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Correlations

Figure: Alice Figure: Bob

n = number of experiments,
m = number of possible outcomes.

A correlation is a tuple
{p(i,jlx,y) =0} i,j<m, x,y<n

satisfying

> p(idlxy) =1.
%



Quantum correlation sets



Quantum correlation sets

Let 2 be a C*-algebra with a state ¢. Assume
{EitiZi {Fy il €2
where E, ;F, ;= F, E.;. Then
p(i,jlx,y) = ¢(ExiFy. )

defines a quantum-commuting correlation.
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Quantum correlation sets

Let 2 be a C*-algebra with a state ¢. Assume

{EBit i ARyt 2

where E, ;F, ;= F, E.;. Then

p(i.jlx, ) = ¢(ExiFy )
defines a quantum-commuting correlation. If 2 is
finite-dimensional, p is a quantum correlation. If 2 is
commutative, p is a local correlation.
Set of all qc correlations: Cgc(n, m).

Set of all quantum correlations: Cq(n, m).

Set of all local correlations: Cjoc(n, m).
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Geometry of correlation sets

Each C.(n, m) is convex and satisfies:

Cioc(n, m) C Cq(n, m) C Cyc(n,m) C R

Cioc(n, m) is a polytope, but C; and Cyc are not.

Question
What is the geometry of Cq(n, m) and Cqc(n, m)?

Theorem

(Junge-Navascues-Palazuelos-Perez-Garcia-Scholz-Werner, Fritz,
Ozawa)

Connes’ embedding conjecture is true if and only if
Cq(n, m) = Cyc(n, m) for every n, m.
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Synchronous correlations

A correlation is synchronous if p(i,j|x, x) = 0 whenever i # j. Let
C;(n, m) denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation p € Cg.(n, m) iff there exists a C*-algebra 2,
{Ex,i}™, C U, and a tracial state 7 : A — C such that

p(i,jlx,y) = T(ExiEy;)-
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Synchronous correlations

A correlation is synchronous if p(i,j|x, x) = 0 whenever i # j. Let
C;(n, m) denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation p € Cg.(n, m) iff there exists a C*-algebra 2,
{Ex,i}™, C U, and a tracial state 7 : A — C such that

p(i,jlx,y) = T(ExiEy;)-

If 4 is finite dimensional, p € C5(n, m). If 2 is commutative,
p € Ci(n,m).
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Geometry of synchronous correlation sets

Each C;(n, m) is convex and satisfies:

Cie(n,m) C C3(n,m) C Co(n,m) CR™™.

s
loc

What is the geometry of C5(n, m) and Cg.(n, m)?

(n,m) is a polytope, but C3 and C;. are not.
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Geometry of synchronous correlation sets

Each C;(n, m) is convex and satisfies:

Cie(n,m) C C3(n,m) C Co(n,m) CR™™.

ioc(n, m) is a polytope, but C7 and Cg_ are not.

Question
What is the geometry of C5(n, m) and Cg.(n, m)?

Theorem (Dykema-Paulsen)

Connes’ embedding conjecture is true if and only if

Cs(n,m) = C5.(n, m) for every n, m.
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Main result

We can describe C;(3,2) explicitly as a convex combination of a
family of sets in R¥2°, In fact,

Theorem (R.)

The set C;(3,2) is closed. Moreover, if p € C5(3,2), then there
exists a 2l C Mg, projection valued measures {E, ;} C 2 and a
trace T such that

p(i,jlx,y) = T(Ex,iEy;)-
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How to compute C;(3,2)

When m = 2,
.. Iy 0
P(/,jlx,x)— <0 1_rx>7

H H —_— WX7y rX - WX?y
P(/,_j|X,y) - <ry _ WX,y WX,,V + (1 —r — ry)) .
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How to compute C;(3,2)

When m = 2,
.. r 0
i) = (5,2, ).
; / J— WX7.y rX - WX7.y
i,jlx,y) = .
P( J| }’) <ry — Wy Wy + (1 - ry)>

So the data of {p(/, j|x,y)} is determined by r,'s and w; ,'s.

32/68



How to compute C;(3,2)

When m = 2,
.. Iy 0
p(’7J|X7X)_ <0 1_rx)7

.. W, ry — W.
p(/,Jlx,y)=< Y o >

ry — Wxy Wiy +(1—rc—ry)

So the data of {p(/, j|x,y)} is determined by r,'s and w; ,'s.

n Wi2 W13
W21 r W23 |, Wxy = Wyx
W31 W32 r3

~

p
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How to compute C;(3,2)

When m = 2,
(i.J] ) = Iy 0
pl?JXJX - 0 1_rx 9

.. W, ry — W.
p(/,Jlx,y)=< Y Y >

ry — Wxy Wiy +(1—rc—ry)

So the data of {p(/, j|x,y)} is determined by r,'s and w; ,'s.

n Wi2 W13
W271 r W273 ? WX7.y = Wy,X
w31 W32 r3

~

p

For each (r1, 2, r3) € [0,1]3, we will determine the corresponding
set of {(wy 2, w13, w23)} C R3, denoted SF[Cg(?), 2)].
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How to compute C;(3,2)7

Define 1
Crsnax(na m) = {p(i,j|X,y) = aTr(EX,iFy,j)}’
Then
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How to compute C;(3,2)7

Define 1
Corne(n.m) = {p(i-slx, ) = — Tr(Ecify )}

Then

Theorem (Alhajjar-R)
CS

max

(n,m) = C5(n, m) for all n, m.
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How to compute C;(3,2)7

Define 1
Corne(n.m) = {p(i-slx, ) = — Tr(Ecify )}

Then

Theorem (Alhajjar-R)

Crax(n, m) = C5(n, m) for all n, m.

Sd(nl, no, n3) = {%(Tr(ElEg), Tr(E1E3), Tr(E2E3)) . Tr(EX) = nx}
c R
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How to compute C;(3,2)7

Define 1
Corne(n.m) = {p(i-slx, ) = — Tr(Ecify )}

Then

Theorem (Alhajjar-R)

Crax(n, m) = C5(n, m) for all n, m.

Sd(nl, no, n3) = {%(Tr(ElEg), Tr(E1E3), Tr(E2E3)) . Tr(EX) = nx}
c R

Goal: Describe Sq(n1, n2,n3) € Sin, /d,ns/d,ns/d)[Cq(352)]-
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Special case

Recall the 3 x 3 elliptope: set of p.s.d. matrices over R with
diagonal entries of 1.
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Special case

Recall the 3 x 3 elliptope: set of p.s.d. matrices over R with
diagonal entries of 1.

— (x,y,2)

X
—
=N <

Set S4(n) := Sq(n, n, n).
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Special case

Recall the 3 x 3 elliptope: set of p.s.d. matrices over R with
diagonal entries of 1.

— (x,y, 2)

< X =
N — X
= N <

Set S4(n) := Sq(n, n, n).
Theorem

For every n, Spp(n) = S2(1) = S(5,5,5)[C5(3,2)] is an affine image
of the 3 x 3 elliptope.
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Other slices

Need to determine the geometry of Sy(n1, na, n3), for all
ny,np,n3 < d.
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Other slices

Need to determine the geometry of Sy(n1, na, n3), for all
ny,np,n3 < d.

Suffices to consider n; < ny < n3 < d/2.

Can use dimension-reducing trick...

Lemma
Assume ny + ny < d. Then

Sa(n1, m, n3) € T2 co{Sy_1(n1, ma, n3), Sa—1(n1, na, n3 — 1)}
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Proof sketch of main theorem

© Apply lemma many times to find geometry of Sy(n1, na, n3).
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Proof sketch of main theorem

© Apply lemma many times to find geometry of Sy(n1, na, n3).

@ Calculate the closure of US4(n1, n2, n3). This is equal to
C5(3,2).

© Observe that every correlation in C5(3,2) can be realized with
2A C Myg.
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The main theorem

Theorem (R.)
Assumer, < r <r3<1/2, F=(rn,r,r)c[0,1]3. Then

SHC5(3,2)] = co{ Gu(r), Cao(7), Ca(7)}

where

Cl(F) = 2 max(O, n+nrn+rmn-— 1)52(1)
C2(F) = 2!‘152(1) =F (07 0, [07 rz])
G(r) = 2max(0,r + r — r3)S2(1)

+(0, min(r1, r3 — r2), min(r2, r3 — r1)).
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Example of theorem

Assume r < 1/2. Then

Strr[C3(3,2)] = co{max(0,6r — 2)Sy(1), 2rS,(1)}.
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Open problems

Known that C;(5,2) is not closed. Our Theorem shows CJ(3,2) is
closed.

Question
Is C5(4,2) closed?

Connes' is equivalent to C5(n, m) = Cg.(n, m) for all n, m.

Question
Is C§(3,2) = Cgc(3,2)?
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Thanks for your attention!
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