A Potporri of Diagrams

J. Scott Carter

De-institutionalized

Banff, BIRS, Nov 2019

Acknowledgements

1. Based on a book project with Seiichi Kamada

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons
5. JSPS \# L18511

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons
5. JSPS \# L18511 (Aug 2018 - May 2019)

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons
5. JSPS \# L18511 (Aug 2018 - May 2019)
6. ICERM

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons
5. JSPS \# L18511 (Aug 2018 - May 2019)
6. ICERM (Sept 2019 - Dec 2019)

Acknowledgements

1. Based on a book project with Seiichi Kamada
2. Initial work with Masahico Saito
3. Brain Pool Trust (2012-2013)
4. Simons
5. JSPS \# L18511 (Aug 2018 - May 2019)
6. ICERM (Sept 2019 - Dec 2019)
7. And of course, Alex, Jeff, and BIRS $19 w 5118$

Goals 4 2day

1. Show a lot of pictures

Goals 4 2day

1. Show a lot of pictures and discuss their content

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors)

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions
3. Propose glyphographic notation for alg/top contexts

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions
3. Propose glyphographic notation for alg/top contexts
4. Demonstrate the topological meaning

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions
3. Propose glyphographic notation for alg/top contexts
4. Demonstrate the topological meaning (See item 1)

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions
3. Propose glyphographic notation for alg/top contexts
4. Demonstrate the topological meaning (See item 1)
5. Archive within the beamer slides the diagrams.

Goals 4 2day

1. Show a lot of pictures and discuss their content
2. Demonstrate analogies (functors) b/2 the depictions
3. Propose glyphographic notation for alg/top contexts
4. Demonstrate the topological meaning (See item 1)
5. Archive within the beamer slides the diagrams.

Principles

1. Different things are not equal,

Principles

1. Different things are not equal, at best nat. isom.

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing"

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing"

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may or may not be the same as

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may or may not be the same as "not doing."

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may or may not be the same as "not doing."
4. Simultaneity is illusory.

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may or may not be the same as "not doing."
4. Simultaneity is illusory.
5. Change followed by exchange is comparable to exchange followed by change

Principles

1. Different things are not equal, at best nat. isom.
2. (higher order) Arrows in a cat. context are used to compare.
3. "Doing" and then "undoing" may or may not be the same as "not doing."
4. Simultaneity is illusory.
5. Change followed by exchange is comparable to exchange followed by change via a higher order arrow.

Multi-cats

- We'll work in a multi-category

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc.

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. n-arrows

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. n-arrows
- We'll be finicky about horizontal composition

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. n-arrows
- We'll be finicky about horizontal composition

Finicky:

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. n-arrows
- We'll be finicky about horizontal composition

Finicky:

Multi-cats

- We'll work in a multi-category
- Objects, 1-arrows, double arrows, triple arrows, etc. n-arrows
- We'll be finicky about horizontal composition

Finicky:
Gratuitous internet cat picture.

Example 1

Example 2

Example 3

Example 4

Satoh-Shima,Inoue,Kawamura

A knotted p2

Models

In the Frob. Alg case,

In the Frob. Alg case,categorify.

In the Frob. Alg case, categorify. Obj. FA:

In the Frob. Alg case,categorify. Obj. FA:
$\mathbb{N}=\{0,1,2, \ldots\}$.

In the Frob. Alg case,categorify. Obj. FA:
$\mathbb{N}=\{0,1,2, \ldots\} .1 \leftrightarrow \bullet$.

In the Frob. Alg case,categorify. Obj. FA:

 $\mathbb{N}=\{0,1,2, \ldots\} .1 \leftrightarrow \bullet$. Id on α

In the Frob. Alg case, categorify. Obj. FA:

Thus

all repr. id. on $\alpha+\beta$.

Def. 1-arrows, part 1

The diagrams here

are arrows.

Def 1-arrows, part 2

if A and B are arrows with suitable sources and targets, then each of the diagrams here

is an arrow.

Forms of 1-arrows

Before we continue with FA, in particular,

Before we continue with FA, in particular, note that the previous 2 slides apply in general.

Before we continue with FA, in particular, note that the previous 2 slides apply in general. So let's look in a general context

Before we continue with FA, in particular, note that the previous 2 slides apply in general. So let's look in a general context to address the lack of simultaneity.

Exchanger axiom. Suppose that $\gamma \stackrel{F}{\longleftarrow} \alpha$ and $\zeta \stackrel{G}{\leftrightarrows} \beta$ are arrows. There is a natural family X of 2-arrows

$$
\mathbf{X}:\left(F \otimes \mathbf{I}_{\zeta}\right) \circ\left(\mathbf{I}_{\alpha} \otimes G\right) \Rightarrow\left(\mathbf{I}_{\gamma} \otimes G\right) \circ\left(F \otimes \mathbf{I}_{\beta}\right)
$$

which are 2-isomorphisms. Here $\left(F \otimes \mathbf{I}_{\zeta}\right) \circ\left(\mathbf{I}_{\alpha} \otimes G\right)$ and $\left(\mathbf{I}_{\gamma} \otimes G\right) \circ\left(F \otimes \mathbf{I}_{\beta}\right)$ are algebraic expressions of the graphic:

Change followed by exchange is comparable to exchange followed by change.

受, 采 \in arrows

The 1-arrows $\mathrm{Y}, \lambda, \cap$, and U are secretly 2 -arrows

The 1-arrows Y, λ, \cap, and U are secretly 2 -arrows b / c the object set \mathbb{N} is a monoid.

The 1-arrows Y, λ, \cap, and U are secretly 2-arrows b / c the object set \mathbb{N} is a monoid. So we'll consider things from a 2-cat POV.

[^0]

and such 2-arrows are composed globularly

and such 2-arrows are composed globularly

We also have skew compositions. So write

We also have skew compositions. So write

We also have skew compositions. So write

and allow

We also have skew compositions. So write

and allow

We also have skew compositions. So write

and allow

un-directed edges are identities.

These are also written as

These are also written as

Disallow:

Replace with

Replace with

Then the

exchanger X is a triple arrow.

Apology:

Apology: I'll be bouncing $b / 2$ descr. things as double and triple arrows.

Apology: I'll be bouncing $b / 2$ descr. things as double and triple arrows. Since n-arrows form a cat.,

Apology: I'll be bouncing $\mathrm{b} / 2$ descr. things as double and triple arrows. Since n-arrows form a cat., there are always identity $(n+1)$-arrows.

Apology: I'll be bouncing $\mathrm{b} / 2$ descr. things as double and triple arrows. Since n-arrows form a cat., there are always identity $(n+1)$-arrows.e.g.

Apology: I'll be bouncing $\mathrm{b} / 2$ descr. things as double and triple arrows. Since n-arrows form a cat., there are always identity $(n+1)$-arrows.e.g.

Since different things are not the same,

Since different things are not the same, we compare

Since different things are not the same, we compare using arrows.

Since different things are not the same, we compare using arrows.

Glyphography

This frame was intentionally left blank.

ムロ・4岛〉

So, for example,

So, for example, the Joyal-Street axioms for associative unital structures can be given in a diagrammatic fashion.

So, for example, the Joyal-Street axioms for associative unital structures can be given in a diagrammatic fashion. Note that not all the unit axioms have been stated here.

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S}

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
$f-f$

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f-f
t - t

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f-f
t - t
$p: f \rightarrow t$,

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f-f
t — t
$\mathrm{p}: f \rightarrow \mathrm{t}$, and
b: $t \rightarrow f$.

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
$f-f$
$t-\mathrm{t}$
$p: f \rightarrow t$, and
$\mathrm{b}: \mathrm{t} \rightarrow \mathrm{f}$.
In general, a non-id. arrow is a finite sequence

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f- f
t - t
$\mathrm{p}: f \rightarrow \mathrm{t}$, and
$\mathrm{b}: \mathrm{t} \rightarrow \mathrm{f}$.
In general, a non-id. arrow is a finite sequence pbpb...b,

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f- f
t - t
$\mathrm{p}: f \rightarrow \mathrm{t}$, and
b: $t \rightarrow f$.
In general, a non-id. arrow is a finite sequence pbpb $\cdots b$, pbpb \cdots,

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f- f
t - t
$\mathrm{p}: f \rightarrow \mathrm{t}$, and
b: $t \rightarrow f$.
In general, a non-id. arrow is a finite sequence pbpb \cdots b, pbpb \cdots, bpbp \cdots b, or

Simplify and Abstract

S'pose that there are two objects t and f in a multi-cat. \mathcal{S} In addition, there are arrows:
f- f
t - t
$\mathrm{p}: f \rightarrow \mathrm{t}$, and
b: $t \rightarrow f$.
In general, a non-id. arrow is a finite sequence pbpb \cdots b, pbpb \cdots, bpbp \cdots b, or bpbp \cdots. .

Gen. 2-arrows.

Ids:

Gen. 2-arrows.

Ids:

Gen. double arrows:

Gen. 2-arrows.

Ids:

Gen. double arrows:

Let's look at all possible 2-fold compositions.

These can be compared to identity double arrows.

These can be compared to identity double arrows. The comparisons are triple arrows.

Next by examining all the three-fold compositions of double arrows,

Next by examining all the three-fold compositions of double arrows, the quadruple arrows arise.

(

（
（

The afore constructed 4-cat \mathcal{S}

The afore constructed 4 -cat \mathcal{S} is the 4 -cat of isotopy classes properly embedded surfaces in 3 -space.

$B U T$

BUT

apologies to Sir Mix Alot

It's much more.

t	-	- \bullet			$\supset \subset$		ℓ
f		\bullet	$\bullet \bullet$	\bigcirc	$\overline{=}$	θ	\square
p	1	Y	0	\bigcirc	19	θ	8 8
b	Y	人	U	θ	5	θ	\square

$p: 0 \rightarrow 1$.

$$
4 \square>4 \text { 岛 } \downarrow \text { 三 }>4 \text { 三 }
$$

$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$.
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$.
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$.
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$,
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$.
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$,
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$,
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$.
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $p_{0}=t(f)$,
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $p_{\epsilon}: f_{\epsilon} \rightarrow t_{\epsilon}$, and $b_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $p_{0}=t(f), p_{1}=t(t)$,
$\mathrm{p}: 0 \rightarrow 1$. $\mathrm{b}: 1 \rightarrow 0$.Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $p_{\epsilon}: f_{\epsilon} \rightarrow t_{\epsilon}$, and $b_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $p_{0}=t(f), p_{1}=t(t), b_{0}=F(f)$,
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $p_{0}=\mathrm{t}(\mathrm{f}), \mathrm{p}_{1}=\mathrm{t}(\mathrm{t}), \mathrm{b}_{0}=\mathrm{F}(\mathrm{f})$, and $\mathrm{b}_{1}=\mathrm{F}(\mathrm{t})$.
Sp for $x=\epsilon_{k-1} \cdots \epsilon_{1}$,
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $\mathrm{p}_{0}=\mathrm{t}(\mathrm{f}), \mathrm{p}_{1}=\mathrm{t}(\mathrm{t}), \mathrm{b}_{0}=\mathrm{F}(\mathrm{f})$, and $\mathrm{b}_{1}=\mathrm{F}(\mathrm{t})$. Sp for $x=\epsilon_{k-1} \cdots \epsilon_{1},(k-1)$-arrows: f_{x}, t_{x} are def'd.
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $\mathrm{p}_{0}=\mathrm{t}(\mathrm{f}), \mathrm{p}_{1}=\mathrm{t}(\mathrm{t}), \mathrm{b}_{0}=\mathrm{F}(\mathrm{f})$, and $\mathrm{b}_{1}=\mathrm{F}(\mathrm{t})$. Sp for $x=\epsilon_{k-1} \cdots \epsilon_{1},(k-1)$-arrows: $\boldsymbol{f}_{x}, \mathrm{t}_{x}$ are def'd. w/ k-arrows, $\mathrm{p}_{x}: \mathrm{f}_{x} \rightarrow \mathrm{t}_{x}$ and $\mathrm{b}_{x}: \mathrm{t}_{x} \rightarrow \mathrm{f}_{x}$ b/2 them.
$\mathrm{p}: 0 \rightarrow 1 . \mathrm{b}: 1 \rightarrow 0$. Let f_{0} denote $0-0$. Let f_{1} denote $1-1$. Let $\mathrm{t}_{0}=\mathrm{pb}$, Let $\mathrm{t}_{1}=\mathrm{bp}$. For $\epsilon \in\{0,1\}$, let $\mathrm{p}_{\epsilon}: \mathrm{f}_{\epsilon} \rightarrow \mathrm{t}_{\epsilon}$, and $\mathrm{b}_{\epsilon}: \mathrm{t}_{\epsilon} \rightarrow \mathrm{f}_{\epsilon}$. Note: $p_{0}=\mathrm{t}(\mathrm{f}), \mathrm{p}_{1}=\mathrm{t}(\mathrm{t}), \mathrm{b}_{0}=\mathrm{F}(\mathrm{f})$, and $\mathrm{b}_{1}=\mathrm{F}(\mathrm{t})$.
Sp for $x=\epsilon_{k-1} \cdots \epsilon_{1},(k-1)$-arrows: $\boldsymbol{f}_{x}, \mathrm{t}_{x}$ are def'd. w/ k-arrows, $\mathrm{p}_{x}: \mathrm{f}_{x} \rightarrow \mathrm{t}_{x}$ and $\mathrm{b}_{x}: \mathrm{t}_{x} \rightarrow \mathrm{f}_{x}$ $\mathrm{b} / 2$ them. Let $I\left[\mathrm{~s}_{x}\right]$ denote the id. k-arrow upon s for $s=t, f, p$, or b.

Then def. k-arrows

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,

Then def. k-arrows

- $\mathfrak{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$,

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Def $(k+1)$-arrows

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Def $(k+1)$-arrows

- $\mathrm{p}_{0 x}: \mathrm{f}_{0 x} \rightarrow t_{0 x}=\mathrm{E}\left(\mathrm{f}_{x}\right)$;

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Def $(k+1)$-arrows

- $\mathrm{p}_{0 x}: \mathrm{f}_{0 x} \rightarrow t_{0 x}=\mathrm{E}\left(\mathrm{f}_{x}\right)$;
- $\mathrm{p}_{1 x}: \mathrm{f}_{1 x} \rightarrow t_{1 x}=\mathrm{E}\left(\mathrm{t}_{x}\right)$;

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Def $(k+1)$-arrows

- $\mathrm{p}_{0 x}: \mathrm{f}_{0 x} \rightarrow t_{0 x}=\mathrm{E}\left(\mathrm{f}_{x}\right)$;
- $\mathrm{p}_{1 x}: \mathrm{f}_{1 x} \rightarrow t_{1 x}=\mathrm{E}\left(\mathrm{t}_{x}\right)$;
- $\mathrm{b}_{0 x}: \mathrm{t}_{0 x} \rightarrow \mathrm{f}_{0 x}=\mathrm{F}\left(\mathrm{f}_{x}\right)$;

Then def. k-arrows

- $\mathrm{f}_{0 x}=I\left[\mathrm{f}_{x}\right]$,
- $\mathrm{f}_{1 x}=I\left[\mathrm{t}_{x}\right]$,
- $\mathrm{t}_{0 x}=\mathrm{p}_{x} \mathrm{~b}_{x}$, and
- $\mathrm{t}_{1 x}=\mathrm{b}_{x} \mathrm{p}_{x}$.

Def $(k+1)$-arrows

- $\mathrm{p}_{0 x}: \mathrm{f}_{0 x} \rightarrow t_{0 x}=\mathrm{E}\left(\mathrm{f}_{x}\right)$;
- $\mathrm{p}_{1 x}: \mathrm{f}_{1 x} \rightarrow t_{1 x}=\mathrm{E}\left(\mathrm{t}_{x}\right)$;
- $\mathrm{b}_{0 x}: \mathrm{t}_{0 x} \rightarrow \mathrm{f}_{0 x}=\mathrm{F}\left(\mathrm{f}_{x}\right)$; and
- $\mathrm{b}_{1 x}: \mathrm{t}_{1 x} \rightarrow \mathrm{f}_{1 x}=\mathrm{F}\left(\mathrm{t}_{x}\right)$;

Inductive Step

$$
x=\epsilon_{k} \epsilon_{k-1} \ldots \epsilon_{1} ; \epsilon_{j} \in\{0,1\}, \text { for } j \in\{1, \ldots, k\}
$$

Obj: $\mathrm{t}_{x}, \mathrm{f}_{x}$
Generating 1-arrows: $\mathrm{p}_{x}: \mathrm{f}_{x} \rightarrow \mathrm{t}_{x} ; \mathrm{b}_{x}: \mathrm{t}_{x} \rightarrow \mathrm{f}_{x}$. Inductively define

$$
\mathfrak{f}_{0 x}: \mathfrak{f}_{x}-\mathfrak{f}_{x}, \mathrm{f}_{1 x}: \mathbf{t}_{x}-\mathbf{t}_{x} ; \mathrm{t}_{0 x}=\mathrm{p}_{x} \mathbf{b}_{x} ; \mathrm{t}_{1 x}=\mathrm{b}_{x} \mathbf{p}_{x} .
$$

- The b's and p's are all critical points
- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting.
- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.
- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.
- The construction grows exponentially.
- The b's and p's are all critical points or IOW handle attachments.
- Cusps correspond to critical (handle) cancelations.
- Swallow-tails and horizontal cusps are always interesting. Last picture.
- The construction grows exponentially.
- I'll skip a step and go to the highest level that we have computed.

(acter

Epilogue

- There is more glyphography to come.

Epilogue

- There is more glyphography to come. - Components of glyphs are

Epilogue

- There is more glyphography to come. - Components of glyphs are vertices

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges \& serifs.

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges \& serifs.
- bookmarks can be associated to serifs and vertices that indicate composability.

Epilogue

- There is more glyphography to come.
- Components of glyphs are vertices types of edges \& serifs.
- bookmarks can be associated to serifs and vertices that indicate composability.
- That's my story and I'm sticking to it.

Thank you

[^0]:

