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Introduction



Hyperbolic Systems of Conservation Laws, Entropies, and the
Theory of Uniqueness

Today we will be thinking about...

• Hyperbolic Systems of Conservation Laws in One Space
Dimension

• Entropies
• Uniqueness of solutions

Two parts of the talk: the positive side of uniqueness and the
negative side (convex integration).
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The Positive Side for Uniqueness



Theory of uniqueness

Theory of uniqueness is largely open. Best theory so far is

Bressan, Crasta, and Piccoli (’00) .

Progress on developing theory of uniqueness has been slow:
systems oǒten only admit one entropy.

We look for new ideas.

In this talk, we will lay out a newly developed framework for proving
uniqueness of solutions.

We use

• relative entropy method
• the existence of only a single entropy
• theory of shiǒts

Our methods have no small data restrictions.
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Plan for the positive part of talk

The plan for the positive part of the talk...

• briefly introduce Burgers equation and the scalar conservation
laws

• lay out framework
• discuss briefly the tools in the framework
• apply framework to prove uniqueness for solutions to Burgers
verifying only one entropy condition

• Proven first by Panov (’94). Proven again by De Lellis, Otto and
Westdickenberg (’04).

• why we hope framework will work on systems
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The scalar conservation laws



The System: Scalar Conservation Law in One Space Dimension

ut + (A(u))x = 0
u(x, 0) = u0(x).

• u(x, t) : R× [0,∞) → R is the unknown. The function u gives the
density of some conserved quantity that we are interested in.

• u0 ∈ L∞(R) is the given initial data.
• A ∈ C2(R) and strictly convex is the given flux function.
• classical (strong) and weak solutions
• Burgers equation =⇒ A(u) = u2
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Resolution of non-uniqueness

For conservation laws in general, we try to reduce the number of
solutions by considering entropy conditions.

• In particular, for scalar conservation laws in one space
dimension: a pair of functions η,q : R → R are called an entropy
and entropy flux, respectively, if

q′(u) = η′(u)A′(u).

• A solution u is then entropic for the entropy η if it satisfies the
entropy inequality

∂tη(u) + ∂xq(u) ≤ 0

in a distributional sense, where q is any corresponding entropy
flux.
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Resolution of non-uniqueness – continued

Two standard theories for existence and uniqueness for bounded
weak solutions

• Kruzhkov’s theory involving many, many entropies (’70)

• Oleĭnik (’57) =⇒ “condition E.” A solution u satisfies condition E
if 

There exists a constant C > 0 such that
u(x+ z, t)− u(x, t) ≤ C

t z
for all t > 0, almost every z > 0, and almost every x ∈ R.

Kruzhkov ⇐⇒ Oleĭnik’s condition E
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Framework for showing
uniqueness



Framework for showing uniqueness of weak solutions entropic
for a single entropy

1. Construct a modified weak-strong estimate

We start with the famous Dafermos/DiPerna weak-strong
estimates for conservation laws.

2. Approximate the weak solution by a sequence of more regular
solutions

• use the above estimate

3. Detect structure in weak solution
4. Uniqueness follows from the additional structure
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Tools used in the framework



The method of relative entropy (Dafermos and DiPerna 1979)

Given an entropy η, the method of relative entropy considers the
quantity

η(a|b) := η(a)− η(b)− η′(b)(a− b) for all a,b ∈ R.

For η ∈ C2(R) strictly convex, η(a|b) is locally quadratic in a− b: for
all a and b in a fixed compact set,

c∗(a− b)2 ≤ η(a|b) ≤ c∗∗(a− b)2 for constants c∗, c∗∗ > 0.

Method of relative entropy – fundamentally L2 theory.
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The method of relative entropy (Dafermos and DiPerna 1979)

How does ∥∥u(·, t)− ū(·, t)
∥∥
L2

grow in time, where

ū – classical (strong) solution

u – weak solution.

?

Weak-strong estimates proved by turning the entropy inequality

∂tη(u) + ∂xq(u) ≤ 0

into the relative entropy inequality

∂tη(u|ū) + ∂xq(u; ū) ≤ 0

and taking time derivative of
∫
η(u|ū)dx.
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Beyond classical weak-strong: put discontinuities into ū

In weak-strong stability, ∫
η(

an entropic weak solution goes here

u | ū
a continuous solution goes here

)dx

Discontinuity in continuous solution =⇒ growth in L2.

Consider Burgers equation.
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Theory of shiǒts

Program of stability up to a shiǒt was initiated by Vasseur (’08).

The first result was by Leger (’11) for scalar conservation laws in one
space dimension.
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Theory of shiǒts: diagram of Leger’s result for scalar
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Applying the framework for
uniqueness to Burgers



A theorem: Single Entropy Condition for Burgers

Theorem (K.-Vasseur – JHDE ’19)

Let u ∈ L∞(R× [0,∞)) be a weak solution with initial data
u0 ∈ L∞(R) to the scalar conservation law in one space dimension
with flux A ∈ C2(R) strictly convex. Assume u satisfies the entropy
inequality for at least one strictly convex entropy η ∈ C2(R). Further,
assume u satisfies a strong trace property.

Then u is the unique solution to the conservation law verifying
Oleĭnik’s condition E and with initial data u0.
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Applying the framework for uniqueness to prove the theorem

Framework
1. Construct a modified
weak-strong estimate

2. Approximate weak solution by
a sequence of more regular
solutions

3. Detect structure
4. Structure =⇒ uniqueness
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Hope for systems?



Why we have hope framework will work on systems

∫
η(

an entropic weak solution goes here

u | ū
run front tracking in this slot

)dx
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Hope for systems: L2 Stability for the Riemann Problem for Sys-
tems

Theorem (K. – arXiv:1905.04347)
v̄ – classical Riemann solution (a fan) where any shocks are extremal.

u – rough solution with traces. Entropic for a strictly convex entropy.
Can have shocks from any family.

Then,

R∫
−R

∣∣u(x, t0)−Ψv̄(x, t0)
∣∣2 dx ≤ C

R+rt0∫
−R−rt0

∣∣∣u0(x)− v̄(x, 0)
∣∣∣2 dx,

for R, t0 > 0. r = speed of info.

Ψv̄ is the shiǌted v̄ – we shiǌt each shock.

• For 2× 2 systems, all shocks are extremal shocks.
• This theorem applies to the full Euler system.
• The theorem holds for a large class of systems. 17



Difficulty in the Proof of L2 Stability for Riemann Problem
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Further Positive Results

The theory of shiǒts within the context of the relative entropy method
is now mature. On top of the L2 Riemann stability, in other recent
results,

• We can handle a non-local source term (Burgers–Hilbert
equation) – arXiv:1904.09468 (K.-Vasseur ’19).

• We get novel L2-type control on the shiǒt functions –
arXiv:1904.09468 (K.-Vasseur ’19) and arXiv:1904.09475 (K. ’19).
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The negative side: some thoughts
on convex integration



Must entropic solutions have traces?

De Lellis-Otto-Westdickenberg (03’): YES for multi-D scalar.

However, not clear we can get traces for systems.
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Convex Integration for Conservation Laws in the multi-D case

• Chiodaroli-De Lellis-Kreml (’15)
• Chiodaroli-Kreml (’14)
• Klingenberg-Markfelder (’18)
• Feireisl-Klingenberg-Markfelder (’19)
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Let’s consider one particular 1-D conservation law

(S)


ut − a(v)x = 0
vt − ux = 0
η(u, v)t − q(u, v)x ≤ 0

• U := (u, v) and U(x, t) : R× [0,∞) → R2 is the unknown.
• a : R → R some given function

• η(u, v) := 1
2u

2 + F(v), where F(v) =
v∫
0
a(s)ds.

• q(u, v) := ua(v).

(see Müller-Šverák ’03 and Kirchheim-Müller-Šverák ’03)
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Let’s consider one particular 1-D conservation law

∇ψ ∈ K ⊂ R3×2,

K :=


 u a(v)

v u
η(u, v) q(u, v)

 : u, v ∈ R

 .

K is a 2 dimensional manifold.
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Let’s consider one particular 1-D conservation law

Assume

{Uϵ}ϵ

is a sequence of approximate solutions to (S), and

Uϵ ∗
⇀ U in L∞.

νx,t – the Young measure associated with this weak* convergence.
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Let’s consider one particular 1-D conservation law

If we denote

P(u, v) :=

 u a(v)
v u

η(u, v) q(u, v)

 .

Use P to push forward the Young measures onto K.
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The probability measures which satisfy Jensen’s inequality for
polyconvex functions

Mpc(K) = {µ ∈ P(K) :
∫
f(A)dµ(A) ≥ f(ū) for all f : R3×2 → R polyconvex}

By Div-Curl, the push forward of the Young measures is inMpc(K).
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What’s insideMpc(K)?

Theorem (Lorent-Peng ’18)
Suppose a ∈ C2(R). Given α̃ = (α̃1, α̃2) ∈ R2, if a′(α̃2) > 0, then there
exist non-trivial measures inMpc(K ∩ Bδ(P(α̃))) for all δ > 0. On the
other hand, if a′(α̃2) < 0, then there exists δ0 > 0 depending on the
function a and α̃2 such thatMpc(K ∩ Bδ(P(α̃))) is trivial for all
0 < δ ≤ δ0.
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Conclusion/Questions

Thank you!
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The definition of strong traces

Fix T > 0. Let u : R× [0, T) → Rn verify u ∈ L∞(R× [0, T)). We say u
has the strong trace property if for every fixed Lipschitz continuous
map h : [0, T) → R, there exists u+,u− : [0, T) → Rn such that

lim
n→∞

t0∫
0

ess sup
y∈(0, 1n )

∣∣u(h(t) + y, t)− u+(t)
∣∣ dt

= lim
n→∞

t0∫
0

ess sup
y∈(− 1

n ,0)

∣∣u(h(t) + y, t)− u−(t)
∣∣ dt = 0

for all t0 ∈ (0, T).

(from Leger-Vasseur ’11)
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