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Correlations

Figure: Alice Figure: Bob

n = number of experiments,
m = number of possible outcomes.

A correlation is a tuple

{p(i , j |x , y) ≥ 0}; i , j ≤ m, x , y ≤ n

satisfying ∑
i ,j

p(i , j |x , y) = 1.
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Quantum correlation sets

Let A be a C ∗-algebra with a state φ. Assume

{Ex ,i}mi=1, {Fy ,j}mj=1 ⊆ A

where Ex ,iFy ,j = Fy ,jEx ,i . Then

p(i , j |x , y) = φ(Ex ,iFy ,j)

defines a quantum-commuting correlation. If A is
finite-dimensional, p is a quantum correlation. If A is
commutative, p is a local correlation.

Set of all qc correlations: Cqc(n,m).

Set of all quantum correlations: Cq(n,m).

Set of all local correlations: Cloc(n,m).
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Geometry of correlation sets

Each C∗(n,m) is convex and satisfies:

Cloc(n,m) ⊂ Cq(n,m) ⊂ Cqc(n,m) ⊆ Rn2m2
.

Cloc(n,m) is a polytope, but Cq and Cqc are not.

Question

What is the geometry of Cq(n,m) and Cqc(n,m)?

Theorem
(Junge-Navascues-Palazuelos-Perez-Garcia-Scholz-Werner, Fritz,
Ozawa)

Connes’ embedding conjecture is true if and only if
Cq(n,m) = Cqc(n,m) for every n,m.
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Synchronous correlations

A correlation is synchronous if p(i , j |x , x) = 0 whenever i 6= j . Let
C s
∗ (n,m) denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation p ∈ C s
qc(n,m) iff there exists a C ∗-algebra A,

{Ex ,i}mi=1 ⊂ A, and a tracial state τ : A→ C such that

p(i , j |x , y) = τ(Ex ,iEy ,j).

If A is finite dimensional, p ∈ C s
q (n,m). If A is commutative,

p ∈ C s
loc(n,m).
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Geometry of synchronous correlation sets

Each C s
∗ (n,m) is convex and satisfies:

C s
loc(n,m) ⊂ C s

q (n,m) ⊂ C s
qc(n,m) ⊆ Rn2m2

.

C s
loc(n,m) is a polytope, but C s

q and C s
qc are not.

Question

What is the geometry of C s
q (n,m) and C s

qc(n,m)?

Theorem (Dykema-Paulsen)

Connes’ embedding conjecture is true if and only if
C s
q (n,m) = C s

qc(n,m) for every n,m.
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Main result

We can describe C s
q (3, 2) explicitly as a convex combination of a

family of sets in R3222 . In fact,

Theorem (R.)

The set C s
q (3, 2) is closed. Moreover, if p ∈ C s

q (3, 2), then there
exists a A ⊂M16, projection valued measures {Ex ,i} ⊂ A and a
trace τ such that

p(i , j |x , y) = τ(Ex ,iEy ,j).
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How to compute C s
q (3, 2)

When m = 2,

p(i , j |x , x) =

(
rx 0
0 1− rx

)
,

p(i , j |x , y) =

(
wx ,y rx − wx ,y

ry − wx ,y wx ,y + (1− rx − ry )

)
.

So the data of {p(i , j |x , y)} is determined by rx ’s and wx ,y ’s.

p ∼=

 r1 w1,2 w1,3

w2,1 r2 w2,3

w3,1 w3,2 r3

 , wx ,y = wy ,x

For each (r1, r2, r3) ∈ [0, 1]3, we will determine the corresponding
set of {(w1,2,w1,3,w2,3)} ⊆ R3, denoted S~r [C s

q (3, 2)].
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How to compute C s
q (3, 2)?

Define

C s
max(n,m) = {p(i , j |x , y) =

1

d
Tr(Ex ,iFy ,j)}.

Then

Theorem (Alhajjar-R)

C s
max(n,m) = C s

q (n,m) for all n,m.

Sd(n1, n2, n3) := { 1d (Tr(E1E2),Tr(E1E3),Tr(E2E3)) : Tr(Ex) = nx}
⊆ R3

Goal: Describe Sd(n1, n2, n3) ⊆ S(n1/d ,n2/d ,n3/d)[C
s
q (3, 2)].
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Special case

Recall the 3× 3 elliptope: set of p.s.d. matrices over R with
diagonal entries of 1.

1 x y
x 1 z
y z 1

 7→ (x , y , z)

Set Sd(n) := Sd(n, n, n).

Theorem

For every n, S2n(n) = S2(1) = S(.5,.5,.5)[C
s
q (3, 2)] is an affine image

of the 3× 3 elliptope.
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Other slices

Need to determine the geometry of Sd(n1, n2, n3), for all
n1, n2, n3 ≤ d .

Suffices to consider n1 ≤ n2 ≤ n3 ≤ d/2.

Can use dimension-reducing trick...

Lemma

Assume n1 + n2 < d. Then

Sd(n1, n2, n3) ⊆ d−1
d co{Sd−1(n1, n2, n3), Sd−1(n1, n2, n3 − 1)}.
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Proof sketch of main theorem

1 Apply lemma many times to find geometry of Sd(n1, n2, n3).

2 Calculate the closure of ∪Sd(n1, n2, n3). This is equal to
C s
q (3, 2).

3 Observe that every correlation in C s
q (3, 2) can be realized with

A ⊆M16.
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The main theorem

Theorem (R.)

Assume r1 ≤ r2 ≤ r3 ≤ 1/2, ~r = (r1, r2, r3) ∈ [0, 1]3. Then

S~r [C s
q (3, 2)] = co{C1(~r),C2(~r),C3(~r)}

where

C1(~r) = 2 max(0, r1 + r2 + r3 − 1)S2(1)

C2(~r) = 2r1S2(1) + (0, 0, [0, r2])

C3(~r) = 2 max(0, r1 + r2 − r3)S2(1)

+(0,min(r1, r3 − r2),min(r2, r3 − r1)).
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Example of theorem

Example

Assume r < 1/2. Then

S(r ,r ,r)[C
s
q (3, 2)] = co{max(0, 6r − 2)S2(1), 2rS2(1)}.
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Open problems

Known that C s
q (5, 2) is not closed. Our Theorem shows C s

q (3, 2) is
closed.

Question

Is C s
q (4, 2) closed?

Connes’ is equivalent to C s
q (n,m) = C s

qc(n,m) for all n,m.

Question

Is C s
q (3, 2) = C s

qc(3, 2)?
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Thanks for your attention!
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