Perfect strategies for imitation and reflexive games

with M. Lupini, L. Mančinska, V. I. Paulsen, D. Roberson, G. Scarpa, S. Severini and A. Winter

15 July 2019, BIRS

- (1) Non-signalling correlations
- (2) Perfect strategies for non-local games
- (3) Imitation games: definition and examples
- (4) Perfect strategies for imitation games
- (5) Reflexive games and operator system quotients
- (6) Mirror games: a Hilbert-space-free approach

Let X, Y, A and B be finite sets.

Alice (resp. Bob) receives an input x (resp. y) drawn from the set X (resp. Y) and produces an output a (resp. b) from the set A (resp. B).

The statistics of the answers is observed.

Non-signalling correlations

Let p(a, b|x, y) be the probability that the pair (a, b) is produced, given the input pair (x, y).

For a fixed (x, y), the tuple $(p(a, b|x, y))_{(a,b)\in A\times B}$ is a probability distribution on $A \times B$.

We assume that A and B do not communicate: expressed by the fact that the marginal distributions are well-defined:

$$p(a|x) = \sum_{b \in B} p(a, b|x, y), \quad p(b|y) = \sum_{a \in A} p(a, b|x, y).$$

A non-signalling (NS) correlation is a family

$$\{(p(a,b|x,y))_{(a,b)\in A\times B}: x\in X, y\in Y\}$$

of probability distributions satisfying these conditions. Notation: $\mathcal{C}_{ns}.$

Classes of NS correlations

A correlation p is called

- deterministic if there exist functions $f: X \to A$ and
 - $g: Y \to B$ such that

$$p(a, b|x, y) = 1$$
 if and only if $a = f(x)$ and $b = g(y)$.

Notation: \mathcal{C}_{det} .

Iocal if

$$p(a,b|x,y) = \sum_{k=1}^{m} \lambda_k p_1^k(a|x) p_2^k(b|y),$$

for some probability distributions p_1^k , p_2^k , and non-negative reals $\lambda_1, \ldots, \lambda_m$ with sum 1. Notation: C_{loc} . • quantum if

$$p(a, b|x, y) = \langle (E_{x,a} \otimes F_{y,b})\eta, \eta \rangle,$$

where $(E_{x,a})_{a=1}^{c}$ (resp. $(F_{y,b})_{b=1}^{c}$) is a PVM on a finite dimensional Hilbert space.

Notation: C_q .

spacially quantum if

$$p(a,b|x,y) = \langle (E_{x,a} \otimes F_{y,b})\eta,\eta \rangle,$$

where $(E_{x,a})_{a=1}^{c}$ (resp. $(F_{y,b})_{b=1}^{c}$) is a PVM on a (perhaps infinite dimensional) Hilbert space.

Notation: C_{qs} .

Classes of NS correlations

- approximately quantum if $p \in \overline{C_{\alpha}}$. Notation: C_{qa} .
- quantum commuting if

 $p(a, b|x, y) := \langle E_{x,a} F_{y,b} \eta, \eta \rangle,$

where $(E_{x,a})_{a=1}^{c}$ and $(F_{y,b})_{b=1}^{c}$ are commuting POVM's on a Hilbert space.

Notation: C_{qc} .

$$\mathcal{C}_{det} \subseteq \mathcal{C}_{loc} \subseteq \mathcal{C}_q \subseteq \mathcal{C}_{qs} \subseteq \mathcal{C}_{qa} \subseteq \mathcal{C}_{qc} \subseteq \mathcal{C}_{ns}$$

Non-local games

A non-local game is a tuple $\mathcal{G} = (X, Y, A, B, \lambda)$, where

- X and Y are input sets for players Alice and Bob, respectively;
- A and B are output sets for players Alice and Bob, respectively, and
- $\lambda : X \times Y \times A \times B \rightarrow \{0,1\}$ is a rule function.

Alice and Bob play cooperatively against a verifier R.

Upon receiving inputs (x, y), Alice and Bob reply with certain outputs (a, b).

They win if $\lambda(x, y, a, b) = 1$, and lose otherwise.

Alice and Bob know the rule function but are not allowed to communicate after the game commences. However, they are allowed to decide on a joint strategy beforehand.

< 注 → < 注 → …

A deterministic strategy is given by two functions $f : X \to A$ and $g : Y \to B$.

It is a perfect (or winning) strategy if

 $\lambda(x, y, f(x), g(y)) = 1, \quad x \in X, y \in Y.$

However, Alice and Bob may employ randomness in their choices of outputs, deciding their outputs according to a probability distribution.

Let p(a, b|x, y) be the probability that Alice and Bob give outputs (a, b) when they are given inputs (x, y).

Then $p(\cdot, \cdot | x, y)$ is a probability distribution for each pair (x, y), and since the players are not allowed to communicate, the family p is non-signalling.

(4回) (4 回) (4 回)

Definition

Let $x \in \{det, loc, q, qs, qa, qc, ns\}.$

A winning, or perfect, x-strategy for a game $\mathcal{G} = (X, Y, A, B, \lambda)$ is an element $p \in \mathcal{C}_x$ such that

$$\lambda(x, y, a, b) = 0 \implies p(a, b|x, y) = 0.$$

 $\mathcal{C}_{\mathbf{x}}(\lambda)$: the set of all perfect x-strategies for $\mathcal{G} = (X, Y, A, B, \lambda)$.

The elements of $C_{loc}(\lambda)$ are called classical winning strategies.

• The synchronicity game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ if and only if x = y and $a \neq b$.

- The synchronicity game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ if and only if x = y and $a \neq b$.
- A synchronous game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ provided x = y and $a \neq b$.

- The synchronicity game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ if and only if x = y and $a \neq b$.
- A synchronous game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ provided x = y and $a \neq b$.
- Let G = (V(G), E(G)) be a graph. The graph colouring game for G has X = Y = V(G), A = B, and λ(x, y, a, b) = 1 unless

either x = y and $a \neq b$, or $(x, y) \in E(G)$ and a = b.

- The synchronicity game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ if and only if x = y and $a \neq b$.
- A synchronous game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ provided x = y and $a \neq b$.
- Let G = (V(G), E(G)) be a graph. The graph colouring game for G has X = Y = V(G), A = B, and λ(x, y, a, b) = 1 unless

either
$$x = y$$
 and $a \neq b$, or $(x, y) \in E(G)$ and $a = b$.

• Let G and H be graphs. The graph homomorphism game $G \rightarrow H$ has X = Y = V(G), A = B = V(H), and $\lambda(x, y, a, b) = 1$ unless

either x = y and $a \neq b$, or $(x, y) \in E(G)$ and $(a, b) \notin E(H)$.

- The synchronicity game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ if and only if x = y and $a \neq b$.
- A synchronous game has X = Y, A = B, and $\lambda(x, y, a, b) = 0$ provided x = y and $a \neq b$.
- Let G = (V(G), E(G)) be a graph. The graph colouring game for G has X = Y = V(G), A = B, and λ(x, y, a, b) = 1 unless

either x = y and $a \neq b$, or $(x, y) \in E(G)$ and a = b.

• Let G and H be graphs. The graph homomorphism game $G \rightarrow H$ has X = Y = V(G), A = B = V(H), and $\lambda(x, y, a, b) = 1$ unless

either x = y and $a \neq b$, or $(x, y) \in E(G)$ and $(a, b) \notin E(H)$.

• The graph isomorphism game $G \simeq H$.

Games that can be won using a quantum strategy only:

Colouring the Hadamard graph Ω_N on {1, -1}^N using N colours (Avis-Hasegawa-Kikuchi-Sasaki).

(v, w) is an edge if and only if $v \cdot w = 0$.

• Filling successfully the Mermin-Peres magic square.

Alice receives a row of a 3 by 3 square, Bob a column, and they are required to assign 1 or -1 to the entries, the product of Alice's entries being 1, the product of Bob's entries being -1, and assigning the same value to the common entry of the selected row and column.

We let $\mathcal{A}(X, A)$ be the free product of |X| copies of $\ell^{\infty}(A)$, amalgamated over the unit:

$$\mathcal{A}(X, A) = \underbrace{\ell^{\infty}(A) *_{1} \cdots *_{1} \ell^{\infty}(A)}_{|X| \text{ times}}.$$

Let $e_{x,a}$ be the canonical basis vectors of the x-th copy of $\ell^{\infty}(A)$. Thus, $e_{x,a}$ is a projection in $\mathcal{A}(X, A)$ for all $x \in X$ and all $a \in A$, and

$$\sum_{a\in A}e_{x,a}=1, \quad x\in X.$$

A dense spanning set for $\mathcal{A}(X, A)$ is formed by the words $e_{x_1,a_1} \dots e_{x_k,a_k}$.

Representations of synchronous correlations

Let $\tau : \mathcal{A}(X, A) \to \mathbb{C}$ be a trace. Setting

 $p(a,b|x,y) = \tau(e_{x,a}e_{y,b}), \quad x,y \in X, a, b \in A,$

we obtain a winning qc-strategy for the synchronicity game.

The converse is also true:

Representations of synchronous correlations

Let $\tau : \mathcal{A}(X, A) \to \mathbb{C}$ be a trace. Setting

 $p(a,b|x,y) = \tau(e_{x,a}e_{y,b}), \quad x,y \in X, a, b \in A,$

we obtain a winning qc-strategy for the synchronicity game.

The converse is also true:

Theorem (Severini-Stahlke-Paulsen-T-Winter)

If p is a winning qc-strategy for the synchronicity game then there exists a trace τ on $\mathcal{A}(X, A)$ such that

 $p(a, b|x, y) = \tau(e_{x,a}e_{y,b}), \quad x, y \in X, a, b \in A.$

回 とくきとくきとうき

Write $p = p_{\tau}$.

Theorem (Kim-Paulsen-Schafhauser, S-S-P-T-W)

Suppose that $p \in C_{qc}$ is a synchronous correlation.

- $p \in C_{qa}$ if and only if there exists an amenable trace $\tau : \mathcal{A}(X, A) \to \mathbb{C}$ with $p = p_{\tau}$;
- $p \in C_q$ if and only if there exists a finite dimensional *-representation $\pi : \mathcal{A}(X, A) \to \mathcal{M}$ and a trace $\tau' : \mathcal{M} \to \mathbb{C}$ such that $p = p_{\tau}$, where $\tau = \tau' \circ \pi$;
- $p \in C_{loc}$ if and only if there exists an abelian *-representation $\pi : \mathcal{A}(X, A) \to \mathcal{D}$ and a trace $\tau' : \mathcal{D} \to \mathbb{C}$ such that $p = p_{\tau}$, where $\tau = \tau' \circ \pi$.

Definition

 $\mathcal{G} = (X, Y, A, B, \lambda)$ is called an imitation game if

for every x ∈ X and a, a' ∈ A with a ≠ a', there exists y ∈ Y such that

$$\sum_{b\in B}\lambda\left(\mathsf{a},b|x,y
ight) \lambda\left(\mathsf{a}^{\prime},b|x,y
ight) =$$
 0;

• for every $y \in Y$ and $b, b' \in B$ with $b \neq b'$, there exists $x \in X$ such that _____

$$\sum_{a\in A} \lambda(a, b|x, y) \lambda(a, b'|x, y) = 0.$$

Imitation games – definition

Set

$$\begin{split} E_{x,y} &= \{(a,b) \in A \times B : \lambda(x,y,a,b) = 1\}, \\ E^a_{x,y} &= \{b \in B : \lambda(x,y,a,b) = 1\}, \end{split}$$

and

$$E^b_{x,y} = \{a \in A : \lambda(x,y,a,b) = 1\}.$$

ヘロト 人間 とくほど 人間とう

æ

Imitation games – definition

Set

$$\begin{split} E_{x,y} &= \{(a,b) \in A \times B : \lambda(x,y,a,b) = 1\}, \\ E_{x,y}^{a} &= \{b \in B : \lambda(x,y,a,b) = 1\}, \end{split}$$

and

$$E^b_{x,y} = \{a \in A : \lambda(x,y,a,b) = 1\}.$$

For imitation games,

- for all $x \in X$, and all possible answers $a \neq a'$ of Alice, $\exists y \in Y$ such that $E_{x,y}^a \cap E_{x,y}^{a'} = \emptyset$, and
- for all $y \in X$, and all possible answers $b \neq b'$ of Bob, $\exists x \in X \text{ such that } E_{x,y}^b \cap E_{x,y}^{b'} = \emptyset.$

Imitation games - definition

Set

$$\begin{split} E_{x,y} &= \{(a,b) \in A \times B : \lambda(x,y,a,b) = 1\}, \\ E_{x,y}^{a} &= \{b \in B : \lambda(x,y,a,b) = 1\}, \end{split}$$

and

$$E^b_{x,y} = \{a \in A : \lambda(x,y,a,b) = 1\}.$$

For imitation games,

- for all $x \in X$, and all possible answers $a \neq a'$ of Alice, $\exists y \in Y$ such that $E_{x,y}^a \cap E_{x,y}^{a'} = \emptyset$, and
- for all $y \in X$, and all possible answers $b \neq b'$ of Bob, $\exists x \in X \text{ such that } E_{x,y}^b \cap E_{x,y}^{b'} = \emptyset.$

Thus, the answers Bob gives when he is asked y are "determined" by the answers of Alice when asked x, and vice versa.

• Every synchronous game is an imitation game. Indeed, $E_{x,x}^a = \{a\}$, and so, given $x \in X$, we can take y = x, having $E_{x,x}^a \cap E_{x,x}^{a'} = \emptyset$.

- Every synchronous game is an imitation game. Indeed, $E_{x,x}^{a} = \{a\}$, and so, given $x \in X$, we can take y = x, having $E_{x,x}^{a} \cap E_{x,x}^{a'} = \emptyset$.
- G is called unique if, for every (x, y) ∈ X × Y, the set E_{x,y} (of "allowed" pairs (a, b)) is the graph of a bijection f : A → B. Thus, E^a_{x,y} = {f(a)} and hence every unique game is an imitation game.

- Every synchronous game is an imitation game. Indeed, $E_{x,x}^a = \{a\}$, and so, given $x \in X$, we can take y = x, having $E_{x,x}^a \cap E_{x,x}^{a'} = \emptyset$.
- G is called unique if, for every (x, y) ∈ X × Y, the set E_{x,y} (of "allowed" pairs (a, b)) is the graph of a bijection f : A → B. Thus, E^a_{x,y} = {f(a)} and hence every unique game is an imitation game.
- G is called a mirror game if there exist functions ξ : X → Y and η : Y → X such that

$$E^{\mathsf{a}}_{x,\xi(x)}\cap E^{\mathsf{a}'}_{x,\xi(x)}=\emptyset, \ x\in X, \ \mathsf{a}\neq\mathsf{a}',$$

and

$$E^b_{\eta(y),y}\cap E^{b'}_{\eta(y),y}=\emptyset, \ y\in Y, \ b
eq b'.$$

▶ ★ 臣 ▶ …

Every mirror game is an imitation game.

• Cleve-Mittal: a binary constraint system (BCS) game has $Y = \{v_1, \dots, v_n\}$, a set of variables that take values in $\{1, -1\}$.

A constraint is an equation $f((v)_{v \in V}) = 1$, where $V \subseteq Y$ and $f : \{1, -1\}^V \to \{1, -1\}$ is a function.

X is a set of constraints, say (V_x, f_x) , $x \in X$.

$$A = \bigcup_{x \in X} \{1, -1\}^{V_x}$$
 and $B = \{1, -1\}.$

Given $x \in X$, $y \in Y$, $a \in A$ and $b \in B$, writing $a = (a_z)_{z \in V}$, we let $\lambda(x, y, a, b) = 1$ precisely when

$$V = V_x$$
, $f_x(a) = 1$ and $a_y = b$.

ヘロア 人間 アメヨア 人間 アー

Every BCS game is an imitation game.

- Let V be a set of n variables, and C be a finite set of possible values of these variables.
 - In a variable assignment game upon V and C,
 - X and Y are sets of subsets of V;
 - for every $v \in V$ there exist $x \in X$ and $y \in Y$ with $v \in x \cap y$;

•
$$A = B = \bigcup_{W \subseteq V} C^W$$

• $\lambda(x, y, (a_v)_{v \in W}, (b_v)_{v \in W'}) = 1$ implies that x = W, y = W'and $a_v = b_v$ for every $v \in x \cap y$.

Example: Peres-Mermin square

Every variable assignment game is an imitation game.

The C*-algebra of an imitation game

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be an imitation game.

The C*-algebra $C^*(\mathcal{G})$ of \mathcal{G} is the universal unital C*-algebra generated by elements $(p_{x,a})_{x \in X, a \in A}$ and $(q_{y,b})_{y \in Y, b \in B}$ satisfying the following relations:

- for every x ∈ X, (p_{x,a})_{a∈A} are pairwise orthogonal projections with ∑_{a∈A} p_{x,a} = 1;
- If or every y ∈ Y, (q_{y,b})_{b∈B} are pairwise orthogonal projections with ∑_{b∈A} q_{y,b} = 1;
- If $\lambda(x, y, a, b) = 0$ then $p_{x,a}q_{y,b} = 0$.

Generalises the C*-algebra of a synchronous game (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano).

イロト イヨト イヨト イヨト 二日

The C*-algebra of an imitation game

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be an imitation game.

The C*-algebra $C^*(\mathcal{G})$ of \mathcal{G} is the universal unital C*-algebra generated by elements $(p_{x,a})_{x \in X, a \in A}$ and $(q_{y,b})_{y \in Y, b \in B}$ satisfying the following relations:

- for every x ∈ X, (p_{x,a})_{a∈A} are pairwise orthogonal projections with ∑_{a∈A} p_{x,a} = 1;
- If or every y ∈ Y, (q_{y,b})_{b∈B} are pairwise orthogonal projections with ∑_{b∈A} q_{y,b} = 1;
- If $\lambda(x, y, a, b) = 0$ then $p_{x,a}q_{y,b} = 0$.

Generalises the C*-algebra of a synchronous game (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano).

イロト イヨト イヨト イヨト 二日

Description in special cases?

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C.

Let $\mathfrak{C}(\mathcal{G})$ be the universal C*-algebra generated by projections $e_{v,c}$, with $v \in V$, $c \in C$, and with relations

② If $v, w \in x$ for some $x \in X$ or $v, w \in y$ for some $y \in Y$, then $e_{v,c}e_{w,d} = e_{w,d}e_{v,c}$ for all c and d;

3 If $\lambda(x, y, (a_v)_{v \in x}, (b_w)_{w \in y}) = 0$ then

$$\left(\prod_{v\in x} e_{v,a_v}\right)\left(\prod_{w\in y} e_{w,b_w}\right) = 0.$$

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^*(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

イロン イヨン イヨン イヨン

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^*(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

Proof

Consider the assignment

$$p_{x,(a_v)_{v\in V}}\mapsto \left\{ egin{array}{cc} \prod_{v\in x}e_{v,a_v} & ext{if }x=V,\ 0 & ext{otherwise} \end{array}
ight.$$

and

$$q_{y,(b_v)_{v\in V}}\mapsto \left\{ egin{array}{cc} \prod_{v\in y}e_{v,a_v} & ext{if }y=V,\ 0 & ext{otherwise} \end{array}
ight.$$

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^*(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

Proof

Consider the assignment

$$p_{x,(a_v)_{v\in V}}\mapsto \left\{ egin{array}{cc} \prod_{v\in x}e_{v,a_v} & ext{if }x=V,\ 0 & ext{otherwise} \end{array}
ight.$$

and

$$q_{y,(b_v)_{v\in V}}\mapsto \left\{ egin{array}{cc} \prod_{v\in y}e_{v,a_v} & ext{if }y=V,\ 0 & ext{otherwise} \end{array}
ight.$$

This assignment extends to a *-homomorphism $\pi : C^*(\mathcal{G}) \to \mathfrak{C}(\mathcal{G})$.

Proof continued

Suppose $p_{x,(a_v)_{v \in x}}$ and $q_{y,(b_v)_{v \in y}}$ are the canonical generators of $C^*(\mathcal{G})$. For $x \in X$, $v \in x$, $y \in Y$, $w \in y$, and $c \in C$, let

$$a_{v,c}^{\mathsf{X}} = \sum_{a \in C^{\mathsf{X}}, a_v = c} p_{\mathsf{X},a}, \ \ b_{w,c}^{\mathsf{Y}} = \sum_{b \in C^{\mathsf{Y}}, b_w = c} q_{\mathsf{Y},b}$$

Note $\sum_{c \in C} a_{v,c}^{x} = \sum_{d \in C} b_{w,d}^{y} = 1, v \in x, w \in y.$
Proof continued

Suppose $p_{x,(a_v)_{v \in x}}$ and $q_{y,(b_v)_{v \in y}}$ are the canonical generators of $C^*(\mathcal{G})$. For $x \in X$, $v \in x$, $y \in Y$, $w \in y$, and $c \in C$, let

$$a_{v,c}^{\mathrm{x}} = \sum_{a \in C^{\mathrm{x}}, a_v = c} p_{\mathrm{x},a}, \ \ b_{w,c}^{\mathrm{y}} = \sum_{b \in C^{\mathrm{y}}, b_w = c} q_{\mathrm{y},b}$$

Note $\sum_{c \in C} a_{v,c}^{x} = \sum_{d \in C} b_{w,d}^{y} = 1, v \in x, w \in y.$

Since we have that $p_{x,a}q_{y,b} = 0$ whenever $a_v \neq b_v$, we have that $a_{v,c}^x b_{v,d}^y = 0$ if $v \in x \cap y$ and $c \neq d$. So

$$\sum_{c\in C}a_{v,c}^{x}b_{v,c}^{y}=1.$$

Proof continued

Thus, if $\xi \in \mathcal{H}$ is a unit vector, then

$$\sum_{c\in C} \left\langle \xi | a_{v,c}^{x} b_{v,c}^{y} | \xi \right\rangle = \sum_{c\in C} \left\langle \xi | a_{v,c}^{*} a_{v,c} | \xi \right\rangle = \sum_{c\in C} \left\langle \xi | b_{v,c}^{*} b_{v,c} | \xi \right\rangle = 1.$$

QUB

ヘロア 人間 アメヨア 人間 アー

Ð,

Proof continued

Thus, if $\xi \in \mathcal{H}$ is a unit vector, then

$$\sum_{c \in C} \left\langle \xi | a_{v,c}^{x} b_{v,c}^{y} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | a_{v,c}^{*} a_{v,c} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | b_{v,c}^{*} b_{v,c} | \xi \right\rangle = 1.$$

So $\beta = (b_{v,c}^{\vee}\xi)_{c\in C}$ and $\alpha = (a_{v,c}^{\times}\xi)_{c\in C}$ are unit vectors in $\bigoplus_{c\in C} \mathcal{H}$ with $\langle \alpha | \beta \rangle = 1$; thus $\alpha = \beta$.

QUB

イロト イヨト イヨト イヨト

臣

Proof continued

Thus, if $\xi \in \mathcal{H}$ is a unit vector, then

$$\sum_{c \in C} \left\langle \xi | a_{v,c}^{\mathsf{x}} b_{v,c}^{\mathsf{y}} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | a_{v,c}^{*} a_{v,c} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | b_{v,c}^{*} b_{v,c} | \xi \right\rangle = 1.$$

So $\beta = (b_{v,c}^{y}\xi)_{c \in C}$ and $\alpha = (a_{v,c}^{x}\xi)_{c \in C}$ are unit vectors in $\bigoplus_{c \in C} \mathcal{H}$ with $\langle \alpha | \beta \rangle = 1$; thus $\alpha = \beta$.

Hence $a_{v,c}^{x} = b_{v,c}^{y}$ for every $v \in x \cap y$ and $c \in C$.

イロト イヨト イヨト イヨト

臣

Proof continued

Thus, if $\xi \in \mathcal{H}$ is a unit vector, then

$$\sum_{c \in C} \left\langle \xi | a_{v,c}^{x} b_{v,c}^{y} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | a_{v,c}^{*} a_{v,c} | \xi \right\rangle = \sum_{c \in C} \left\langle \xi | b_{v,c}^{*} b_{v,c} | \xi \right\rangle = 1.$$

So $\beta = (b_{v,c}^{y}\xi)_{c \in C}$ and $\alpha = (a_{v,c}^{x}\xi)_{c \in C}$ are unit vectors in $\bigoplus_{c \in C} \mathcal{H}$ with $\langle \alpha | \beta \rangle = 1$; thus $\alpha = \beta$.

Hence $a_{v,c}^{x} = b_{v,c}^{y}$ for every $v \in x \cap y$ and $c \in C$.

Thus $a_{v,c}^{x} = a_{v,c}^{x'} = a_{v,c}$ for any $x, x' \in X$, $v \in x \cap x'$ and $c \in C$. Hence the map

$$e_{v,c} \mapsto a_{v,c}$$

extends to a *-hom. $\rho : \mathfrak{C}(\mathcal{G}) \to C^*(\mathcal{G})$ with $\rho \circ \pi = \pi \circ \rho = \mathrm{id}$.

《曰》《卽》《臣》《臣》

Linear BCS games

Cleve-Liu-Slofstra: BCS *S* with constraints $f : \{1, -1\}^W \to \{1, -1\}$ of the form $f((\lambda_v)_{v \in W}) = (-1)^{\rho} \prod_{v \in W} \lambda_v$, where $\rho \in \{0, 1\}$.

The solution group $\Gamma(S)$ associated to such a linear BCS is generated by involutions u_1, \ldots, u_n, J subject to the relations:

- J commutes with u_1, \ldots, u_n ;
- u_v, u_w commute whenever the constraint $(-1)^{\rho} \prod_{i \in x} \lambda_i = 1$ belongs to the system with $v, w \in x$, in which case $J^{\rho} \prod_{i \in x} u_i = 1$.

Let $\mathcal{G}_{\mathcal{S}}$ be the corresponding BCS game.

Proposition

$$C^*(\mathcal{G}_{\mathcal{S}})\cong C^*(\Gamma(\mathcal{S}))/\langle J+1
angle.$$

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be an imitation game and

$$p: A \times B \times X \times Y \rightarrow [0,1]$$

be a non-signalling correlation. The following are equivalent:

- $p \in \mathcal{C}_{\mathrm{ac}}(\lambda)$;
- $C^*(\mathcal{G})$ is non-zero, and there exists a tracial state

$$\tau: \mathcal{C}^*(\mathcal{G}) \to \mathbb{C}$$

such that

$$p(a, b|x, y) = \tau(p_{x,a}q_{y,b}),$$
 for all x, y, a, b .

イロト イヨト イヨト イヨト

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be an imitation game and

$$p: A \times B \times X \times Y \rightarrow [0,1]$$

be a non-signalling correlation. The following are equivalent:

- $\pmb{p}\in\mathcal{C}_{\mathrm{qs}}(\lambda)$;
- $\pmb{p} \in \mathcal{C}_{\mathrm{q}}(\lambda);$
- C*(G) is non-zero, and there exists a finite dimensional C*-algebra M with a tracial state τ and a unital *-homomorphism π : C*(G) → M such that

$$p(a,b|x,y) = (\tau \circ \pi)(p_{x,a}q_{y,b}).$$

イロト イヨト イヨト イヨト

Ingredients of the proof

 \bullet A spacial winning strategy for ${\cal G}$ has the form

$$p(a,b|x,y) = \langle (P_{x,a} \otimes Q_{y,b})\xi,\xi \rangle,$$

for some PVM's $(P_{x,a})_{a \in A}$ and $(Q_{y,b})_{b \in B}$ on H and K and a unit vector $\xi \in H \otimes K$.

• Use Schmidt decomposition to write

$$\xi = \sum_{i=1}^{\infty} \alpha_i \phi_i \otimes \psi_i,$$

where $(\phi_i)_{i\in\mathbb{N}}$ and $(\psi_i)_{i\in\mathbb{N}}$ are orthonormal families.

• For a given α , set $I_{\alpha} = \{i : \alpha_i = \alpha\}$, $H_{\alpha} = \operatorname{span}\{\phi_i : i \in I_{\alpha}\}$, $K_{\alpha} = \operatorname{span}\{\psi_i : i \in I_{\alpha}\}.$

• for $x \in X, b \in B, y \in Y$, let

$$\Pi_{y,b}^{x} = \sum_{a \in A, \lambda(x,y,a,b)=1} P_{x,a}.$$

Ingredients of the proof

- Show that $(\Pi_{y,b}^{\times}\otimes I)\xi = (I\otimes Q_{y,b})\xi.$
- Show that $\Pi_{y,b}^{x}$ leave H_{α} invariant, $P_{x,a}$ leave H_{α} invariant, and

 $H_{\alpha} = \operatorname{span}\{\Pi_{y,b}^{x}\phi_{i} : i \in I_{\alpha}, y, b, x\} = \operatorname{span}\{P_{x,a}\phi_{i} : i \in I_{\alpha}, x, a\}.$

- Letting $\Pi_{y,b}^{x,\alpha}$ be the restriction of $\Pi_{y,b}^{x}$ to H_{α} , and similarly for $P_{x,a}^{\alpha}$, show that $\Pi_{y,b}^{x,\alpha}$ does not depend on x, so set $\Pi_{y,b}^{\alpha} = \Pi_{y,b}^{x,\alpha}$.
- For each α , the families $\{P_{x,a}^{\alpha}\}$ and $\{\Pi_{y,b}^{\alpha}\}$ determine a *-representation π_{α} of $C^{*}(\mathcal{G})$ into $\mathcal{B}(\mathbb{C}^{|I_{\alpha}|})$.
- In addition,

$$p(a, b|x, y) = \sum_{\alpha} \mu_{\alpha}(\tau_{\alpha} \circ \pi_{\alpha})(P^{\alpha}_{x,a}\Pi^{\alpha}_{y,b}).$$

 Use the fact that in finite dimensional vector spaces every infinite convex combination of vectors is a finite one.

Ivan Todorov QUB

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be an imitation game and

$$p: A \times B \times X \times Y \rightarrow [0,1]$$

be a non-signalling correlation. The following are equivalent:

- $p \in \mathcal{C}_{\mathrm{loc}}(\lambda);$
- C*(G) is non-zero, and there exists a finite dimensional abelian C*-algebra D with a tracial state τ and a unital *-homomorphism π : C*(G) → D such that

 $p(a,b|x,y) = (\tau \circ \pi)(p_{x,a}q_{y,b}).$

What can we say for general games?

What can we say for general games?

Recall that $\mathcal{A}(X, A)$ is the universal C*-algebra generated by projections $e_{x,a}$, $x \in X$, $a \in A$, subject to the relations

$$\sum_{a\in A}e_{x,a}=1, \quad x\in X.$$

We define

$$\mathcal{S}_{X,A} = \operatorname{span}\{e_{x,a} : x \in X, a \in A\}.$$

 $S_{X,A}$ is an operator system, its matrix order structure being inherited from A(X,A).

Reason for passing to $S_{X,A}$: richer tensor theory.

Let ${\cal S}$ and ${\cal T}$ be operator systems and ${\cal S}\otimes {\cal T}$ be the vector space tensor product.

• The minimal tensor product: $S \otimes_{\min} T \subseteq B(H \otimes K)$.

• The commuting tensor product: $X \in M_n(S \otimes_c T)^+$ if $(\phi \cdot \psi)^{(n)}(X) \ge 0$ for all cp $\phi : S \to \mathcal{B}(H)$ and $\psi : T \to \mathcal{B}(H)$ with commuting ranges.

Here $(\phi \cdot \psi)(x \otimes y) = \phi(x)\psi(y)$.

• The maximal tensor product: $M_n(S \otimes_{\max} T)^+$ is the Archimedeanisation of the cone of $A^*(X \otimes Y)A$, where $X \in M_k(S)^+$, $Y \in M_l(T)^+$, $A \in M_{kl,n}(\mathbb{C})$.

 $\mathcal{S} \otimes_{\mathsf{max}} \mathcal{T} \to \mathcal{S} \otimes_{\mathrm{c}} \mathcal{T} \to \mathcal{S} \otimes_{\mathsf{min}} \mathcal{T} \text{ completely positive.}$

For $s \in (\mathcal{S}_{X,A} \otimes \mathcal{S}_{Y,B})^{\mathrm{d}}$, set

 $p_s(a,b|x,y) = s(e_{x,a} \otimes e_{y,b}), \quad (x,y) \in X \times Y, (a,b) \in A \times B.$

The collection p_s is non-signalling.

Conversely, given a non-signalling p, let $s_p \in (\mathcal{S}_{X,A} \otimes \mathcal{S}_{Y,B})^d$ be given by

 $s_p(e_{x,a}\otimes e_{y,b})=p(a,b|x,y), \quad (x,y)\in X imes Y, (a,b)\in A imes B.$

 $p \rightarrow s_p$ is a bijection between $(S_{X,A} \otimes S_{Y,B})^d$ and the set of all non-signalling collections on (X, Y, A, B).

<ロ> (四) (四) (三) (三) (三)

Winning strategies for general non-local games

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a non-local game.

 $J(\lambda) = \operatorname{span} \{ e_{x,a} \otimes e_{y,b} : \lambda(x, y, a, b) = 0 \} \subseteq S_{X,A} \otimes S_{Y,B}.$

For $\tau \in \{\max, c, \min\}$ and $J \subseteq \mathcal{S}_{X,A} \otimes \mathcal{S}_{Y,B}$, let

 $\mathcal{P}_{\tau}(J) = \{s \in (\mathcal{S}_{X,A} \otimes_{\tau} \mathcal{S}_{Y,B})^d : \text{ a state with } J \subseteq \ker(s)\}.$

Theorem

The map $p \rightarrow s_p$ is a continuous affine isomorphism between

(i)
$$C_{ns}(\lambda)$$
 and $\mathcal{P}_{max}(J(\lambda))$;

(ii) $C_{qc}(\lambda)$ and $\mathcal{P}_{c}(J(\lambda))$;

(iii) $C_{qa}(\lambda)$ and $\mathcal{P}_{min}(J(\lambda))$;

For $\lambda : X \times Y \times A \times B \rightarrow \{0,1\}$, let

 $N(\lambda) = \{(x, y, a, b) : \lambda(x, y, a, b) = 0\}.$

ヘロト 人間 とくほ とくほとう

E.

For
$$\lambda: X \times Y \times A \times B \rightarrow \{0,1\}$$
, let

 $N(\lambda) = \{(x, y, a, b) : \lambda(x, y, a, b) = 0\}.$

If $\mathcal{G}_1 = (X, Y, A, B, \lambda_1)$ and $\mathcal{G}_2 = (X, Y, A, B, \lambda_2)$ are games, we say that

 \mathcal{G}_1 is harder than \mathcal{G}_2 if $\lambda_1 \leq \lambda_2$, that is, if $N(\lambda_2) \subseteq N(\lambda_1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For
$$\lambda : X \times Y \times A \times B \rightarrow \{0,1\}$$
, let

$$N(\lambda) = \{(x, y, a, b) : \lambda(x, y, a, b) = 0\}.$$

If $\mathcal{G}_1 = (X, Y, A, B, \lambda_1)$ and $\mathcal{G}_2 = (X, Y, A, B, \lambda_2)$ are games, we say that

 \mathcal{G}_1 is harder than \mathcal{G}_2 if $\lambda_1 \leq \lambda_2$, that is, if $N(\lambda_2) \subseteq N(\lambda_1)$.

For $\Sigma \subseteq \mathcal{C}_{\mathrm{ns}}$, let

$$\lambda_{\Sigma}: X \times Y \times A \times B \rightarrow \{0,1\}$$

be defined by

 $N(\lambda_{\Sigma}) = \cap_{p \in \Sigma} N(p).$

For
$$\lambda : X \times Y \times A \times B \rightarrow \{0,1\}$$
, let

$$N(\lambda) = \{(x, y, a, b) : \lambda(x, y, a, b) = 0\}.$$

If $\mathcal{G}_1 = (X, Y, A, B, \lambda_1)$ and $\mathcal{G}_2 = (X, Y, A, B, \lambda_2)$ are games, we say that

 \mathcal{G}_1 is harder than \mathcal{G}_2 if $\lambda_1 \leq \lambda_2$, that is, if $N(\lambda_2) \subseteq N(\lambda_1)$.

For $\Sigma \subseteq \mathcal{C}_{\mathrm{ns}}$, let

$$\lambda_{\Sigma}: X \times Y \times A \times B \to \{0,1\}$$

be defined by

$$N(\lambda_{\Sigma}) = \cap_{p \in \Sigma} N(p).$$

 $\lambda_{\Sigma} \text{ is the rule function of the hardest game for which every element of } \Sigma \text{ is a winning strategy.}$

Winning harder games with no extra effort

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a game. Set $\lambda_x = \lambda_{\mathcal{C}_x(\lambda)}$; thus,

 $\lambda_{\mathrm{x}}(x, y, a, b) = 0 \iff p(a, b|x, y) = 0 \text{ for every } p \in \mathcal{C}_{\mathrm{x}}(\lambda).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Winning harder games with no extra effort

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a game. Set $\lambda_{\mathrm{x}} = \lambda_{\mathcal{C}_{\mathrm{x}}(\lambda)}$; thus,

 $\lambda_{\mathrm{x}}(x, y, a, b) = 0 \iff p(a, b|x, y) = 0 \text{ for every } p \in \mathcal{C}_{\mathrm{x}}(\lambda).$

Note the inequalities

$$\lambda_{\rm loc} \leq \lambda_{\rm q} \leq \lambda_{\rm qs} \leq \lambda_{\rm qa} \leq \lambda_{\rm qc} \leq \lambda_{\rm ns} \leq \lambda.$$

Set

$$\operatorname{Ref}_{\mathrm{x}}(\mathcal{G}) = (X, Y, A, B, \lambda_{\mathrm{x}})$$

and call it the reflexive x-cover of \mathcal{G} .

Call \mathcal{G} x-reflexive if $\operatorname{Ref}_{x}(\mathcal{G}) = \mathcal{G}$.

Example

Consider the graph colouring game for the graph $G = \{(1,2), (2,3), (3,4)\}$. Then every 2-colouring of *G* is also a 2-colouring of the 4-cycle.

Theorem

The spaces $J_{\rm x}(\lambda)$ are kernels, and

- (i) the winning strategies for Ref_{ns}(G) are in one-to-one correspondence with the states of (S_{X,A} ⊗_{max} S_{Y,B})/J_{max}(λ);
- (ii) the winning strategies for Ref_{qc}(G) are in one-to-one correspondence with the states of (S_{X,A} ⊗_c S_{Y,B})/J_c(λ);
- (iii) the winning strategies for Ref_{qa}(G) are in one-to-one correspondence with the states of (S_{X,A} ⊗_{min} S_{Y,B})/J_{min}(λ).

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a game. Recall

 $E_{x,y}^{a} = \{b \in B : \lambda(x, y, a, b) = 1\}$ and $E_{x,y}^{b} = \{a \in A : \lambda(x, y, a, b) = 1\}.$

 $\ensuremath{\mathcal{G}}$ is a mirror game if there exist functions

 $\xi: X \to Y$ and $\eta: Y \to X$

such that

$$E^{\mathsf{a}}_{x,\xi(x)}\cap E^{\mathsf{a}'}_{x,\xi(x)}=\emptyset, \ x\in X, \ \mathsf{a}\neq\mathsf{a}',$$

and

$$E^b_{\eta(y),y}\cap E^{b'}_{\eta(y),y}=\emptyset, \ y\in Y, \ b
eq b'.$$

白 と く ヨ と く ヨ と …

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a mirror game, $p \in C_{qc}(\lambda)$ and $s \in S(\mathcal{A}(X, A) \otimes_{\max} \mathcal{A}(Y, B))$ be such that $p = p_s$. Then

- (i) the functional $\tau : \mathcal{A}(X, A) \to \mathbb{C}$ given by $\tau(z) = s(z \otimes 1)$, $z \in \mathcal{A}(X, A)$, is a tracial state, and
- (ii) there exists a set $Q = \{q_{y,b} : y \in Y, b \in B\}$ of projections in $\mathcal{A}(X, A)$ such that $\sum_{b \in B} q_{y,b} = 1$ for all $y \in Y$, and

 $p(a,b|x,y) = \tau(e_{x,a}q_{y,b}), \quad x \in X, y \in Y, a \in A, b \in B.$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem

Let $\mathcal{G} = (X, Y, A, B, \lambda)$ be a mirror game, $p \in C_{qc}(\lambda)$ and $s \in S(\mathcal{A}(X, A) \otimes_{\max} \mathcal{A}(Y, B))$ be such that $p = p_s$. Then

(i) the functional $\tau : \mathcal{A}(X, A) \to \mathbb{C}$ given by $\tau(z) = s(z \otimes 1)$, $z \in \mathcal{A}(X, A)$, is a tracial state, and

(ii) there exists a set $Q = \{q_{y,b} : y \in Y, b \in B\}$ of projections in $\mathcal{A}(X, A)$ such that $\sum_{b \in B} q_{y,b} = 1$ for all $y \in Y$, and

 $p(a,b|x,y) = \tau(e_{x,a}q_{y,b}), \quad x \in X, y \in Y, a \in A, b \in B.$

イロト イヨト イヨト イヨト

For $s \in S(\mathcal{A}(X, A) \otimes_{\max} \mathcal{A}(Y, B))$ we get precisely amenable traces.

We may assume that

$$\cup_{a\in A} E^a_{x,\xi(x)} = B \text{ and } \cup_{b\in B} E^b_{\eta(y),y} = A, \ x \in X, y \in Y.$$

We may assume that

$$\cup_{a\in A} E^a_{x,\xi(x)} = B \text{ and } \cup_{b\in B} E^b_{\eta(y),y} = A, \ x \in X, y \in Y.$$

For $x \in X, y \in Y, a \in A$ and $b \in B$, let

$$p_{x,a} = \sum_{b \in E^a_{x,\xi(x)}} f_{\xi(x),b}, \quad q_{y,b} = \sum_{a \in E^b_{\eta(y),y}} e_{\eta(y),a}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

We may assume that

$$\cup_{a\in A} E^a_{x,\xi(x)} = B \text{ and } \cup_{b\in B} E^b_{\eta(y),y} = A, \ x \in X, y \in Y.$$

For $x \in X, y \in Y, a \in A$ and $b \in B$, let

$$p_{\mathsf{x},\mathsf{a}} = \sum_{b \in E^{\mathsf{a}}_{\mathsf{x},\xi(\mathsf{x})}} f_{\xi(\mathsf{x}),b}, \quad q_{\mathsf{y},b} = \sum_{\mathsf{a} \in E^{\mathsf{b}}_{\eta(\mathsf{y}),y}} e_{\eta(\mathsf{y}),\mathsf{a}}.$$

For $u_1, u_2 \in \mathcal{A}(X, A) \otimes_{\mathsf{max}} \mathcal{A}(Y, B)$, write

 $u_1 \sim u_2$ if $s(u_1 - u_2) = 0$.

Then \sim is an equivalence relation.

イロト イヨト イヨト イヨト

臣

Fix
$$x \in X$$
 and $a \in A$. Then
 $s(e_{x,a} \otimes 1) = \sum_{b \in B} s(e_{x,a} \otimes f_{\xi(x),b}) = \sum_{b \in E^a_{x,\xi(x)}} s(e_{x,a} \otimes f_{\xi(x),b})$
 $= s(e_{x,a} \otimes p_{x,a}).$

Fix
$$x \in X$$
 and $a \in A$. Then

$$s(e_{x,a} \otimes 1) = \sum_{b \in B} s(e_{x,a} \otimes f_{\xi(x),b}) = \sum_{b \in E_{x,\xi(x)}^{a}} s(e_{x,a} \otimes f_{\xi(x),b})$$

$$= s(e_{x,a} \otimes p_{x,a}).$$
If $a' \neq a$ then

$$E_{x,\xi(x)}^{a'} \cap E_{x,\xi(x)}^{a} = \emptyset$$

so $s(e_{x,a'}\otimes f_{\xi(x),b})=0$ whenever $b\in E^a_{x,\xi(x)}$. Thus

$$s(e_{\mathsf{x},\mathsf{a}'}\otimes p_{\mathsf{x},\mathsf{a}})=\sum_{b\in E^a_{\mathsf{x},\xi(\mathsf{x})}}s(e_{\mathsf{x},\mathsf{a}'}\otimes f_{\xi(\mathsf{x}),b})=0.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

$$\implies s(1 \otimes p_{x,a}) = \sum_{a' \in A} s(e_{x,a'} \otimes p_{x,a}) = s(e_{x,a} \otimes p_{x,a}).$$

$$\implies e_{x,a} \otimes 1 \sim e_{x,a} \otimes p_{x,a} \sim 1 \otimes p_{x,a}, \quad x \in X, a \in A.$$
Set $h_{x,a} = e_{x,a} \otimes 1 - 1 \otimes p_{x,a}$. Then $h_{x,a} = h_{x,a}^*$ and
$$h_{x,a}^2 = e_{x,a} \otimes 1 - e_{x,a} \otimes p_{x,a} - e_{x,a} \otimes p_{x,a} + 1 \otimes p_{x,a};$$
thus,
$$h_{x,a}^2 \sim 0.$$

Ð,


```
The Cauchy-Schwarz inequality implies
              uh_{x,a} \sim 0 and h_{x,a}u \sim 0, x \in X, a \in A
for every u \in \mathcal{A}(X, A) \otimes_{\max} \mathcal{A}(Y, B).
In particular,
ze_{x,a} \otimes 1 \sim z \otimes p_{x,a} \sim e_{x,a} z \otimes 1, x \in X, a \in A, z \in \mathcal{A}(X, A).
```


Let z and w be words on $\mathcal{E} := \{e_{x,a} : x \in X, a \in A\}$. We show that

 $zw \otimes 1 \sim wz \otimes 1$,

from where it follows that τ is a trace.

Let z and w be words on $\mathcal{E} := \{e_{x,a} : x \in X, a \in A\}$. We show that

 $zw \otimes 1 \sim wz \otimes 1$,

from where it follows that τ is a trace.

Induction on |w|: for |w| = 1, the claim is already proved.

Let z and w be words on $\mathcal{E} := \{e_{x,a} : x \in X, a \in A\}$. We show that

 $zw \otimes 1 \sim wz \otimes 1$,

from where it follows that τ is a trace.

Induction on |w|: for |w| = 1, the claim is already proved.

Let |w| = n and write w = w'e, where $e \in \mathcal{E}$. Then

 $zw \otimes 1 = zw'e \otimes 1 \sim ezw' \otimes 1 \sim w'ez \otimes 1 = wz \otimes 1.$

Thank you very much!

▲ロ > ▲圖 > ▲ 国 > ▲ 国 > -

æ