Geometry of the set of synchronous quantum correlations

Travis Russell

United States Military Academy

Banff International Research Station July 17, 2019

Correlations

Correlations

n = number of experiments, m = number of possible outcomes.

Correlations

- n = number of experiments, m = number of possible outcomes.
- A correlation is a tuple

$$\{p(i,j|x,y) \ge 0\}; \quad i,j \le m, \quad x,y \le n$$

satisfying

$$\sum_{i,j} p(i,j|x,y) = 1.$$

Quantum correlation sets

Let \mathfrak{A} be a C^* -algebra with a state ϕ . Assume

 $\{E_{x,i}\}_{i=1}^m, \{F_{y,j}\}_{j=1}^m \subseteq \mathfrak{A}$

where $E_{x,i}F_{y,j} = F_{y,j}E_{x,i}$. Then

$$p(i,j|x,y) = \phi(E_{x,i}F_{y,j})$$

defines a quantum-commuting correlation.

Let \mathfrak{A} be a C^* -algebra with a state ϕ . Assume

 $\{E_{x,i}\}_{i=1}^m, \{F_{y,j}\}_{j=1}^m \subseteq \mathfrak{A}$

where $E_{x,i}F_{y,j} = F_{y,j}E_{x,i}$. Then

$$p(i,j|x,y) = \phi(E_{x,i}F_{y,j})$$

defines a **quantum-commuting** correlation. If \mathfrak{A} is finite-dimensional, p is a **quantum** correlation.

Let \mathfrak{A} be a C^* -algebra with a state ϕ . Assume

 $\{E_{x,i}\}_{i=1}^m, \{F_{y,j}\}_{j=1}^m \subseteq \mathfrak{A}$

where $E_{x,i}F_{y,j} = F_{y,j}E_{x,i}$. Then

$$p(i,j|x,y) = \phi(E_{x,i}F_{y,j})$$

defines a **quantum-commuting** correlation. If \mathfrak{A} is finite-dimensional, p is a **quantum** correlation. If \mathfrak{A} is commutative, p is a **local** correlation.

Let \mathfrak{A} be a C^* -algebra with a state ϕ . Assume

 $\{E_{x,i}\}_{i=1}^m, \{F_{y,j}\}_{j=1}^m \subseteq \mathfrak{A}$

where $E_{x,i}F_{y,j} = F_{y,j}E_{x,i}$. Then

$$p(i,j|x,y) = \phi(E_{x,i}F_{y,j})$$

defines a **quantum-commuting** correlation. If \mathfrak{A} is finite-dimensional, p is a **quantum** correlation. If \mathfrak{A} is commutative, p is a **local** correlation.

Set of all qc correlations: $C_{qc}(n, m)$.

Set of all quantum correlations: $C_q(n, m)$.

Set of all local correlations: $C_{loc}(n, m)$.

Each $C_*(n, m)$ is convex and satisfies:

```
C_{loc}(n,m) \subset C_q(n,m) \subset C_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}.
```

Each $C_*(n, m)$ is convex and satisfies:

$$C_{loc}(n,m) \subset C_q(n,m) \subset C_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}.$$

 $C_{loc}(n, m)$ is a polytope, but C_q and C_{qc} are not.

Each $C_*(n, m)$ is convex and satisfies:

```
C_{loc}(n,m) \subset C_q(n,m) \subset C_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}.
```

 $C_{loc}(n,m)$ is a polytope, but C_q and C_{qc} are not.

Question

What is the geometry of $C_q(n, m)$ and $C_{qc}(n, m)$?

Each $C_*(n, m)$ is convex and satisfies:

$$C_{loc}(n,m) \subset C_q(n,m) \subset C_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}$$

 $C_{loc}(n,m)$ is a polytope, but C_q and C_{qc} are not.

Question

What is the geometry of $C_q(n, m)$ and $C_{qc}(n, m)$?

Theorem

(Junge-Navascues-Palazuelos-Perez-Garcia-Scholz-Werner, Fritz, Ozawa)

Connes' embedding conjecture is true if and only if $\overline{C_q(n,m)} = C_{qc}(n,m)$ for every n,m.

A correlation is synchronous if p(i, j | x, x) = 0 whenever $i \neq j$.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C^s_{qc}(n, m)$ iff there exists a C^* -algebra \mathfrak{A} , $\{E_{x,i}\}_{i=1}^m \subset \mathfrak{A}$, and a tracial state $\tau : \mathfrak{A} \to \mathbb{C}$ such that

 $p(i,j|x,y) = \tau(E_{x,i}E_{y,j}).$

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C^s_{qc}(n, m)$ iff there exists a C^* -algebra \mathfrak{A} , $\{E_{x,i}\}_{i=1}^m \subset \mathfrak{A}$, and a tracial state $\tau : \mathfrak{A} \to \mathbb{C}$ such that

$$p(i,j|x,y) = \tau(E_{x,i}E_{y,j}).$$

If \mathfrak{A} is finite dimensional, $p \in C_q^s(n, m)$.

Theorem (Paulsen-Severini-Stahlke-Todorov-Winter)

A correlation $p \in C^s_{qc}(n, m)$ iff there exists a C^* -algebra \mathfrak{A} , $\{E_{x,i}\}_{i=1}^m \subset \mathfrak{A}$, and a tracial state $\tau : \mathfrak{A} \to \mathbb{C}$ such that

$$p(i,j|x,y) = \tau(E_{x,i}E_{y,j}).$$

If \mathfrak{A} is finite dimensional, $p \in C_q^s(n, m)$. If \mathfrak{A} is commutative, $p \in C_{loc}^s(n, m)$.

Each $C_*^s(n, m)$ is convex and satisfies:

$$C^s_{loc}(n,m) \subset C^s_q(n,m) \subset C^s_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}$$

Each $C_*^s(n, m)$ is convex and satisfies:

$$C^s_{loc}(n,m) \subset C^s_q(n,m) \subset C^s_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}.$$

 $C_{loc}^{s}(n,m)$ is a polytope, but C_{q}^{s} and C_{qc}^{s} are not.

Each $C_*^s(n, m)$ is convex and satisfies:

$$C^s_{loc}(n,m) \subset C^s_q(n,m) \subset C^s_{qc}(n,m) \subseteq \mathbb{R}^{n^2m^2}.$$

 $C_{loc}^{s}(n,m)$ is a polytope, but C_{q}^{s} and C_{qc}^{s} are not.

Question

What is the geometry of $C_q^s(n, m)$ and $C_{qc}^s(n, m)$?

Each $C_*^s(n, m)$ is convex and satisfies:

$$C^{s}_{loc}(n,m) \subset C^{s}_{q}(n,m) \subset C^{s}_{qc}(n,m) \subseteq \mathbb{R}^{n^{2}m^{2}}.$$

 $C_{loc}^{s}(n,m)$ is a polytope, but C_{q}^{s} and C_{qc}^{s} are not.

Question

What is the geometry of $C_q^s(n, m)$ and $C_{qc}^s(n, m)$?

Theorem (Dykema-Paulsen)

Connes' embedding conjecture is true if and only if $\overline{C_q^s(n,m)} = C_{qc}^s(n,m)$ for every n, m.

Main result

We can describe $C_q^s(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^22^2}$. In fact,

We can describe $C_q^s(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^22^2}$. In fact,

Theorem (R.)

The set $C_q^s(3,2)$ is closed.

We can describe $C_q^s(3,2)$ explicitly as a convex combination of a family of sets in $\mathbb{R}^{3^22^2}$. In fact,

Theorem (R.)

The set $C_q^s(3,2)$ is closed. Moreover, if $p \in C_q^s(3,2)$, then there exists a $\mathfrak{A} \subset \mathbb{M}_{16}$, projection valued measures $\{E_{x,i}\} \subset \mathfrak{A}$ and a trace τ such that

$$p(i,j|x,y) = \tau(E_{x,i}E_{y,j}).$$

When m = 2, $p(i, j | x, x) = \begin{pmatrix} r_x & 0 \\ 0 & 1 - r_x \end{pmatrix}$, $p(i, j | x, y) = \begin{pmatrix} w_{x,y} & r_x - w_{x,y} \\ r_y - w_{x,y} & w_{x,y} + (1 - r_x - r_y) \end{pmatrix}$.

When
$$m = 2$$
,
 $p(i,j|x,x) = \begin{pmatrix} r_x & 0\\ 0 & 1-r_x \end{pmatrix}$,
 $p(i,j|x,y) = \begin{pmatrix} w_{x,y} & r_x - w_{x,y} \\ r_y - w_{x,y} & w_{x,y} + (1-r_x - r_y) \end{pmatrix}$.

So the data of $\{p(i,j|x,y)\}$ is determined by r_x 's and $w_{x,y}$'s.

When
$$m = 2$$
,
 $p(i, j | x, x) = \begin{pmatrix} r_x & 0 \\ 0 & 1 - r_x \end{pmatrix}$,
 $p(i, j | x, y) = \begin{pmatrix} w_{x,y} & r_x - w_{x,y} \\ r_y - w_{x,y} & w_{x,y} + (1 - r_x - r_y) \end{pmatrix}$.

So the data of $\{p(i,j|x,y)\}$ is determined by r_x 's and $w_{x,y}$'s.

$$p \cong \begin{pmatrix} r_1 & w_{1,2} & w_{1,3} \\ w_{2,1} & r_2 & w_{2,3} \\ w_{3,1} & w_{3,2} & r_3 \end{pmatrix}, \quad w_{x,y} = w_{y,x}$$

When
$$m = 2$$
,
 $p(i, j | x, x) = \begin{pmatrix} r_x & 0 \\ 0 & 1 - r_x \end{pmatrix}$,
 $p(i, j | x, y) = \begin{pmatrix} w_{x,y} & r_x - w_{x,y} \\ r_y - w_{x,y} & w_{x,y} + (1 - r_x - r_y) \end{pmatrix}$.

So the data of $\{p(i, j | x, y)\}$ is determined by r_x 's and $w_{x,y}$'s.

$$p \cong \begin{pmatrix} r_1 & w_{1,2} & w_{1,3} \\ w_{2,1} & r_2 & w_{2,3} \\ w_{3,1} & w_{3,2} & r_3 \end{pmatrix}, \quad w_{x,y} = w_{y,x}$$

For each $(r_1, r_2, r_3) \in [0, 1]^3$, we will determine the corresponding set of $\{(w_{1,2}, w_{1,3}, w_{2,3})\} \subseteq \mathbb{R}^3$, denoted $S_{\vec{r}}[C_q^s(3, 2)]$.

Define

$$C_{max}^{s}(n,m) = \{p(i,j|x,y) = \frac{1}{d}Tr(E_{x,i}F_{y,j})\}.$$

Then

How to compute $C_q^s(3,2)$?

Define

$$C_{max}^{s}(n,m) = \{p(i,j|x,y) = \frac{1}{d}Tr(E_{x,i}F_{y,j})\}.$$

Then

Theorem (Alhajjar-R)

$$\overline{C_{max}^s(n,m)} = \overline{C_q^s(n,m)}$$
 for all n, m .

How to compute $C_q^s(3,2)$?

Define

$$C_{max}^{s}(n,m) = \{p(i,j|x,y) = \frac{1}{d}Tr(E_{x,i}F_{y,j})\}.$$

Then

Theorem (Alhajjar-R)

$$\overline{C_{max}^s(n,m)} = \overline{C_q^s(n,m)}$$
 for all n, m .

$$\begin{array}{rcl} S_d(n_1, n_2, n_3) & := & \{ \frac{1}{d} (\operatorname{Tr}(E_1 E_2), \operatorname{Tr}(E_1 E_3), \operatorname{Tr}(E_2 E_3)) : \operatorname{Tr}(E_x) = n_x \} \\ & \subseteq & \mathbb{R}^3 \end{array}$$

How to compute $C_q^s(3,2)$?

Define

$$C_{max}^{s}(n,m) = \{p(i,j|x,y) = \frac{1}{d}Tr(E_{x,i}F_{y,j})\}.$$

Then

Theorem (Alhajjar-R)

$$\overline{C_{max}^s(n,m)} = \overline{C_q^s(n,m)}$$
 for all n, m .

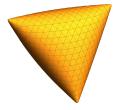
$$S_d(n_1, n_2, n_3) := \{ \frac{1}{d} (Tr(E_1 E_2), Tr(E_1 E_3), Tr(E_2 E_3)) : Tr(E_x) = n_x \} \\ \subseteq \mathbb{R}^3$$

Goal: Describe $S_d(n_1, n_2, n_3) \subseteq S_{(n_1/d, n_2/d, n_3/d)}[C_q^s(3, 2)].$

Recall the 3 \times 3 elliptope: set of p.s.d. matrices over $\mathbb R$ with diagonal entries of 1.

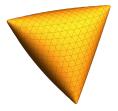
Recall the 3 \times 3 elliptope: set of p.s.d. matrices over $\mathbb R$ with diagonal entries of 1.

$$\begin{bmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{bmatrix} \mapsto (x, y, z)$$



Recall the 3 \times 3 elliptope: set of p.s.d. matrices over $\mathbb R$ with diagonal entries of 1.

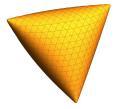
$$\begin{bmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{bmatrix} \mapsto (x, y, z)$$



Set $S_d(n) := S_d(n, n, n)$.

Recall the 3×3 elliptope: set of p.s.d. matrices over \mathbb{R} with diagonal entries of 1.

$$\begin{bmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{bmatrix} \mapsto (x, y, z)$$



Set $S_d(n) := S_d(n, n, n)$.

Theorem

For every n, $S_{2n}(n) = S_2(1) = S_{(.5,.5,.5)}[C_q^s(3,2)]$ is an affine image of the 3×3 elliptope.

Other slices

Suffices to consider $n_1 \leq n_2 \leq n_3 \leq d/2$.

Suffices to consider $n_1 \leq n_2 \leq n_3 \leq d/2$.

Can use dimension-reducing trick...

Suffices to consider $n_1 \leq n_2 \leq n_3 \leq d/2$.

Can use dimension-reducing trick...

Lemma

Assume $n_1 + n_2 < d$. Then

$$S_d(n_1, n_2, n_3) \subseteq \frac{d-1}{d} co\{S_{d-1}(n_1, n_2, n_3), S_{d-1}(n_1, n_2, n_3-1)\}.$$

• Apply lemma many times to find geometry of $S_d(n_1, n_2, n_3)$.

- Apply lemma many times to find geometry of $S_d(n_1, n_2, n_3)$.
- 2 Calculate the closure of $\cup S_d(n_1, n_2, n_3)$. This is equal to $\overline{C_q^s(3, 2)}$.

- Apply lemma many times to find geometry of $S_d(n_1, n_2, n_3)$.
- **2** Calculate the closure of $\cup S_d(n_1, n_2, n_3)$. This is equal to $\overline{C_q^s(3,2)}$.
- Observe that every correlation in $\overline{C_q^s(3,2)}$ can be realized with 𝔅 ⊆ 𝔅₁₆.

The main theorem

Theorem (R.)

Assume
$$r_1 \le r_2 \le r_3 \le 1/2$$
, $\vec{r} = (r_1, r_2, r_3) \in [0, 1]^3$. Then
 $S_{\vec{r}}[C_q^s(3, 2)] = co\{C_1(\vec{r}), C_2(\vec{r}), C_3(\vec{r})\}$

where

$$C_1(\vec{r}) = 2 \max(0, r_1 + r_2 + r_3 - 1)S_2(1)$$

$$C_2(\vec{r}) = 2r_1S_2(1) + (0, 0, [0, r_2])$$

$$C_3(\vec{r}) = 2 \max(0, r_1 + r_2 - r_3)S_2(1) + (0, \min(r_1, r_3 - r_2), \min(r_2, r_3 - r_1)).$$

Theorem (R.)

Assume
$$r_1 \le r_2 \le r_3 \le 1/2$$
, $\vec{r} = (r_1, r_2, r_3) \in [0, 1]^3$. Then
 $S_{\vec{r}}[C_q^s(3, 2)] = co\{C_1(\vec{r}), C_2(\vec{r}), C_3(\vec{r})\}$

where

$$C_1(\vec{r}) = 2 \max(0, r_1 + r_2 + r_3 - 1)S_2(1)$$

$$C_2(\vec{r}) = 2r_1S_2(1) + (0, 0, [0, r_2])$$

$$C_3(\vec{r}) = 2 \max(0, r_1 + r_2 - r_3)S_2(1) + (0, \min(r_1, r_3 - r_2), \min(r_2, r_3 - r_1)).$$

Example of theorem

Example of theorem

Example

Assume r < 1/2. Then

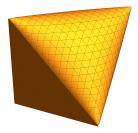
$$S_{(r,r,r)}[C_q^s(3,2)] = co\{\max(0,6r-2)S_2(1),2rS_2(1)\}.$$

Example of theorem

Example

Assume r < 1/2. Then

$$S_{(r,r,r)}[C_q^s(3,2)] = co\{\max(0,6r-2)S_2(1),2rS_2(1)\}.$$



Open problems

Known that $C_q^s(5,2)$ is not closed.

Question

Is $C_q^s(4,2)$ closed?

Connes' is equivalent to $\overline{C_q^s(n,m)} = C_{qc}^s(n,m)$ for all n, m.

Question

Is $C_q^s(4,2)$ closed?

Connes' is equivalent to $\overline{C_q^s(n,m)} = C_{qc}^s(n,m)$ for all n, m.

Question

Is $C_q^s(3,2) = C_{qc}^s(3,2)$?

Thanks for your attention!