
Tensor network representations
from the geometry of

entangled states

Albert H. Werner (Copenhagen)
Matthias Christandl (Copenhagen & MIT)
Angelo Lucia (Copenhagen -> Caltech) 
Peter Vrana (Budapest & Copenhagen)
arXiv:1809.08185

BIRS workshop: Quantum Walks and Information Tasks



Outline

1. Matrix product states

2. Geometry of 
entanglement

3. Tensor Networks

4. Reducing the bond 
dimension



Outline

1. Matrix product states

2. Geometry of 
entanglement

3. Tensor Networks

4. Reducing the bond 
dimension



Quantum many-body systems

• state of L spins/qudits:

–

– describes physically possible

– what about physically reasonable?



Quantum many-body systems

• state of L spins/qudits:

–

– describes physically possible

– what about physically reasonable?

• Entanglement entropy: 

– random state: 

– ground states of local Hamiltonians

– area vs. volume law



Matrix product states
• physical corner of Hilbert space

– find efficient parametrization

– buildin area law

• Matrix product states (MPS)

– network of max. entangled states

– apply local maps:

– # of parameters

– efficient approximation of groundstates



Higher dimensions

• projected entangled pair states (PEPS)
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Quantum state=tensor



Local operations=restrictions

Linear combination of slices



Restriction

Deciding restriction
Classifying orbits
and their relations



3 qubits

Einstein-Podolsky-Rosen 
(EPR)-state

Greenberger-Horne-Zeilinger
GHZ-state

unentangled state

W-state



Degeneration

Deciding degeneration

Classifying orbit
closures and 
their relations

GHZ state

W state



Deciding degeneration

• Orbit closures are G-invariant algebraic varieties

• Example:

f=Cayley hyperdeterminant



Algebraic Complexity

d

x =d



Bilinear maps=tensors

EPR states



Complexity=Tensor rank

Strassen: # elementary multiplications = tensor rank 

In this context, many 
techniques have been 
developed to understand 
restriction and degeneration 
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Graph or Hypergraph



Tensor networks

• Choose graph

• Associate entangled 
state to edges

• Apply linear maps to 
vertices

• Choose hypergraph

• Associate entangled 
state to hyperedges

• Apply linear maps to 
vertices

bond dimension

tensors in 
“tensor networks”

line or circle=MPS
lattice=PEPS

lattices: e.g. Chen et al.’11, Xie et al.’14 
Schuch et al.’12, Molnar et al.’18 

k



Tensor networks

• Underlying “entanglement structure”

• Does the job
– E.g. represents 

Resonating Valence Bond state
– Verstraete et al.’06
– Schuch et al.’12

• You don’t like it
– Too large bond dimension
– Weird entangled state

Contraction is too slow
Code does not work at all
(you are computational physicist)

Representation is too ugly
(you are mathematical physicist)
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Let’s find a better tensor network!

• Start from scratch
– I.e. from physical state

– Pro: super-optimized

– Con: are you kidding?

• Switch entanglement structure
– Independent from projectors

– Pro: Works for any state with same structure

– Pro: Tight for injective ones

– Con: Tailored optimization could be better
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Switch entanglement structure

New transform 
to physical state

• Let us just focus on transforming the 
entanglement structure

• Plaquette by plaquette

Desired entanglement structure

Transform to old 
entanglementstructure

Old entanglement structure

Old transform to physical state
(e.g. RVB)



Entanglement

• Back to the beginning

• State of the art
– Molnar et al.’18

• Improvement

• But not all the way
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Entanglement

• Why not relax?

• It works!
• We are looking for approximate MPS
• Pauli’s give exact MPS for antisymm
• Squeeze in an epsilon 

The results work 
in any such situation
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Roll it out

• Leads to approximate tensor network 
representation

• Who cares?

• Let’s convert it to an exact one!
– Only need to pay a small price



Interpolation

• Given a polynomial 
p(x) of degree n

• Obtain p(0) by 
Lagrange interpolation

– Evaluate at n+1 points

– Determines the entire polynomial

– Value at 0 can be easily obtained (see Wiki)

• Our transformation matrices are polynomial 
in epsilon!



Lemma: Degeneration→ Restriction

• Proof based on interpolation

– Bini, Lotti and Romani, SIAM J.Comp. 1980

– Christandl, Jensen & Zuiddam, Lin.Alg. App 2018

Only linear!

It’s about tensor rank

… =

n

…
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Application

• Resonating Valence Bond State
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Application

• Resonating Valence Bond State

• Parallel algorithm for faster contraction

– also for expectation values
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Summary

1. Matrix product states

2. Geometry of 
entanglement

3. Tensor Networks

4. Reducing the bond 
dimension

Open questions

– In practice?

– Other examples?

– Sums of tensor 
networks as new 
variational class?


