullet.$

Thus

イロト 不得下 イヨト イヨト

Sac

all repr. id. on $\alpha + \beta$.

Def. 1-arrows, part 1

The diagrams here

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

are arrows.

Def 1-arrows, part 2

if A and B are arrows with suitable sources and targets, then each of the diagrams here

Sac

is an arrow.

Forms of 1-arrows

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 의 ● ●

Before we continue with FA, in particular,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Before we continue with FA, in particular, note that the previous 2 slides apply in general.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Before we continue with FA, in particular, note that the previous 2 slides apply in general. So let's look in a general context

Before we continue with FA, in particular, note that the previous 2 slides apply in general. So let's look in a general context to address the lack of simultaneity.

Exchanger axiom. Suppose that $\gamma \xleftarrow{F} \alpha$ and $\zeta \xleftarrow{G} \beta$ are arrows. There is a natural family X of 2-arrows

 $\mathsf{X}: (F \otimes \mathsf{I}_{\zeta}) \circ (\mathsf{I}_{\alpha} \otimes G) \Rightarrow (\mathsf{I}_{\gamma} \otimes G) \circ (F \otimes \mathsf{I}_{\beta})$

which are 2-isomorphisms. Here $(F \otimes I_{\zeta}) \circ (I_{\alpha} \otimes G)$ and $(I_{\gamma} \otimes G) \circ (F \otimes I_{\beta})$ are algebraic expressions of the graphic:

Change followed by exchange is comparable to exchange followed by change.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

The 1-arrows Y, λ , \cap , and U are secretly 2-arrows

The 1-arrows Y, λ , \cap , and U are secretly 2-arrows b/c the object set \mathbb{N} is a monoid.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

The 1-arrows Y, λ , \cap , and U are secretly 2-arrows b/c the object set \mathbb{N} is a monoid. So we'll consider things from a 2-cat POV.

and such 2-arrows are composed globularly

and such 2-arrows are composed globularly

nac

We also have skew compositions. So write

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

We also have skew compositions. So write

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We also have skew compositions. So write

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

and allow

We also have skew compositions. So write

and allow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

We also have skew compositions. So write

and allow

ъ

Sac

un-directed edges are identities.

These are also written as

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ 釣�()?

Replace with

Replace with

exchanger X is a triple arrow.

Apology: I'll be bouncing b/2 descr. things as double and triple arrows.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Apology: I'll be bouncing b/2 descr. things as double and triple arrows. Since *n*-arrows form a cat.,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Apology: I'll be bouncing b/2 descr. things as double and triple arrows. Since *n*-arrows form a cat., there are always identity (n + 1)-arrows.

くしゃ ふゆ そう そう う うらく

Apology: I'll be bouncing b/2 descr. things as double and triple arrows. Since *n*-arrows form a cat., there are always identity (n + 1)-arrows.e.g.

ション ふゆ く は マ く ほ マ く し マ

Apology: I'll be bouncing b/2 descr. things as double and triple arrows. Since *n*-arrows form a cat., there are always identity (n + 1)-arrows.e.g.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Since different things are not the same,

Since different things are not the same, we compare

Since different things are not the same, we compare using arrows.

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

Since different things are not the same, we compare using arrows.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Glyphography

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ● ●

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQQ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

▲□▶ <畳▶ < Ξ▶ < Ξ▶ < Ξ < のQ (P)</p>

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

This frame was intentionally left blank.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

×

・ロト ・母ト ・ヨト ・ヨー うへぐ

So, for example,

(中) (문) (문) (문) (문)

So, for example, the Joyal-Street axioms for associative unital structures can be given in a diagrammatic fashion.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

So, for example, the Joyal-Street axioms for associative unital structures can be given in a diagrammatic fashion. Note that not all the unit axioms have been stated here.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

S'pose that there are two objects t and f in a multi-cat. ${\cal S}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows:

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows: f — f

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f — f t — t

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f — f t — t p:f \rightarrow t,

ション ふゆ く は マ く ほ マ く し マ

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f — f t — t p:f \rightarrow t, and b:t \rightarrow f.

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f - f t - t $p:f \rightarrow t$, and $b:t \rightarrow f$. In general, a non-id. arrow is a finite sequence

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: t — t t — t $p:f \rightarrow t$, and $h \cdot t \rightarrow f$. In general, a non-id. arrow is a finite sequence $pbpb \cdots b$,

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f - f t - t $p:f \rightarrow t$, and $b:t \rightarrow f$. In general, a non-id. arrow is a finite sequence $pbpb \cdots b$, $pbpb \cdots p$,

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f - f t - t $p:f \rightarrow t$, and $b:t \rightarrow f$. In general, a non-id. arrow is a finite sequence $pbpb \cdots b$, $pbpb \cdots p$, $bpbp \cdots b$, or

S'pose that there are two objects t and f in a multi-cat. S In addition, there are arrows: f - ft - t $p:f \rightarrow t$, and $b:t \rightarrow f$. In general, a non-id. arrow is a finite sequence $pbpb \cdots b$, $pbpb \cdots p$, $bpbp \cdots b$, or $bpbp \cdots p$.

Gen. 2-arrows.

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 의 ● ●

Gen. 2-arrows.

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 のへで

Ids: $\begin{bmatrix} & & \\ t & & \\$

Gen. double arrows:

Gen. 2-arrows.

lds:

Gen. double arrows:

Let's look at all possible 2-fold compositions.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

р

These can be compared to identity double arrows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

These can be compared to identity double arrows. The comparisons are triple arrows.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

<□> <圖> < E> < E> E のQ@

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Next by examining all the three-fold compositions of double arrows,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Next by examining all the three-fold compositions of double arrows, the quadruple arrows arise.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The afore constructed 4-cat ${\mathcal S}$

The afore constructed 4-cat S is the 4-cat of isotopy classes properly embedded surfaces in 3-space.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

BUT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BUT

apologies to Sir Mix Alot

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

It's much more.

t	•	••					
t		•	••	\bigcirc		\bigcirc	
р	T	Y	Λ	\bigcirc	PS		
b	T	٨	U	Θ	K		

$\mathsf{p}:0\to 1.$

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへぐ

$\mathsf{p}: 0 \to 1. \mathsf{b}: 1 \to 0.$

$\mathsf{p}: 0 \to 1. \ \mathsf{b}: 1 \to 0.$ Let f_0 denote 0 - 0.

 $p: 0 \rightarrow 1$. $b: 1 \rightarrow 0$.Let f_0 denote 0 - 0. Let f_1 denote 1 - 1. Let $t_0 = pb$, Let $t_1 = bp$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

 $\mathsf{p}: 0 \to 1. \ \mathsf{b}: 1 \to 0.\mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 - 0. \ \mathsf{Let} \ \mathsf{f}_1 \ \mathsf{denote} \ 1 - 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \ \epsilon \in \{0, 1\},$

ション ふゆ く は マ く ほ マ く し マ

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_{\epsilon}: \mathsf{f}_{\epsilon} \rightarrow \mathsf{t}_{\epsilon}, \end{array}$

ション ふゆ く は マ く ほ マ く し マ

 $\begin{array}{l} \mathsf{p}: 0 \to 1. \ \mathsf{b}: 1 \to 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - & 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - & 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_{\epsilon}: \mathsf{f}_{\epsilon} \to \mathsf{t}_{\epsilon}, \ \mathsf{and} \ \mathsf{b}_{\epsilon}: \mathsf{t}_{\epsilon} \to \mathsf{f}_{\epsilon}. \end{array}$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のく⊙

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{L}(\mathsf{f}), \end{array}$

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - \ 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - \ 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{E}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{E}(\mathsf{t}), \end{array}$

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{E}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{E}(\mathsf{t}), \ \mathsf{b}_0 = \mathsf{F}(\mathsf{f}), \end{array}$

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - & 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - & 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{L}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{L}(\mathsf{t}), \ \mathsf{b}_0 = \mathsf{F}(\mathsf{f}), \ \mathsf{and} \ \mathsf{b}_1 = \mathsf{F}(\mathsf{t}). \\ \mathsf{Sp} \ \mathsf{for} \ x = \epsilon_{k-1} \cdots \epsilon_1, \end{array}$

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - & 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - & 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{E}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{E}(\mathsf{t}), \ \mathsf{b}_0 = \mathsf{F}(\mathsf{f}), \ \mathsf{and} \ \mathsf{b}_1 = \mathsf{F}(\mathsf{t}). \\ \mathsf{Sp} \ \mathsf{for} \ x = \epsilon_{k-1} \cdots \epsilon_1, \ (k-1)\text{-arrows:} \ \mathsf{f}_x, \ \mathsf{t}_x \ \mathsf{are} \\ \mathsf{def'd}. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへの

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{E}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{E}(\mathsf{t}), \ \mathsf{b}_0 = \mathsf{F}(\mathsf{f}), \ \mathsf{and} \ \mathsf{b}_1 = \mathsf{F}(\mathsf{t}). \\ \mathsf{Sp} \ \mathsf{for} \ x = \epsilon_{k-1} \cdots \epsilon_1, \ (k-1)\text{-arrows:} \ \mathsf{f}_x, \ \mathsf{t}_x \ \mathsf{are} \\ \mathsf{def'd.} \ \mathsf{w}/ \ k\text{-arrows,} \ \mathsf{p}_x: \mathsf{f}_x \rightarrow \mathsf{t}_x \ \mathsf{and} \ \mathsf{b}_x: \mathsf{t}_x \rightarrow \mathsf{f}_x \\ \mathsf{b}/2 \ \mathsf{them}. \end{array}$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のく⊙

 $\begin{array}{l} \mathsf{p}: 0 \rightarrow 1. \ \mathsf{b}: 1 \rightarrow 0. \mathsf{Let} \ \mathsf{f}_0 \ \mathsf{denote} \ 0 & - & 0. \ \mathsf{Let} \ \mathsf{f}_1 \\ \mathsf{denote} \ 1 & - & 1. \ \mathsf{Let} \ \mathsf{t}_0 = \mathsf{pb}, \ \mathsf{Let} \ \mathsf{t}_1 = \mathsf{bp}. \ \mathsf{For} \\ \epsilon \in \{0, 1\}, \ \mathsf{let} \ \mathsf{p}_\epsilon: \mathsf{f}_\epsilon \rightarrow \mathsf{t}_\epsilon, \ \mathsf{and} \ \mathsf{b}_\epsilon: \mathsf{t}_\epsilon \rightarrow \mathsf{f}_\epsilon. \ \mathsf{Note:} \\ \mathsf{p}_0 = \mathsf{E}(\mathsf{f}), \ \mathsf{p}_1 = \mathsf{E}(\mathsf{t}), \ \mathsf{b}_0 = \mathsf{F}(\mathsf{f}), \ \mathsf{and} \ \mathsf{b}_1 = \mathsf{F}(\mathsf{t}). \\ \mathsf{Sp} \ \mathsf{for} \ x = \epsilon_{k-1} \cdots \epsilon_1, \ (k-1)\text{-arrows:} \ \mathsf{f}_x, \ \mathsf{t}_x \ \mathsf{are} \\ \mathsf{def'd.} \ \mathsf{w}/ \ k\text{-arrows,} \ \mathsf{p}_x: \mathsf{f}_x \rightarrow \mathsf{t}_x \ \mathsf{and} \ \mathsf{b}_x: \mathsf{t}_x \rightarrow \mathsf{f}_x \\ \mathsf{b}/2 \ \mathsf{them}. \ \mathsf{Let} \ I[\mathsf{s}_x] \ \mathsf{denote} \ \mathsf{the} \ \mathsf{id}. \ k\text{-arrow upon s} \\ \mathsf{for} \ \mathsf{s} = \mathsf{t}, \mathsf{f}, \mathsf{p}, \ \mathsf{or} \ \mathsf{b}. \end{array}$

ション ふゆ マ キャット しょう くしゃ

•
$$\mathbf{f}_{0x} = I[\mathbf{f}_x],$$

- $\mathbf{f}_{0x} = I[\mathbf{f}_x],$
- $f_{1x} = I[t_x],$
- $t_{0x} = p_x b_x$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

- $\mathbf{f}_{0x} = I[\mathbf{f}_x],$
- $f_{1x} = I[t_x],$
- $t_{0x} = p_x b_x$, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• $t_{1x} = b_x p_x$.

• $f_{0x} = I[f_x],$ • $f_{1x} = I[t_x],$ • $t_{0x} = p_x b_x,$ and • $t_{1x} = b_x p_x.$ Def (k + 1)-arrows

ション ふゆ マ キャット しょう くしゃ

- $f_{0x} = I[f_x],$ • $f_{1x} = I[t_x],$
- $t_{0x} = p_x b_x$, and
- $t_{1x} = b_x p_x$.

 $\mathsf{Def}\;(k+1)\text{-}\mathsf{arrows}$

•
$$\mathsf{p}_{0x} : \mathsf{f}_{0x} \to t_{0x} = \mathsf{E}(\mathsf{f}_x);$$

ション ふゆ マ キャット しょう くしゃ

- $f_{0x} = I[f_x],$ • $f_{1x} = I[t_x],$
- $t_{0x} = p_x b_x$, and
- $t_{1x} = b_x p_x$.

 $\mathsf{Def}\;(k+1)\mathsf{-}\mathsf{arrows}$

•
$$\mathsf{p}_{0x}: \mathsf{f}_{0x} \to t_{0x} = \mathsf{E}(\mathsf{f}_x);$$

•
$$\mathsf{p}_{1x}: \mathsf{f}_{1x} \to t_{1x} = \mathsf{E}(\mathsf{t}_x);$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへの

•
$$f_{0x} = I[f_x],$$

• $f_{1x} = I[t_x],$

•
$$t_{0x} = p_x b_x$$
, and

•
$$\mathsf{t}_{1x} = \mathsf{b}_x \mathsf{p}_x$$
.

 $\mathsf{Def}\;(k+1)\text{-}\mathsf{arrows}$

•
$$\mathsf{p}_{0x}: \mathsf{f}_{0x} \to t_{0x} = \mathsf{E}(\mathsf{f}_x);$$

•
$$\mathsf{p}_{1x} : \mathsf{f}_{1x} \to t_{1x} = \mathsf{E}(\mathsf{t}_x);$$

•
$$\mathsf{b}_{0x}: \mathsf{t}_{0x} \to \mathsf{f}_{0x} = \mathsf{F}(\mathsf{f}_x);$$

•
$$f_{0x} = I[f_x],$$

• $f_{1x} = I[t_x],$

•
$$t_{0x} = p_x b_x$$
, and

•
$$t_{1x} = b_x p_x$$
.

 $\mathsf{Def}\;(k+1)\text{-}\mathsf{arrows}$

•
$$p_{0x} : f_{0x} \rightarrow t_{0x} = E(f_x);$$

• $p_{1x} : f_{1x} \rightarrow t_{1x} = E(t_x);$
• $b_{0x} : t_{0x} \rightarrow f_{0x} = F(f_x);$ and
• $b_{1x} : t_{1x} \rightarrow f_{1x} = F(t_x);$

Inductive Step

・ロト ・留ト ・モト ・モト

æ

<ロト <問ト < 注ト < 注ト

590

æ

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• The b's and p's are all critical points

• The b's and p's are all critical points or IOW handle attachments.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Cusps correspond to critical (handle) cancelations.

- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting.

- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.

- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.

• The construction grows exponentially.

- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.
- The construction grows exponentially.
- I'll skip a step and go to the highest level that we have computed.

しゃ 4 聞き 4 画き 4 画き 4 回 うみる

<u>E(f)</u>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• There is more glyphography to come.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- There is more glyphography to come.
- Components of glyphs are

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- There is more glyphography to come.
- Components of glyphs are vertices

- There is more glyphography to come.
- Components of glyphs are vertices types of edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges & serifs.

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 의 ● ●

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges & serifs.
- bookmarks can be associated to serifs and vertices that indicate composability.

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges & serifs.
- bookmarks can be associated to serifs and vertices that indicate composability.

• That's my story and I'm sticking to it.

Thank you

<ロ> <目> <目> <目> <目> <目> <目> <目> <<=>