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Thermodynamic potentials

Motivation I: consistency

Approximations to moist thermodynamics are often inconsistent between different

components of the same model, or inconsistent with the laws of thermodynamics.

e.g.,

• effect of composition on specific heat capacity;

• Cv
p 6= Cl implies Lv 6= const;

• use of an empirical formula for psat rather than deriving psat from the EoS etc for

water.

These kinds of inconsistency can lead to errors in the global energy budget of a

typical weather or climate model of order 1Wm−2 (Martin Willett, pers. comm.)
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Thermodynamic potentials

Motivation II: flexibility

It may be desirable to use the same model (or dycore) with different EoS

e.g.

• Remove current approximations to quantify their effect

• More accurate EoS for air + water to improve tropical tropopause region

• Comparison with rotating annulus experiments

• Ocean and atmosphere with the same dycore!?

• Variable composition:

– thermosphere for space weather forecasting;

– exoplanets: non-dilute condensate; gas giant interior; ...

Typically the EoS is hard-coded into many different code segments, making it very

difficult to make such changes (consistently).
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Thermodynamic potentials

Consistency via a thermodynamic potential

Recall the four standard thermodynamic potentials

Specific internal energy: e(α, η, q)

Specific enthalpy: h(p, η, q) = e+ αp

Gibbs function: g(p, T, q) = e+ αp− ηT

Helmholtz free energy: f(α, T, q) = e− ηT

where

α = 1/ρ is specific volume,

q is total specific humidity,

η is specific entropy.
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Thermodynamic potentials

Here (initially) we use the Gibbs function

• It is already used by oceanographers - see TEOS10;

• The conditions for equilibrium between phases are

equal p, equal T , and equal g;

if we work in terms of p and T then two conditions

are satisfied more or less automatically.
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Thermodynamic potentials

E.g. Gibbs function for wet air

g(p, T, q) = (1− q)gd + (q − ql)gv + qlgl

where

gd = −Cd
pT ln

(

T
T0

)

+ RdT ln

(

pd

pd
0

)

,

gv = −Cv
pT ln

(

T
T0

)

+RvT ln
(

pv

pv
0

)

+ Lv
0

(

1− T
T0

)

,

gl = −Cl ln
(

T
T0

)

+ αl
(

p− psat0
T
T0

)

,

and

pd = εap

(1+a(ε−1))
, pv =

(1−a)p
(1+a(ε−1))

,

a = (1− q)/(1− ql) is the mass fraction of dry air in the gaseous part, and

T0, pd0, pv0, psat0 , Lv
0, αl and ε = Rd/Rv are constants.
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Thermodynamic potentials

E.g. Gibbs function for wet air

To evaluate the previous expressions we must determine ql from the condition for

equilibrium between phases:

either

ql > 0 and gv = gl

or

ql = 0.
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Thermodynamic potentials

How do we use this idea in practice?

We do not predict g. Rather, given p, T and q, we can use the expression for g to

compute any thermodynamic quantity we like. E.g.

α = gp; η = −gT ;

Cp = −TgTT ; Cv =
T (g2

pT
− gppgTT )

gpp
;

h = g − TgT ; e = g − pgp − TgT ;

Lv = hv − hl;
1

c2
=

g2
pT

− gppgTT

g2pgTT

.
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Thermodynamic potentials

How do we use this idea in practice?

Because these quantities are derived from a thermodynamic potential they are

guaranteed to be consistent with each other and with the laws of

thermodynamics.

We can approximate the Gibbs function; all derived quantities inherit the

approximation consistently.

Note the analogy with deriving the dynamical equations from a Lagrangian or

Hamiltonian.
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Thermodynamic potentials

What if my model doesn’t predict p and T?

E.g. ENDGame predicts ρ and a quantitiy related to η.

Then we must solve

1/ρ = gp(p, T, q), η = −gT (p, T, q), (∗)

for p and T .
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Thermodynamic potentials

Hmmm... ’sounds complicated?

Given a reasonable first guess for p and T , which we will usually have, one or two

Newton iterations will suffice to solve (*) accurately.

Even better, for a semi-implicit dynamical core, the solution of (*) can be

combined with the iterative semi-implicit solver; this leads to a familiar standard

Helmholtz problem for the pressure increments! (Details in T17.)

For an incompressible fluid (*) does not determine p. However, the semi-implict

solution method still works! (The Helmholtz problem reduces to a Poisson problem

because 1/c2 = 0.)
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Thermodynamic potentials

Implementation for flexibility

A single subroutine or set of subroutines computes the Gibbs function and its

derivatives.

The rest of the code is generic.

Thus, the EoS can be modified by changing only a small number of routines (and

the EoS can easily be made switchable).
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Thermodynamic potentials

Example (T17)

BF02 2D buoyant bubble test case

Dry

air

Saturated

air

Quasi-

incompressible

Page 13



Thermodynamic potentials

Buoyancy
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Buoyancy
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Thermodynamic potentials

Limitations

• T17 assumed equilibrium between different phases/components, but

non-equilibrium processes are important. E.g.,

– supercooled liquid water,

– evaporation of rain into subsaturated air,

– precipitation at different temperature from surrounding air, ...

• If three phases of water are present,

p, T and q are not enough to

determine the fractions of each

phase.
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Thermodynamic potentials

Current work

1. Use internal energy e(α, η, q) as the thermodynamic potential.

• The triple point in (p, T )

space expands to a trian-

gle in (α, η) space.
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• We want to predict (something like) α and η.

• e is more familiar to most meteorologists than g.

• However, determining equilibrium is now more complicated (7× 7 system for three

water phases plus dry air).
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Thermodynamic potentials

Current work

2. Want to remove the equilibrium assumption and replace it by relaxation to

equilibrium on specified time scales.

It should be implemented in a way that recovers the equilibrium case as the

timescales go to zero.

Entropy sources should be calculated consistently for the non-equilibrium processes.
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Thermodynamic potentials

Next steps

1. Reproduce the results of T17 using a formulation based on e instead of g.

2. Derive governing equations for the non-equilibrium case that reduce to the

equilibrium case in the appropriate limit.
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Thermodynamic potentials

Summary

• Deriving all thermodynamic quantities and relations from a potential ensures

consistency between model components and with the laws of thermodynamics.

• The idea can be implemented in a way that permits flexibility in the choice of

EoS.

• Feasibility has been demonstrated using the Gibbs function for the case of

equilibrium thermodynamics with two water phases.

• We are reformulating the approach in terms of internal energy in order to apply

it to the case of three water phases...

• ... and extending it to handle non-equilibrium thermodynamic processes.
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