Geometry of the set of synchronous quantum correlations

Travis Russell

United States Military Academy
Banff International Research Station
July 17, 2019

Correlations

Correlations

Figure: Alice
$n=$ number of experiments, $m=$ number of possible outcomes.

Figure: Bob

Correlations

Figure: Alice
$n=$ number of experiments, $m=$ number of possible outcomes.

A correlation is a tuple

$$
\{p(i, j \mid x, y) \geq 0\} ; \quad i, j \leq m, \quad x, y \leq n
$$

satisfying

$$
\sum_{i, j} p(i, j \mid x, y)=1
$$

Quantum correlation sets

Quantum correlation sets

Let \mathfrak{A} be a C^{*}-algebra with a state ϕ. Assume

$$
\left\{E_{x, i}\right\}_{i=1}^{m},\left\{F_{y, j}\right\}_{j=1}^{m} \subseteq \mathfrak{A}
$$

where $E_{x, i} F_{y, j}=F_{y, j} E_{x, i}$. Then

$$
p(i, j \mid x, y)=\phi\left(E_{x, i} F_{y, j}\right)
$$

defines a quantum-commuting correlation.

Quantum correlation sets

Let \mathfrak{A} be a C^{*}-algebra with a state ϕ. Assume

$$
\left\{E_{x, i}\right\}_{i=1}^{m},\left\{F_{y, j}\right\}_{j=1}^{m} \subseteq \mathfrak{A}
$$

where $E_{x, i} F_{y, j}=F_{y, j} E_{x, i}$. Then

$$
p(i, j \mid x, y)=\phi\left(E_{x, i} F_{y, j}\right)
$$

defines a quantum-commuting correlation. If \mathfrak{A} is finite-dimensional, p is a quantum correlation.

Quantum correlation sets

Let \mathfrak{A} be a C^{*}-algebra with a state ϕ. Assume

$$
\left\{E_{x, i}\right\}_{i=1}^{m},\left\{F_{y, j}\right\}_{j=1}^{m} \subseteq \mathfrak{A}
$$

where $E_{x, i} F_{y, j}=F_{y, j} E_{x, i}$. Then

$$
p(i, j \mid x, y)=\phi\left(E_{x, i} F_{y, j}\right)
$$

defines a quantum-commuting correlation. If \mathfrak{A} is finite-dimensional, p is a quantum correlation. If \mathfrak{A} is commutative, p is a local correlation.

Quantum correlation sets

Let \mathfrak{A} be a C^{*}-algebra with a state ϕ. Assume

$$
\left\{E_{x, i}\right\}_{i=1}^{m},\left\{F_{y, j}\right\}_{j=1}^{m} \subseteq \mathfrak{A}
$$

where $E_{x, i} F_{y, j}=F_{y, j} E_{x, i}$. Then

$$
p(i, j \mid x, y)=\phi\left(E_{x, i} F_{y, j}\right)
$$

defines a quantum-commuting correlation. If \mathfrak{A} is finite-dimensional, p is a quantum correlation. If \mathfrak{A} is commutative, p is a local correlation.

Set of all qc correlations: $C_{q c}(n, m)$.
Set of all quantum correlations: $C_{q}(n, m)$.
Set of all local correlations: $C_{l o c}(n, m)$.

Geometry of correlation sets

Geometry of correlation sets

Each $C_{*}(n, m)$ is convex and satisfies:

$$
C_{l o c}(n, m) \subset C_{q}(n, m) \subset C_{q c}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

Geometry of correlation sets

Each $C_{*}(n, m)$ is convex and satisfies:

$$
C_{l o c}(n, m) \subset C_{q}(n, m) \subset C_{q c}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}(n, m)$ is a polytope, but C_{q} and $C_{q c}$ are not.

Geometry of correlation sets

Each $C_{*}(n, m)$ is convex and satisfies:

$$
C_{l o c}(n, m) \subset C_{q}(n, m) \subset C_{q c}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}(n, m)$ is a polytope, but C_{q} and $C_{q c}$ are not.

Question

What is the geometry of $C_{q}(n, m)$ and $C_{q c}(n, m)$?

Geometry of correlation sets

Each $C_{*}(n, m)$ is convex and satisfies:

$$
C_{l o c}(n, m) \subset C_{q}(n, m) \subset C_{q c}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}(n, m)$ is a polytope, but C_{q} and $C_{q c}$ are not.

Question

What is the geometry of $C_{q}(n, m)$ and $C_{q c}(n, m)$?

```
Theorem
(Junge-Navascues-Palazuelos-Perez-Garcia-Scholz-Werner, Fritz, Ozawa)
```

Connes' embedding conjecture is true if and only if $\overline{C_{q}(n, m)}=C_{q c}(n, m)$ for every n, m.

Synchronous correlations

Synchronous correlations

A correlation is synchronous if $p(i, j \mid x, x)=0$ whenever $i \neq j$.

Synchronous correlations

A correlation is synchronous if $p(i, j \mid x, x)=0$ whenever $i \neq j$. Let $C_{*}^{s}(n, m)$ denote the set of synchronous correlations.

Synchronous correlations

A correlation is synchronous if $p(i, j \mid x, x)=0$ whenever $i \neq j$. Let $C_{*}^{s}(n, m)$ denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C_{q c}^{s}(n, m)$ iff there exists a C^{*}-algebra \mathfrak{A}, $\left\{E_{x, i}\right\}_{i=1}^{m} \subset \mathfrak{A}$, and a tracial state $\tau: \mathfrak{A} \rightarrow \mathbb{C}$ such that

$$
p(i, j \mid x, y)=\tau\left(E_{x, i} E_{y, j}\right)
$$

Synchronous correlations

A correlation is synchronous if $p(i, j \mid x, x)=0$ whenever $i \neq j$. Let $C_{*}^{s}(n, m)$ denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C_{q c}^{s}(n, m)$ iff there exists a C^{*}-algebra \mathfrak{A}, $\left\{E_{x, i}\right\}_{i=1}^{m} \subset \mathfrak{A}$, and a tracial state $\tau: \mathfrak{A} \rightarrow \mathbb{C}$ such that

$$
p(i, j \mid x, y)=\tau\left(E_{x, i} E_{y, j}\right)
$$

If \mathfrak{A} is finite dimensional, $p \in C_{q}^{s}(n, m)$.

Synchronous correlations

A correlation is synchronous if $p(i, j \mid x, x)=0$ whenever $i \neq j$. Let $C_{*}^{s}(n, m)$ denote the set of synchronous correlations.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C_{q c}^{s}(n, m)$ iff there exists a C^{*}-algebra \mathfrak{A}, $\left\{E_{x, i}\right\}_{i=1}^{m} \subset \mathfrak{A}$, and a tracial state $\tau: \mathfrak{A} \rightarrow \mathbb{C}$ such that

$$
p(i, j \mid x, y)=\tau\left(E_{x, i} E_{y, j}\right)
$$

If \mathfrak{A} is finite dimensional, $p \in C_{q}^{s}(n, m)$. If \mathfrak{A} is commutative, $p \in C_{\text {loc }}^{s}(n, m)$.

Geometry of synchronous correlation sets

Geometry of synchronous correlation sets

Each $C_{*}^{s}(n, m)$ is convex and satisfies:

$$
C_{l o c}^{s}(n, m) \subset C_{q}^{s}(n, m) \subset C_{q c}^{s}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

Geometry of synchronous correlation sets

Each $C_{*}^{s}(n, m)$ is convex and satisfies:

$$
C_{l o c}^{s}(n, m) \subset C_{q}^{s}(n, m) \subset C_{q c}^{s}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}^{s}(n, m)$ is a polytope, but C_{q}^{s} and $C_{q c}^{s}$ are not.

Geometry of synchronous correlation sets

Each $C_{*}^{s}(n, m)$ is convex and satisfies:

$$
C_{l o c}^{s}(n, m) \subset C_{q}^{s}(n, m) \subset C_{q c}^{s}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}^{s}(n, m)$ is a polytope, but C_{q}^{s} and $C_{q c}^{s}$ are not.
Question
What is the geometry of $C_{q}^{s}(n, m)$ and $C_{q c}^{s}(n, m)$?

Geometry of synchronous correlation sets

Each $C_{*}^{s}(n, m)$ is convex and satisfies:

$$
C_{l o c}^{s}(n, m) \subset C_{q}^{s}(n, m) \subset C_{q c}^{s}(n, m) \subseteq \mathbb{R}^{n^{2} m^{2}}
$$

$C_{\text {loc }}^{s}(n, m)$ is a polytope, but C_{q}^{s} and $C_{q C}^{s}$ are not.

Question

What is the geometry of $C_{q}^{s}(n, m)$ and $C_{q c}^{s}(n, m)$?

Theorem (Dykema-Paulsen)

Connes' embedding conjecture is true if and only if $\overline{C_{q}^{s}(n, m)}=C_{q c}^{s}(n, m)$ for every n, m.

Main result

Main result

We can describe $C_{q}^{s}(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^{2} 2^{2}}$. In fact,

Main result

We can describe $C_{q}^{s}(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^{2} 2^{2}}$. In fact,

Theorem (R.)

The set $C_{q}^{s}(3,2)$ is closed.

Main result

We can describe $C_{q}^{s}(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^{2} 2^{2}}$. In fact,

Theorem (R.)

The set $C_{q}^{s}(3,2)$ is closed. Moreover, if $p \in C_{q}^{s}(3,2)$, then there exists a $\mathfrak{A} \subset \mathbb{M}_{16}$, projection valued measures $\left\{E_{x, i}\right\} \subset \mathfrak{A}$ and a trace τ such that

$$
p(i, j \mid x, y)=\tau\left(E_{x, i} E_{y, j}\right)
$$

How to compute $C_{q}^{s}(3,2)$

How to compute $C_{q}^{s}(3,2)$

When $m=2$,

$$
\begin{gathered}
p(i, j \mid x, x)=\left(\begin{array}{cc}
r_{x} & 0 \\
0 & 1-r_{x}
\end{array}\right), \\
p(i, j \mid x, y)=\left(\begin{array}{cc}
w_{x, y} & r_{x}-w_{x, y} \\
r_{y}-w_{x, y} & w_{x, y}+\left(1-r_{x}-r_{y}\right)
\end{array}\right) .
\end{gathered}
$$

How to compute $C_{q}^{s}(3,2)$

When $m=2$,

$$
\begin{gathered}
p(i, j \mid x, x)=\left(\begin{array}{cc}
r_{x} & 0 \\
0 & 1-r_{x}
\end{array}\right) \\
p(i, j \mid x, y)=\left(\begin{array}{cc}
w_{x, y} & r_{x}-w_{x, y} \\
r_{y}-w_{x, y} & w_{x, y}+\left(1-r_{x}-r_{y}\right)
\end{array}\right) .
\end{gathered}
$$

So the data of $\{p(i, j \mid x, y)\}$ is determined by r_{x} 's and $w_{x, y}$'s.

How to compute $C_{q}^{s}(3,2)$

When $m=2$,

$$
\begin{gathered}
p(i, j \mid x, x)=\left(\begin{array}{cc}
r_{x} & 0 \\
0 & 1-r_{x}
\end{array}\right) \\
p(i, j \mid x, y)=\left(\begin{array}{cc}
w_{x, y} & r_{x}-w_{x, y} \\
r_{y}-w_{x, y} & w_{x, y}+\left(1-r_{x}-r_{y}\right)
\end{array}\right) .
\end{gathered}
$$

So the data of $\{p(i, j \mid x, y)\}$ is determined by r_{x} 's and $w_{x, y}$'s.

$$
p \cong\left(\begin{array}{ccc}
r_{1} & w_{1,2} & w_{1,3} \\
w_{2,1} & r_{2} & w_{2,3} \\
w_{3,1} & w_{3,2} & r_{3}
\end{array}\right), \quad w_{x, y}=w_{y, x}
$$

How to compute $C_{q}^{s}(3,2)$

When $m=2$,

$$
\begin{gathered}
p(i, j \mid x, x)=\left(\begin{array}{cc}
r_{x} & 0 \\
0 & 1-r_{x}
\end{array}\right), \\
p(i, j \mid x, y)=\left(\begin{array}{cc}
w_{x, y} & r_{x}-w_{x, y} \\
r_{y}-w_{x, y} & w_{x, y}+\left(1-r_{x}-r_{y}\right)
\end{array}\right) .
\end{gathered}
$$

So the data of $\{p(i, j \mid x, y)\}$ is determined by r_{x} 's and $w_{x, y}$'s.

$$
p \cong\left(\begin{array}{ccc}
r_{1} & w_{1,2} & w_{1,3} \\
w_{2,1} & r_{2} & w_{2,3} \\
w_{3,1} & w_{3,2} & r_{3}
\end{array}\right), \quad w_{x, y}=w_{y, x}
$$

For each $\left(r_{1}, r_{2}, r_{3}\right) \in[0,1]^{3}$, we will determine the corresponding set of $\left\{\left(w_{1,2}, w_{1,3}, w_{2,3}\right)\right\} \subseteq \mathbb{R}^{3}$, denoted $S_{\vec{r}}\left[C_{q}^{s}(3,2)\right]$.

How to compute $C_{q}^{s}(3,2)$?

How to compute $C_{q}^{s}(3,2)$?

Define

$$
C_{\max }^{s}(n, m)=\left\{p(i, j \mid x, y)=\frac{1}{d} \operatorname{Tr}\left(E_{x, i} F_{y, j}\right)\right\} .
$$

Then

How to compute $C_{q}^{s}(3,2)$?

Define

$$
C_{\max }^{s}(n, m)=\left\{p(i, j \mid x, y)=\frac{1}{d} \operatorname{Tr}\left(E_{x, i} F_{y, j}\right)\right\} .
$$

Then

Theorem (Alhajjar-R)

$\overline{C_{\max }^{s}(n, m)}=\overline{C_{q}^{s}(n, m)}$ for all n, m.

How to compute $C_{q}^{s}(3,2)$?

Define

$$
C_{\max }^{s}(n, m)=\left\{p(i, j \mid x, y)=\frac{1}{d} \operatorname{Tr}\left(E_{x, i} F_{y, j}\right)\right\} .
$$

Then

Theorem (Alhajjar-R)

$$
\overline{C_{\max }^{s}(n, m)}=\overline{C_{q}^{s}(n, m)} \text { for all } n, m .
$$

$$
\begin{aligned}
S_{d}\left(n_{1}, n_{2}, n_{3}\right) & :=\left\{\frac{1}{d}\left(\operatorname{Tr}\left(E_{1} E_{2}\right), \operatorname{Tr}\left(E_{1} E_{3}\right), \operatorname{Tr}\left(E_{2} E_{3}\right)\right): \operatorname{Tr}\left(E_{x}\right)=n_{x}\right\} \\
& \subseteq \mathbb{R}^{3}
\end{aligned}
$$

How to compute $C_{q}^{s}(3,2)$?

Define

$$
C_{\max }^{s}(n, m)=\left\{p(i, j \mid x, y)=\frac{1}{d} \operatorname{Tr}\left(E_{x, i} F_{y, j}\right)\right\} .
$$

Then

Theorem (Alhajjar-R)

$$
\overline{C_{\max }^{s}(n, m)}=\overline{C_{q}^{s}(n, m)} \text { for all } n, m .
$$

$$
\begin{aligned}
S_{d}\left(n_{1}, n_{2}, n_{3}\right) & :=\left\{\frac{1}{d}\left(\operatorname{Tr}\left(E_{1} E_{2}\right), \operatorname{Tr}\left(E_{1} E_{3}\right), \operatorname{Tr}\left(E_{2} E_{3}\right)\right): \operatorname{Tr}\left(E_{x}\right)=n_{x}\right\} \\
& \subseteq \mathbb{R}^{3}
\end{aligned}
$$

Goal: Describe $S_{d}\left(n_{1}, n_{2}, n_{3}\right) \subseteq S_{\left(n_{1} / d, n_{2} / d, n_{3} / d\right)}\left[C_{q}^{s}(3,2)\right]$.

Special case

Special case

Recall the 3×3 elliptope: set of p.s.d. matrices over \mathbb{R} with diagonal entries of 1 .

Special case

Recall the 3×3 elliptope: set of p.s.d. matrices over \mathbb{R} with diagonal entries of 1 .

$$
\left[\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right] \mapsto(x, y, z)
$$

Special case

Recall the 3×3 elliptope: set of p.s.d. matrices over \mathbb{R} with diagonal entries of 1 .

$$
\left[\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right] \mapsto(x, y, z)
$$

Set $S_{d}(n):=S_{d}(n, n, n)$.

Special case

Recall the 3×3 elliptope: set of p.s.d. matrices over \mathbb{R} with diagonal entries of 1 .

$$
\left[\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right] \mapsto(x, y, z)
$$

Set $S_{d}(n):=S_{d}(n, n, n)$.

Theorem

For every $n, S_{2 n}(n)=S_{2}(1)=S_{(.5,5, .5)}\left[C_{q}^{s}(3,2)\right]$ is an affine image of the 3×3 elliptope.

Other slices

Other slices

Need to determine the geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$, for all $n_{1}, n_{2}, n_{3} \leq d$.

Other slices

Need to determine the geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$, for all $n_{1}, n_{2}, n_{3} \leq d$.

Suffices to consider $n_{1} \leq n_{2} \leq n_{3} \leq d / 2$.

Other slices

Need to determine the geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$, for all $n_{1}, n_{2}, n_{3} \leq d$.

Suffices to consider $n_{1} \leq n_{2} \leq n_{3} \leq d / 2$.

Can use dimension-reducing trick...

Other slices

Need to determine the geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$, for all $n_{1}, n_{2}, n_{3} \leq d$.

Suffices to consider $n_{1} \leq n_{2} \leq n_{3} \leq d / 2$.

Can use dimension-reducing trick...

Lemma

Assume $n_{1}+n_{2}<d$. Then

$$
S_{d}\left(n_{1}, n_{2}, n_{3}\right) \subseteq \frac{d-1}{d} \operatorname{co}\left\{S_{d-1}\left(n_{1}, n_{2}, n_{3}\right), S_{d-1}\left(n_{1}, n_{2}, n_{3}-1\right)\right\}
$$

Proof sketch of main theorem

Proof sketch of main theorem

Proof sketch of main theorem

(1) Apply lemma many times to find geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$.

Proof sketch of main theorem

(1) Apply lemma many times to find geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$.
(2) Calculate the closure of $\cup S_{d}\left(n_{1}, n_{2}, n_{3}\right)$. This is equal to $\overline{C_{q}^{s}(3,2)}$.

Proof sketch of main theorem

(1) Apply lemma many times to find geometry of $S_{d}\left(n_{1}, n_{2}, n_{3}\right)$.
(2) Calculate the closure of $\cup S_{d}\left(n_{1}, n_{2}, n_{3}\right)$. This is equal to $\overline{C_{q}^{s}(3,2)}$.
(3) Observe that every correlation in $\overline{C_{q}^{s}(3,2)}$ can be realized with $\mathfrak{A} \subseteq \mathbb{M}_{16}$.

The main theorem

The main theorem

Theorem (R.)

Assume $r_{1} \leq r_{2} \leq r_{3} \leq 1 / 2, \vec{r}=\left(r_{1}, r_{2}, r_{3}\right) \in[0,1]^{3}$. Then

$$
S_{\vec{r}}\left[C_{q}^{s}(3,2)\right]=\operatorname{co}\left\{C_{1}(\vec{r}), C_{2}(\vec{r}), C_{3}(\vec{r})\right\}
$$

where

$$
\begin{aligned}
C_{1}(\vec{r})= & 2 \max \left(0, r_{1}+r_{2}+r_{3}-1\right) S_{2}(1) \\
C_{2}(\vec{r})= & 2 r_{1} S_{2}(1)+\left(0,0,\left[0, r_{2}\right]\right) \\
C_{3}(\vec{r})= & 2 \max \left(0, r_{1}+r_{2}-r_{3}\right) S_{2}(1) \\
& +\left(0, \min \left(r_{1}, r_{3}-r_{2}\right), \min \left(r_{2}, r_{3}-r_{1}\right)\right)
\end{aligned}
$$

The main theorem

Theorem (R.)

Assume $r_{1} \leq r_{2} \leq r_{3} \leq 1 / 2, \vec{r}=\left(r_{1}, r_{2}, r_{3}\right) \in[0,1]^{3}$. Then

$$
S_{\vec{r}}\left[C_{q}^{s}(3,2)\right]=\operatorname{co}\left\{C_{1}(\vec{r}), C_{2}(\vec{r}), C_{3}(\vec{r})\right\}
$$

where

$$
\begin{aligned}
C_{1}(\vec{r})= & 2 \max \left(0, r_{1}+r_{2}+r_{3}-1\right) S_{2}(1) \\
C_{2}(\vec{r})= & 2 r_{1} S_{2}(1)+\left(0,0,\left[0, r_{2}\right]\right) \\
C_{3}(\vec{r})= & 2 \max \left(0, r_{1}+r_{2}-r_{3}\right) S_{2}(1) \\
& +\left(0, \min \left(r_{1}, r_{3}-r_{2}\right), \min \left(r_{2}, r_{3}-r_{1}\right)\right)
\end{aligned}
$$

Example of theorem

Example of theorem

Example

Assume $r<1 / 2$. Then

$$
S_{(r, r, r)}\left[C_{q}^{s}(3,2)\right]=\operatorname{co}\left\{\max (0,6 r-2) S_{2}(1), 2 r S_{2}(1)\right\}
$$

Example of theorem

Example

Assume $r<1 / 2$. Then

$$
S_{(r, r, r)}\left[C_{q}^{s}(3,2)\right]=\operatorname{co}\left\{\max (0,6 r-2) S_{2}(1), 2 r S_{2}(1)\right\}
$$

Open problems

Open problems

Known that $C_{q}^{s}(5,2)$ is not closed.

Open problems

Known that $C_{q}^{s}(5,2)$ is not closed. Our Theorem shows $C_{q}^{s}(3,2)$ is closed.

Open problems

Known that $C_{q}^{s}(5,2)$ is not closed. Our Theorem shows $C_{q}^{s}(3,2)$ is closed.

Question
Is $C_{q}^{s}(4,2)$ closed?

Open problems

Known that $C_{q}^{s}(5,2)$ is not closed. Our Theorem shows $C_{q}^{s}(3,2)$ is closed.

Question

Is $C_{q}^{s}(4,2)$ closed?

Connes' is equivalent to $\overline{C_{q}^{s}(n, m)}=C_{q c}^{s}(n, m)$ for all n, m.

Open problems

Known that $C_{q}^{s}(5,2)$ is not closed. Our Theorem shows $C_{q}^{s}(3,2)$ is closed.

Question

Is $C_{q}^{s}(4,2)$ closed?

Connes' is equivalent to $\overline{C_{q}^{s}(n, m)}=C_{q c}^{s}(n, m)$ for all n, m.

Question

Is $C_{q}^{s}(3,2)=C_{q c}^{s}(3,2)$?

Thanks for your attention!

