Regression Testing for Region-based Genetic Association under Genomic Partitioning adapted to Linkage Disequilibrium

Shelley B. Bull, Lunenfeld-Tanenbaum Research Institute University of Toronto <u>bull@lunenfeld.ca</u>

Banff International Research Station Genomics and Metagenomics in Human Health: Recent Developments in Statistical and Computational Methods 2 February 2019

Two-Stage Approach to GW Association

Genomic Partitioning:

- For comprehensive genomic region definition
- Based on linkage disequilibrium (LD) structure at imputation density (6 -12 million variants)
- Designed to produce quasi-independent LD blocks
- Feasible computation for the entire autosome

Global Test Statistics for Regional Association:

- Multiple regression (linear or logistic) with covariates
- Dimension reduction adapted to LD within regions
- Testing is non-adaptive to trait data
- Asymptotic p-values

Aim

Bridge GWAS discovery with Region characterization

Region-based analysis

- Common and low frequency variants
- More powerful than single-variant analysis under plausible genetic architectures
- Robust to population differences & genetic heterogeneity
- Integrate intergenic variants with promoter, regulatory and/or coding functions
- Reduce multiple testing burden

Big question:

How to specify appropriate regional variant sets?

Applications

Population-based GWAS cohorts:

- state-of-the-art genotyping platforms
- dense set of variants (imputed to 1000 Genomes)
- **1) DCCT**: Baseline lipid levels in therapeutic RCT in type 1 diabetes
 * *quantitative traits*
 - 1340 participants, Illumina Human Core Exome Array
 - chromosomes 1-22: 6.61M variants (MAF > 5%)
- **2) MSHPH**: Toronto site of the international lung cancer case-control consortium (ILCCO) * *categorical traits*
 - 1359 cases, 949 controls genotyped by OncoArray
 - chromosome 8: 335K variants (MAF > 5%)

Methods – Region-based Association

Analytic Objectives:

Sensitive to complex gene architecture Feasible for genome-wide analysis Incorporates local variant correlation (LD) structure, but NOT sample-based knowledge of trait association

Yoo YJ et al, 2017. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure. *Genet Epidemiol*;41(2):108–21.

MLC is a constrained regression test statistic:

 adapts to complex LD structure to construct clusters of closely correlated variants, coded such that the majority of pairwise correlations are positive.

 asymptotically valid – nominal type I error in linear regression simulations under various architectures

Regression Testing – Dimension Reduction

Multi-variant joint regression model of *K* variants:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_i + \dots + \beta_K X_K + \varepsilon$$

MLC constrained test statistic oriented to a restricted alternative:

$$G_M = n \left(\mathbf{C}^T \ \hat{\boldsymbol{\beta}} \right)^T \left[\mathbf{C}^T \sum \mathbf{C} \right]^{-1} \left(\mathbf{C}^T \ \hat{\boldsymbol{\beta}} \right)$$

$$G_W = \hat{\beta}^T \Sigma^{-1} \hat{\beta}$$

is generalized Wald statistic (*K df*)

where

$$\mathbf{C} = (\Sigma^{-1}J) (J^T \Sigma^{-1}J)^{-1}$$

J = K by L matrix assigning variants to clusters

Under H_0 : $G_M \sim$ asymptotically central chi-squared with L < K df

How to choose *J*:

Cluster variants into bins using within-region LD High, positive correlation of variants within clusters, low correlation between clusters

Regression Testing – Dimension Reduction

Clique-based clustering algorithm

- models variants as a graph
- clustering by LD measure of additively coded variant pairs
- size & # of clusters depends on choice of the correlation threshold
- maximizes positive correlation within a cluster

Clustering of SNPs by applying CLQ algorithm to linkage disequilibrium (r) pattern. Edges with |r| < 0.5 are removed.

Yoo *et al*, Clique-based clustering of correlated SNPs can improve performance of genebased multi-bin linear combination test, *Biomedical Research International* 2015; 852341

Yoo YJ et al, 2017. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure. *Genet Epidemiol*;41(2):108–21.

e.g. CEPT in DCCT

- 10 SNPs clustered into5 bins
- SNPs within a bin are not necessarily physically contiguous
- Bins can overlap according to bp position
- MLC takes a weighted linear combination of regression coefficients within each bin
- Bin-specific statistics are summed as squares and cross products

Methods – Genomic Partitioning

Interval graph modeling to cluster correlated variants

- GPART using "Big-LD" algorithm
- Agnostic to gene boundaries
- Produces a large number of non-overlapping & approximately independent LD-blocks

Kim S-A et al, 2018. A new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPs. *Bioinformatics* 34(3):388-397 **Software** http://github.com/sunnyeesl/BigLD

Compared to existing methods, "Big-LD" approach

- Larger, more invariant LD blocks
- Better LD optimization within & across LD blocks
- Boundaries agree with known recombination hotspots

Genomic Partitioning – BigLD algorithm

1. SNP clustering based on correlation

- A. Pairwise SNP correlation in a region
- B. Identification of clusters of SNPs (cliques) with pairwise correlations > clustering parameter (CLQ)
- C. Clusters are converted to genomic intervals defined by chromosome positions of the two most extreme SNPs

Quasi-independent blocks of consecutive SNPs obtained after 1& 2

2. Interval graph model of SNP clusters

- D. Interval graph model, edges connect pairs of overlapping intervals (nodes)
- E. Intervals merged successively to form consecutive non-overlapping intervals (F)

Applications

Population-based GWAS cohorts:

- state-of-the-art genotyping platforms
- dense set of variants (imputed to 1000 Genomes)
- **1) DCCT**: Baseline lipid levels in therapeutic RCT in type 1 diabetes
 * *quantitative traits*
 - 1340 participants, Illumina Human Core Exome Array
 - chromosomes 1-22: 6.61M variants (MAF > 5%)
- **2) MSHPH**: Toronto site of the international lung cancer case-control consortium (ILCCO) * *categorical traits*
 - 1359 cases, 949 controls genotyped by OncoArray
 - chromosome 8: 335K variants (MAF > 5%)

DCCT Results – Genomic Partitioning

In total: 6.61M variants (MAF > 5%) on 22 autosomes 6,551,457 variants in 91,052 LD blocks + 57,504 singletons Mean: 69.49 variants per block

Region-based Test Statistics

Global generalized Wald statistic (K df)

 each regression coefficient enters the test statistic in squared and cross-product terms

MLC statistic (L < K df)

- reduced df equal to the number of clusters
- within cluster linear combination of regression coefficients
- cluster-specific terms are aggregated in a sum of squared and cross-product terms

PC80 (< *K df*):

- global test based on regression of minimum number of principal components capturing 80% of variance in regional variant set [Gauderman et al, 2007]
- reduces dimension prior to regression model fitting

Top regions, with recapitulation of established associations (LDLR, APOE)

		LD block	Generalized Wald		MLC		PC80	
	CHR	region	df	P value	df	P value	df	P value
	1	1703	59	6.24E-03	15	8.96E-05	5	7.08E-04
	1	3706	1	8.89E-05	1	8.89E-05	1	8.89E-05
	3	5996	14	6.01E-05	5	9.71E-05	3	3.80E-01
	4	3486	52	4.43E-02	12	8.50E-05	6	1.75E-04
	6	2823	6	1.13E-04	4	3.02E-05	3	NA
	14	434	3	1.69E-04	2	4.76E-05	2	4.62E-05
	14	1629	2	5.33E-05	2	5.33E-05	2	5.33E-05
	19	636	4	1.10E-04	2	8.99E-06	1	1.50E-03
LDLR	<mark>19</mark>	637	7	<mark>6.12E-07</mark>	3	<mark>4.94E-06</mark>	2	2.42E-06
	19	638	6	1.91E-04	3	2.69E-05	2	4.83E-06
	19	1742	50	1.73E-03	11	4.76E-05	4	1.52E-02
	19	1743	2	6.26E-05	2	6.26E-05	2	6.26E-05
APOE	19	1749	41	4.35E-12	14	3.94E-16	6	1.84E-10
	19	1750	6	4.47E-11	2	2.11E-09	2	9.69E-09
	19	1751	2	4.96E-09	2	4.96E-09	2	4.96E-09
	19	1752	2	4.78E-09	2	4.78E-09	2	4.78E-09
	20	2371	2	3.94E-05	1	3.36E-05	1	3.87E-05

DCCT Results – Region-based vs Single SNP Linear regression of quantitative baseline LDL-cholesterol (with age, sex, age by sex) in each LD block/singleton MLC Single SNP GW signif < 5.5E-7(0.05/91052)GW signif < 5E-8 $-\log_{10}(p)$ ω S 16 19 g Chromosome Chromosome

DCCT Results – Two-Stage Approach

- > Big-LD
 - Genome partitioning is feasible for genome-wide imputation-dense data.
 - Captures gene regions as well as inter-genic regions reasonably well since partitioning depends on genetic distance.

> MLC

- Feasible for genome-wide studies of imputationdense data.
- Captures known GWAS loci
- Significance threshold lowered due to reduction in multiple testing burden
- P-value improved compared to GWAS

MSHPH Results – Genomic Partitioning

• Genome-wide SNP data :

~500K genotyped SNPs (Illumina OncoArray) & Imputed to 1000Genomes

334,628 SNPs from chromosome 8 (info \geq 0.4 & MAF in controls \geq 5%)

5,266 LD blocks in controls (99.2% SNPs in blocks) with:

•right-skewed distribution of the number of SNPs per block (median=15, range 2-1071)

•high within- & low between-block correlation (mean=0.66 & 0.33)

Results in a random region on chromosome 8 with comparison to 1000 Genomes European samples (sensitivity to CLQ parameter):

MSHPH Results – Region-based Association

Logistic regression of case-control status (3 PCs, age & sex) 335K variants, 5K LD blocks (MAF > 5%) chromosome 8

Summary

Genomic region-based association discovery analysis

- Complementary to standard single-variant approach
- Genomic partitioning addresses variant set construction, and
- Facilitates comprehensive region-based testing
- Computationally feasible for imputation-dense data

Region-based test statistics

- Number of variants per LD-defined region is right skewed
- Very large regions produce conservative tests
- Strategies to deal with near linear dependencies
- Dimension reduction improves type 1 error control/power

Acknowledgements

Lunenfeld-Tanenbaum Research Institute Myriam Brossard (PDF) Yannick MacMillan (Summer student)

NATIONAL CANCER INSTITUTE Rayjean Hung & colleagues International Lung Cancer Consortium (ILCCO)

Seoul National University

Yun Joo Yoo & colleagues Sun Ah Kim (PDF)

National Research Foundation of Korea

SickKids Research Institute

Andrew Paterson SickKids Delnaz Roshandel (PDF) DCCT/EDIC Genetics Study

Response to questions

Region Plot rs7412 ± 50kb

Bioinformatics (2018) Supplemental (Simulations of genes from 1000Genomes)

Table S13. Empirical power of multi-SNP association tests corresponding to adjusted region-wide significance level by Bonferroni

Region	Method	N. of blocks	Wald	LC-B	LC-Z	MLC-B	MLC-Z	SKAT	SKAT-O
	Big-LD	1	0.393	0.828	0.832	0.346	0.344	0.845	0.828
CRKL	S-MIG++	82	0.236	0.314	0.312	0.273	0.273	0.309	0.29
21,017,148~213,153,84 (747 SNPs)	MIG++	89	0.304	0.304	0.304	0.304	0.304	0.304	0.304
σ=10	Haploview(CI)	148	0.266	0.266	0.266	0.266	0.266	0.266	0.266
	Haploview(FGT)	129	0.263	0.284	0.277	0.263	0.263	0.293	0.263
	Haploview(SS)	60	0.23	0.342	0.331	0.264	0.263	0.362	0.321
	Big-LD	1	0.427	0.509	0.484	0.701	0.695	0.674	0.764
MIF	S-MIG++	5	0.355	0.455	0.446	0.495	0.485	0.488	0.573
24,211,980~24,238,079 (67 SNPs)	MIG++	3	0.262	0.519	0.514	0.523	0.537	0.553	0.609
σ=10	Haploview(CI)	3	0.262	0.519	0.514	0.523	0.537	0.553	0.609
	Haploview(FGT)	8	0.353	0.486	0.447	0.478	0.484	0.441	0.503
	Haploview(SS)	2	0.399	0.585	0.476	0.665	0.68	0.615	0.659
	Big-LD	1	0.386	0.92	0.893	0.792	0.794	0.923	0.924
GSTT1	S-MIG++	20	0.602	0.618	0.62	0.618	0.62	0.605	0.605
24,344,926~24,385,697 (36 SNPs)	MIG++	15	0.593	0.658	0.651	0.658	0.651	0.638	0.637
σ=25	Haploview(CI)	36	0.552	0.552	0.552	0.552	0.552	0.552	0.552
	Haploview(FGT)	36	0.552	0.552	0.552	0.552	0.552	0.552	0.552
	Haploview(SS)	17	0.553	0.649	0.615	0.553	0.553	0.635	0.627
ZNRF3	Big-LD	1	0.564	0.936	0.952	0.829	0.825	0.95	0.944
29,523,628~29,556,739 (44 SNPs)	S-MIG++	10	0.72	0.754	0.791	0.667	0.667	0.778	0.793
σ=14	MIG++	11	0.719	0.82	0.82	0.82	0.82	0.808	0.807
	Haploview(CI)	11	0.719	0.82	0.82	0.82	0.82	0.808	0.807