Tensor network representations from the geometry of entangled states

Albert H. Werner (Copenhagen) Matthias Christandl (Copenhagen & MIT) Angelo Lucia (Copenhagen -> Caltech) Peter Vrana (Budapest & Copenhagen) arXiv:1809.08185

BIRS workshop: Quantum Walks and Information Tasks

Outline

1. Matrix product states

3. Tensor Networks

2. Geometry of entanglement

4. Reducing the bond dimension

Outline

1. Matrix product states

3. Tensor Networks

2. Geometry of entanglement

4. Reducing the bond dimension

- state of L spins/qudits: $\phi \in \mathcal{H} = (\mathbb{C}^d)^{\otimes L}$ $-\dim(\mathcal{H}) = d^L$
 - describes physically possible
 - what about physically reasonable?

- state of L spins/qudits: $\phi \in \mathcal{H} = (\mathbb{C}^d)^{\otimes L}$
 - $-\dim(\mathcal{H}) = d^L$
 - describes physically possible
 - what about physically reasonable?
- Entanglement entropy: $S(A) = tr(\rho_A \log(\rho_A))$
 - **–** random state: $S(A) \sim Vol(A)$
 - ground states of local Hamiltonians $S(A) \sim Area(A)$
 - area vs. volume law

Matrix product states

- physical corner of Hilbert space
 - find efficient parametrization
 - buildin area law
- Matrix product states (MPS)

$$\mathcal{H} = \left(\mathbb{C}^d\right)^{\otimes L}$$

 $=\phi\in\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes L}$

l = 1

- network of max. entangled states $\Omega^D = \sum_{l=1}^{\infty} |l, l\rangle = \bullet \bullet \bullet$

- apply local maps: $\square : \mathbb{C}^D \otimes \mathbb{C}^D \mapsto \mathbb{C}^d$
- # of parameters $\sim dD^2L$
- efficient approximation of groundstates

Higher dimensions

• projected entangled pair states (PEPS)

Outline

1. Matrix product states

3. Tensor Networks

2. Geometry of entanglement

4. Reducing the bond dimension

Quantum state=tensor

 $t \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ d $t = \sum_{ijk} t_{ijk} e_i \otimes e_j \otimes e_k$ i, j, k=1

Local operations=restrictions

 $t \ge t'$ if $(a \otimes b \otimes c)$ t = t'for some matrices a, b, c

Linear combination of slices

Restriction

$$t \ge t' \text{ if } (a \otimes b \otimes c) \ t = t'$$

for some matrices a, b, c
$$t \cong t' \text{ if } t \ge t' \text{ and } t' \ge t$$

iff $(a \otimes b \otimes c) \ t = t'$
for invertible a, b, c
iff $G.t = G.t'$
$$G = GL(d) \times GL(d) \times GL(d)$$

Deciding restriction

Classifying orbits and their relations

Deciding degeneration

Classifying orbit closures and their relations

Deciding degeneration

• Orbit closures are G-invariant algebraic varieties

 $t \not\geq t' \text{ iff there exists}$ G - covariant polynomial f: $f(t) = 0, \text{ but } f(t') \neq 0$ • Example: $e_0 \otimes e_0 \otimes e_0 + e_1 \otimes e_1 \otimes e_1$ $\downarrow \uparrow \quad \mathsf{f=Cayley hyperdeterminant}$ $\approx e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_0$

Algebraic Complexity

M(d) = algebra of $d \times d$ complex matrices

$$Mamu(d): M(d) \times M(d) \to M(d)$$
 bilinear
 $(A, B) \mapsto A \cdot B$

d

d^3 multiplications

Bilinear maps=tensors

$Mamu(d): M(d) \times M(d) \times M(d)^* \to \mathbf{C}$ $(A, B, C) \mapsto trA \cdot B \cdot C$

Complexity=Tensor rank

Strassen: # elementary multiplications = tensor rank

In this context, many techniques have been developed to understand restriction and degeneration

 $e_{00} \otimes e_{00} \otimes e_{00} + e_{11} \otimes e_{11} \otimes e_{11}$ $e_{01} \otimes e_{10} \otimes e_{00} + e_{10} \otimes e_{01} \otimes e_{11}$ $e_{01} \otimes e_{11} \otimes e_{10} + e_{10} \otimes e_{00} \otimes e_{01}$ $e_{00} \otimes e_{01} \otimes e_{10} + e_{11} \otimes e_{10} \otimes e_{01}$

 $e_{\pm} := e_0 \pm e_1$

 $=e_{-1} \otimes e_{1+} \otimes e_{00} + e_{1+} \otimes e_{00} \otimes e_{-1} + e_{00} \otimes e_{-1} \otimes e_{1+} \\ - e_{-0} \otimes e_{0+} \otimes e_{11} - e_{0+} \otimes e_{11} \otimes e_{-0} - e_{11} \otimes e_{-0} \otimes e_{0+} \\ + (e_{00} + e_{11}) \otimes (e_{00} + e_{11}) \otimes (e_{00} + e_{11})$

Outline

1. Matrix product states

3. Tensor Networks

2. Geometry of entanglement

4. Reducing the bond dimension

Graph or Hypergraph

Tensor networks

line or circle=MPS lattice=PEPS

lattices: e.g. Chen et al.'11, Xie et al.'14 Schuch et al.'12, Molnar et al.'18

• Choose graph

 Associate entangled state to edges
 bond dimension

$$2^D = \sum_{l=1}^{D} |l,l\rangle$$
 bond dimension

Apply linear maps to vertices

tensors in "tensor networks"

 Associate entangled state to hyperedges

$$\sum_{i=1}^{k} |i\rangle |i\rangle = \underbrace{k}_{i,j,k=0}^{2} \varepsilon_{i,j,k} |i,j,k\rangle + |2,2,2\rangle = \underbrace{k}_{i,j,k=0}^{2} \varepsilon_{i,j,k} |i,j,k\rangle + \underbrace{k}_{i,j,k=0}^{2} \varepsilon_{i,j,k} |i,j\rangle + \underbrace{k}_{i,j,k=0}^{2} \varepsilon_{i,j,k=0}^{2} \varepsilon_{i,j,k} |i,j\rangle + \underbrace{k}_{i,j,k=0}^{2} \varepsilon_{i,j,k=0}^{2} \varepsilon_{i,j,k} |i,j\rangle + \underbrace{k}_{i,j}^{2} \varepsilon_{i,j}^{2} \varepsilon_{i$$

Apply linear maps to vertices

Tensor networks

• Underlying "entanglement structure"

- Does the job
 - E.g. represents
 Resonating Valence Bond state
 - Verstraete et al.'06 泽
 - Schuch et al.'12
- You don't like it
 - Too large bond dimension
 - Weird entangled state

Contraction is too slow Code does not work at all (you are computational physicist)

Representation is too ugly (you are mathematical physicist)

Let's find a better tensor network!

- Start from scratch
 - I.e. from physical state
 - Pro: super-optimized
 - Con: are you kidding?
- Switch entanglement structure
 - Independent from projectors
 - Pro: Works for any state with same structure
 - Pro: Tight for injective ones
 - Con: Tailored optimization could be better

Outline

1. Matrix product states

3. Tensor Networks

2. Geometry of entanglement

4. Reducing the bond dimension

Switch entanglement structure

New transform to physical state ophysical state Understand of the structure of the structure

- Let us just focus on transforming the entanglement structure
- Plaquette by plaquette

Entanglement

Back to the beginning

C

- State of the art – Molnar et al.'18
- Improvement

A

• But not all the way

Entanglement

Roll it out

- Leads to approximate tensor network representation
- Who cares?
- Let's convert it to an exact one!
 Only need to pay a small price

Interpolation

- Given a polynomial p(x) of degree n
- Obtain p(0) by
 Lagrange interpolation
 - Evaluate at n+1 points
 - Determines the entire polynomial
 - Value at 0 can be easily obtained (see Wiki)
- Our transformation matrices are polynomial in epsilon!

- Proof based on interpolation
 - Bini, Lotti and Romani, SIAM J.Comp. 1980
 - Christandl, Jensen & Zuiddam, Lin.Alg. App 2018

Application

• Resonating Valence Bond State

Application

• Resonating Valence Bond State

Parallel algorithm for faster contraction

also for expectation values

Summary

1. Matrix product states

- In practice?
- 2. Geometry of entanglement
- Other examples?
 - Sums of tensor 4. networks as new variational class?

3. Tensor Networks

Reducing the bond dimension

