Perfect strategies for imitation and reflexive games

with
M. Lupini, L. Mančinska, V. I. Paulsen, D. Roberson, G. Scarpa, S. Severini and A. Winter

15 July 2019, BIRS

Outline

(1) Non-signalling correlations
(2) Perfect strategies for non-local games
(3) Imitation games: definition and examples
(4) Perfect strategies for imitation games
(5) Reflexive games and operator system quotients
(6) Mirror games: a Hilbert-space-free approach

Non-signalling correlations

Let X, Y, A and B be finite sets.
Alice (resp. Bob) receives an input x (resp. y) drawn from the set $X($ resp. $Y)$ and produces an output $a($ resp. $b)$ from the set A (resp. B).

The statistics of the answers is observed.

Non-signalling correlations

Let $p(a, b \mid x, y)$ be the probability that the pair (a, b) is produced, given the input pair (x, y).

For a fixed (x, y), the tuple $(p(a, b \mid x, y))_{(a, b) \in A \times B}$ is a probability distribution on $A \times B$.

We assume that A and B do not communicate: expressed by the fact that the marginal distributions are well-defined:

$$
p(a \mid x)=\sum_{b \in B} p(a, b \mid x, y), \quad p(b \mid y)=\sum_{a \in A} p(a, b \mid x, y) .
$$

A non-signalling (NS) correlation is a family

$$
\left\{(p(a, b \mid x, y))_{(a, b) \in A \times B}: x \in X, y \in Y\right\}
$$

of probability distributions satisfying these conditions.
Notation: $\mathcal{C}_{\text {ns }}$.

Classes of NS correlations

A correlation p is called

- deterministic if there exist functions $f: X \rightarrow A$ and $g: Y \rightarrow B$ such that

$$
p(a, b \mid x, y)=1 \text { if and only if } a=f(x) \text { and } b=g(y) .
$$

Notation: $\mathcal{C}_{\text {det }}$.

- local if

$$
p(a, b \mid x, y)=\sum_{k=1}^{m} \lambda_{k} p_{1}^{k}(a \mid x) p_{2}^{k}(b \mid y)
$$

for some probability distributions p_{1}^{k}, p_{2}^{k}, and non-negative reals $\lambda_{1}, \ldots, \lambda_{m}$ with sum 1.
Notation: $\mathcal{C}_{\text {loc }}$.

Classes of NS correlations

- quantum if

$$
p(a, b \mid x, y)=\left\langle\left(E_{x, a} \otimes F_{y, b}\right) \eta, \eta\right\rangle
$$

where $\left(E_{x, a}\right)_{a=1}^{c}\left(\operatorname{resp} .\left(F_{y, b}\right)_{b=1}^{c}\right)$ is a PVM on a finite dimensional Hilbert space.

Notation: \mathcal{C}_{q}.

- spacially quantum if

$$
p(a, b \mid x, y)=\left\langle\left(E_{x, a} \otimes F_{y, b}\right) \eta, \eta\right\rangle
$$

where $\left(E_{x, a}\right)_{a=1}^{c}\left(\operatorname{resp} .\left(F_{y, b}\right)_{b=1}^{c}\right)$ is a PVM on a (perhaps infinite dimensional) Hilbert space.

Notation: $\mathcal{C}_{\mathrm{qs}}$.

Classes of NS correlations

- approximately quantum if $p \in \overline{\mathcal{C}_{q}}$.

Notation: $\mathcal{C}_{\text {qa }}$.

- quantum commuting if

$$
p(a, b \mid x, y):=\left\langle E_{x, a} F_{y, b} \eta, \eta\right\rangle
$$

where $\left(E_{x, a}\right)_{a=1}^{c}$ and $\left(F_{y, b}\right)_{b=1}^{c}$ are commuting POVM's on a Hilbert space.

Notation: $\mathcal{C}_{\text {qc }}$.

$$
\mathcal{C}_{\mathrm{det}} \subseteq \mathcal{C}_{\mathrm{loc}} \subseteq \mathcal{C}_{\mathrm{q}} \subseteq \mathcal{C}_{\mathrm{qs}} \subseteq \mathcal{C}_{\mathrm{qa}} \subseteq \mathcal{C}_{\mathrm{qc}} \subseteq \mathcal{C}_{\mathrm{ns}}
$$

Non-local games

A non-local game is a tuple $\mathcal{G}=(X, Y, A, B, \lambda)$, where

- X and Y are input sets for players Alice and Bob, respectively;
- A and B are output sets for players Alice and Bob, respectively, and
- $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$ is a rule function.

Alice and Bob play cooperatively against a verifier R.
Upon receiving inputs (x, y), Alice and Bob reply with certain outputs (a, b).

They win if $\lambda(x, y, a, b)=1$, and lose otherwise.
Alice and Bob know the rule function but are not allowed to communicate after the game commences. However, they are allowed to decide on a joint strategy beforehand.

Strategies for non-local games

A deterministic strategy is given by two functions $f: X \rightarrow A$ and $g: Y \rightarrow B$.
It is a perfect (or winning) strategy if

$$
\lambda(x, y, f(x), g(y))=1, \quad x \in X, y \in Y
$$

However, Alice and Bob may employ randomness in their choices of outputs, deciding their outputs according to a probability distribution.

Let $p(a, b \mid x, y)$ be the probability that Alice and Bob give outputs (a, b) when they are given inputs (x, y).
Then $p(\cdot, \cdot \mid x, y)$ is a probability distribution for each pair (x, y), and since the players are not allowed to communicate, the family p is non-signalling.

Winning strategies for non-local games

Definition

Let $\mathrm{x} \in\{\operatorname{det}, \mathrm{loc}, \mathrm{q}, \mathrm{qs}, \mathrm{qa}, \mathrm{qc}, \mathrm{ns}\}$.
A winning, or perfect, x-strategy for a game $\mathcal{G}=(X, Y, A, B, \lambda)$ is an element $p \in \mathcal{C}_{\mathbf{x}}$ such that

$$
\lambda(x, y, a, b)=0 \Longrightarrow p(a, b \mid x, y)=0
$$

$\mathcal{C}_{\mathrm{x}}(\lambda)$: the set of all perfect x -strategies for $\mathcal{G}=(X, Y, A, B, \lambda)$.
The elements of $\mathcal{C}_{\text {loc }}(\lambda)$ are called classical winning strategies.

Examples of non-local games

- The synchronicity game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ if and only if $x=y$ and $a \neq b$.

Examples of non-local games

- The synchronicity game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ if and only if $x=y$ and $a \neq b$.
- A synchronous game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ provided $x=y$ and $a \neq b$.

Examples of non-local games

- The synchronicity game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ if and only if $x=y$ and $a \neq b$.
- A synchronous game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ provided $x=y$ and $a \neq b$.
- Let $G=(V(G), E(G))$ be a graph. The graph colouring game for G has $X=Y=V(G), A=B$, and $\lambda(x, y, a, b)=1$ unless

$$
\text { either } x=y \text { and } a \neq b \text {, or }(x, y) \in E(G) \text { and } a=b
$$

Examples of non-local games

- The synchronicity game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ if and only if $x=y$ and $a \neq b$.
- A synchronous game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ provided $x=y$ and $a \neq b$.
- Let $G=(V(G), E(G))$ be a graph. The graph colouring game for G has $X=Y=V(G), A=B$, and $\lambda(x, y, a, b)=1$ unless

$$
\text { either } x=y \text { and } a \neq b, \text { or }(x, y) \in E(G) \text { and } a=b
$$

- Let G and H be graphs. The graph homomorphism game $G \rightarrow H$ has $X=Y=V(G), A=B=V(H)$, and $\lambda(x, y, a, b)=1$ unless
either $x=y$ and $a \neq b$, or $(x, y) \in E(G)$ and $(a, b) \notin E(H)$.

Examples of non-local games

- The synchronicity game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ if and only if $x=y$ and $a \neq b$.
- A synchronous game has $X=Y, A=B$, and $\lambda(x, y, a, b)=0$ provided $x=y$ and $a \neq b$.
- Let $G=(V(G), E(G))$ be a graph. The graph colouring game for G has $X=Y=V(G), A=B$, and $\lambda(x, y, a, b)=1$ unless

$$
\text { either } x=y \text { and } a \neq b, \text { or }(x, y) \in E(G) \text { and } a=b
$$

- Let G and H be graphs. The graph homomorphism game $G \rightarrow H$ has $X=Y=V(G), A=B=V(H)$, and $\lambda(x, y, a, b)=1$ unless
either $x=y$ and $a \neq b$, or $(x, y) \in E(G)$ and $(a, b) \notin E(H)$.
- The graph isomorphism game $G \simeq H$.

Winning classically vs quantumly

Games that can be won using a quantum strategy only:

- Colouring the Hadamard graph Ω_{N} on $\{1,-1\}^{N}$ using N colours (Avis-Hasegawa-Kikuchi-Sasaki).
(v, w) is an edge if and only if $v \cdot w=0$.
- Filling successfully the Mermin-Peres magic square. Alice receives a row of a 3 by 3 square, Bob a column, and they are required to assign 1 or -1 to the entries, the product of Alice's entries being 1 , the product of Bob's entries being -1 , and assigning the same value to the common entry of the selected row and column.

The C^{*}-algebra $\mathcal{A}(X, A)$

We let $\mathcal{A}(X, A)$ be the free product of $|X|$ copies of $\ell^{\infty}(A)$, amalgamated over the unit:

$$
\mathcal{A}(X, A)=\underbrace{\ell^{\infty}(A) *_{1} \cdots *_{1} \ell^{\infty}(A)}_{|X| \text { times }} .
$$

Let $e_{x, a}$ be the canonical basis vectors of the x-th copy of $\ell^{\infty}(A)$.
Thus, $e_{x, a}$ is a projection in $\mathcal{A}(X, A)$ for all $x \in X$ and all $a \in A$, and

$$
\sum_{a \in A} e_{x, a}=1, \quad x \in X
$$

A dense spanning set for $\mathcal{A}(X, A)$ is formed by the words $e_{x_{1}, a_{1}} \ldots e_{x_{k}, a_{k}}$.

Representations of synchronous correlations

Let $\tau: \mathcal{A}(X, A) \rightarrow \mathbb{C}$ be a trace. Setting

$$
p(a, b \mid x, y)=\tau\left(e_{x, a} e_{y, b}\right), \quad x, y \in X, a, b \in A,
$$

we obtain a winning qc-strategy for the synchronicity game.
The converse is also true:

Representations of synchronous correlations

Let $\tau: \mathcal{A}(X, A) \rightarrow \mathbb{C}$ be a trace. Setting

$$
p(a, b \mid x, y)=\tau\left(e_{x, a} e_{y, b}\right), \quad x, y \in X, a, b \in A,
$$

we obtain a winning qc-strategy for the synchronicity game.
The converse is also true:

Theorem (Severini-Stahlke-Paulsen-T-Winter)

If p is a winning qc-strategy for the synchronicity game then there exists a trace τ on $\mathcal{A}(X, A)$ such that

$$
p(a, b \mid x, y)=\tau\left(e_{x, a} e_{y, b}\right), \quad x, y \in X, a, b \in A .
$$

Write $p=p_{\tau}$.

Representations of synchronous correlations

Theorem (Kim-Paulsen-Schafhauser, S-S-P-T-W)

Suppose that $p \in \mathcal{C}_{\mathrm{qc}}$ is a synchronous correlation.

- $p \in \mathcal{C}_{\mathrm{qa}}$ if and only if there exists an amenable trace $\tau: \mathcal{A}(X, A) \rightarrow \mathbb{C}$ with $p=p_{\tau} ;$
- $p \in \mathcal{C}_{\mathrm{q}}$ if and only if there exists a finite dimensional *-representation $\pi: \mathcal{A}(X, A) \rightarrow \mathcal{M}$ and a trace $\tau^{\prime}: \mathcal{M} \rightarrow \mathbb{C}$ such that $p=p_{\tau}$, where $\tau=\tau^{\prime} \circ \pi$;
- $p \in \mathcal{C}_{\text {loc }}$ if and only if there exists an abelian *-representation $\pi: \mathcal{A}(X, A) \rightarrow \mathcal{D}$ and a trace $\tau^{\prime}: \mathcal{D} \rightarrow \mathbb{C}$ such that $p=p_{\tau}$, where $\tau=\tau^{\prime} \circ \pi$.

Imitation games - definition

Definition

$\mathcal{G}=(X, Y, A, B, \lambda)$ is called an imitation game if

- for every $x \in X$ and $a, a^{\prime} \in A$ with $a \neq a^{\prime}$, there exists $y \in Y$ such that

$$
\sum_{b \in B} \lambda(a, b \mid x, y) \lambda\left(a^{\prime}, b \mid x, y\right)=0
$$

- for every $y \in Y$ and $b, b^{\prime} \in B$ with $b \neq b^{\prime}$, there exists $x \in X$ such that

$$
\sum_{a \in A} \lambda(a, b \mid x, y) \lambda\left(a, b^{\prime} \mid x, y\right)=0
$$

Imitation games - definition

Set

$$
\begin{gathered}
E_{x, y}=\{(a, b) \in A \times B: \lambda(x, y, a, b)=1\}, \\
E_{x, y}^{a}=\{b \in B: \lambda(x, y, a, b)=1\},
\end{gathered}
$$

and

$$
E_{x, y}^{b}=\{a \in A: \lambda(x, y, a, b)=1\} .
$$

Imitation games - definition

Set

$$
\begin{gathered}
E_{x, y}=\{(a, b) \in A \times B: \lambda(x, y, a, b)=1\}, \\
E_{x, y}^{a}=\{b \in B: \lambda(x, y, a, b)=1\},
\end{gathered}
$$

and

$$
E_{x, y}^{b}=\{a \in A: \lambda(x, y, a, b)=1\} .
$$

For imitation games,

- for all $x \in X$, and all possible answers $a \neq a^{\prime}$ of Alice, $\exists y \in Y$ such that $E_{x, y}^{a} \cap E_{x, y}^{a^{\prime}}=\emptyset$, and
- for all $y \in X$, and all possible answers $b \neq b^{\prime}$ of Bob, $\exists x \in X$ such that $E_{x, y}^{b} \cap E_{x, y}^{b^{\prime}}=\emptyset$.

Imitation games - definition

Set

$$
\begin{gathered}
E_{x, y}=\{(a, b) \in A \times B: \lambda(x, y, a, b)=1\}, \\
E_{x, y}^{a}=\{b \in B: \lambda(x, y, a, b)=1\},
\end{gathered}
$$

and

$$
E_{x, y}^{b}=\{a \in A: \lambda(x, y, a, b)=1\} .
$$

For imitation games,

- for all $x \in X$, and all possible answers $a \neq a^{\prime}$ of Alice, $\exists y \in Y$ such that $E_{x, y}^{a} \cap E_{x, y}^{a^{\prime}}=\emptyset$, and
- for all $y \in X$, and all possible answers $b \neq b^{\prime}$ of Bob, $\exists x \in X$ such that $E_{x, y}^{b} \cap E_{x, y}^{b^{\prime}}=\emptyset$.

Thus, the answers Bob gives when he is asked y are "determined" by the answers of Alice when asked x, and viçe versa;

Imitation games - examples

- Every synchronous game is an imitation game. Indeed, $E_{x, x}^{a}=\{a\}$, and so, given $x \in X$, we can take $y=x$, having $E_{x, x}^{a} \cap E_{x, x}^{a^{\prime}}=\emptyset$.

Imitation games - examples

- Every synchronous game is an imitation game. Indeed, $E_{x, x}^{a}=\{a\}$, and so, given $x \in X$, we can take $y=x$, having $E_{x, x}^{a} \cap E_{x, x}^{a^{\prime}}=\emptyset$.
- \mathcal{G} is called unique if, for every $(x, y) \in X \times Y$, the set $E_{x, y}$ (of "allowed" pairs $(a, b))$ is the graph of a bijection $f: A \rightarrow B$. Thus, $E_{x, y}^{a}=\{f(a)\}$ and hence every unique game is an imitation game.

Imitation games - examples

- Every synchronous game is an imitation game. Indeed, $E_{x, x}^{a}=\{a\}$, and so, given $x \in X$, we can take $y=x$, having $E_{x, x}^{a} \cap E_{x, x}^{a^{\prime}}=\emptyset$.
- \mathcal{G} is called unique if, for every $(x, y) \in X \times Y$, the set $E_{x, y}$ (of "allowed" pairs $(a, b))$ is the graph of a bijection $f: A \rightarrow B$. Thus, $E_{x, y}^{a}=\{f(a)\}$ and hence every unique game is an imitation game.
- \mathcal{G} is called a mirror game if there exist functions $\xi: X \rightarrow Y$ and $\eta: Y \rightarrow X$ such that

$$
E_{x, \xi(x)}^{a} \cap E_{x, \xi(x)}^{a^{\prime}}=\emptyset, \quad x \in X, \quad a \neq a^{\prime}
$$

and

$$
E_{\eta(y), y}^{b} \cap E_{\eta(y), y}^{b^{\prime}}=\emptyset, \quad y \in Y, b \neq b^{\prime}
$$

Every mirror game is an imitation game.

Imitation games - examples

- Cleve-Mittal: a binary constraint system (BCS) game has $Y=\left\{v_{1}, \ldots, v_{n}\right\}$, a set of variables that take values in $\{1,-1\}$.

A constraint is an equation $f\left((v)_{v \in V}\right)=1$, where $V \subseteq Y$ and $f:\{1,-1\}^{V} \rightarrow\{1,-1\}$ is a function.
X is a set of constraints, say $\left(V_{x}, f_{x}\right), x \in X$.
$A=\cup_{x \in X}\{1,-1\}^{V_{x}}$ and $B=\{1,-1\}$.
Given $x \in X, y \in Y, a \in A$ and $b \in B$, writing $a=\left(a_{z}\right)_{z \in V}$, we let $\lambda(x, y, a, b)=1$ precisely when

$$
V=V_{x}, \quad f_{x}(a)=1 \quad \text { and } \quad a_{y}=b
$$

Every BCS game is an imitation game.

Imitation games - examples

- Let V be a set of n variables, and C be a finite set of possible values of these variables.

In a variable assignment game upon V and C,

- X and Y are sets of subsets of V;
- for every $v \in V$ there exist $x \in X$ and $y \in Y$ with $v \in x \cap y$;
- $A=B=\cup_{W \subseteq v} C^{W}$.
- $\lambda\left(x, y,\left(a_{v}\right)_{v \in W},\left(b_{v}\right)_{v \in W^{\prime}}\right)=1$ implies that $x=W, y=W^{\prime}$ and $a_{v}=b_{v}$ for every $v \in x \cap y$.

Example: Peres-Mermin square

Every variable assignment game is an imitation game.

The C*-algebra of an imitation game

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be an imitation game.
The C^{*}-algebra $C^{*}(\mathcal{G})$ of \mathcal{G} is the universal unital C^{*}-algebra generated by elements $\left(p_{x, a}\right)_{x \in X, a \in A}$ and $\left(q_{y, b}\right)_{y \in Y, b \in B}$ satisfying the following relations:
(1) for every $x \in X,\left(p_{x, a}\right)_{a \in A}$ are pairwise orthogonal projections with $\sum_{a \in A} p_{x, a}=1$;
(2) for every $y \in Y,\left(q_{y, b}\right)_{b \in B}$ are pairwise orthogonal projections with $\sum_{b \in A} q_{y, b}=1$;
(3) If $\lambda(x, y, a, b)=0$ then $p_{x, a} q_{y, b}=0$.

Generalises the C^{*}-algebra of a synchronous game (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano).

The C*-algebra of an imitation game

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be an imitation game.
The C^{*}-algebra $C^{*}(\mathcal{G})$ of \mathcal{G} is the universal unital C^{*}-algebra generated by elements $\left(p_{x, a}\right)_{x \in X, a \in A}$ and $\left(q_{y, b}\right)_{y \in Y, b \in B}$ satisfying the following relations:
(1) for every $x \in X,\left(p_{x, a}\right)_{a \in A}$ are pairwise orthogonal projections with $\sum_{a \in A} p_{x, a}=1$;
(2) for every $y \in Y,\left(q_{y, b}\right)_{b \in B}$ are pairwise orthogonal projections with $\sum_{b \in A} q_{y, b}=1$;
(3) If $\lambda(x, y, a, b)=0$ then $p_{x, a} q_{y, b}=0$.

Generalises the C^{*}-algebra of a synchronous game (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano).

Description in special cases?

The C*-algebra of a variable assignment game

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C.
Let $\mathfrak{C}(\mathcal{G})$ be the universal C^{*}-algebra generated by projections $e_{v, c}$, with $v \in V, c \in C$, and with relations
(1) $\sum_{c \in C} e_{V, c}=1, v \in V$;
(2) If $v, w \in x$ for some $x \in X$ or $v, w \in y$ for some $y \in Y$, then $e_{v, c} e_{w, d}=e_{w, d} e_{v, c}$ for all c and d;
(3) If $\lambda\left(x, y,\left(a_{v}\right)_{v \in x},\left(b_{w}\right)_{w \in y}\right)=0$ then

$$
\left(\prod_{v \in x} e_{v, a_{v}}\right)\left(\prod_{w \in y} e_{w, b_{w}}\right)=0
$$

The C*-algebra of a variable assignment game

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^{*}(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

The C*-algebra of a variable assignment game

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^{*}(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

Proof

Consider the assignment

$$
p_{x,\left(a_{v}\right)_{v \in V}} \mapsto\left\{\begin{array}{cl}
\prod_{v \in x} e_{v, a_{v}} & \text { if } x=V, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
q_{y,\left(b_{v}\right)_{v \in V} \mapsto} \mapsto\left\{\begin{array}{cl}
\prod_{v \in y} e_{v, a_{v}} & \text { if } y=V \\
0 & \text { otherwise }
\end{array}\right.
$$

The C*-algebra of a variable assignment game

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a variable assignment game with a set of variables V and a set of values C. Then $C^{*}(\mathcal{G}) \cong \mathfrak{C}(\mathcal{G})$ canonically.

Proof

Consider the assignment

$$
p_{x,\left(a_{v}\right)_{v \in V}} \mapsto\left\{\begin{array}{cl}
\prod_{v \in x} e_{v, a_{v}} & \text { if } x=V \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
q_{y,\left(b_{v}\right)_{v \in V}} \mapsto\left\{\begin{array}{cl}
\prod_{v \in y} e_{v, a_{v}} & \text { if } y=V \\
0 & \text { otherwise }
\end{array}\right.
$$

This assignment extends to a *-homomorphism $\pi: C^{*}(\mathcal{G}) \rightarrow \mathfrak{C}(\mathcal{G})$.

The C*-algebra of a variable assignment game

Proof continued

Suppose $p_{x,\left(a_{v}\right)_{v \in x}}$ and $q_{y,\left(b_{v}\right)_{v \in y}}$ are the canonical generators of $C^{*}(\mathcal{G})$. For $x \in X, v \in x, y \in Y, w \in y$, and $c \in C$, let

$$
a_{v, c}^{x}=\sum_{a \in C^{x}, a_{v}=c} p_{x, a}, \quad b_{w, c}^{y}=\sum_{b \in C^{y}, b_{w}=c} q_{y, b} .
$$

Note $\sum_{c \in C} a_{v, c}^{x}=\sum_{d \in C} b_{w, d}^{y}=1, \quad v \in x, w \in y$.

The C*-algebra of a variable assignment game

Proof continued

Suppose $p_{x,\left(a_{v}\right)_{v \in x}}$ and $q_{y,\left(b_{v}\right)_{v \in y}}$ are the canonical generators of $C^{*}(\mathcal{G})$. For $x \in X, v \in x, y \in Y, w \in y$, and $c \in C$, let

$$
a_{v, c}^{x}=\sum_{a \in C^{x}, a_{v}=c} p_{x, a}, \quad b_{w, c}^{y}=\sum_{b \in C^{y}, b_{w}=c} q_{y, b} .
$$

Note $\sum_{c \in C} a_{v, c}^{x}=\sum_{d \in C} b_{w, d}^{y}=1, \quad v \in x, w \in y$.
Since we have that $p_{x, a} q_{y, b}=0$ whenever $a_{v} \neq b_{v}$, we have that $a_{v, c}^{x} b_{v, d}^{y}=0$ if $v \in x \cap y$ and $c \neq d$. So

$$
\sum_{c \in C} a_{v, c}^{x} b_{v, c}^{y}=1
$$

The C＊－algebra of a variable assignment game

Proof continued

Thus，if $\xi \in \mathcal{H}$ is a unit vector，then

$$
\sum_{c \in C}\langle\xi| a_{v, c}^{x} b_{v, c}^{y}|\xi\rangle=\sum_{c \in C}\langle\xi| a_{v, c}^{*} a_{v, c}|\xi\rangle=\sum_{c \in C}\langle\xi| b_{v, c}^{*} b_{v, c}|\xi\rangle=1
$$

The C＊－algebra of a variable assignment game

Proof continued

Thus，if $\xi \in \mathcal{H}$ is a unit vector，then

$$
\sum_{c \in C}\langle\xi| a_{v, c}^{x} b_{v, c}^{y}|\xi\rangle=\sum_{c \in C}\langle\xi| a_{v, c}^{*} a_{v, c}|\xi\rangle=\sum_{c \in C}\langle\xi| b_{v, c}^{*} b_{v, c}|\xi\rangle=1
$$

So $\beta=\left(b_{v, c}^{y} \xi\right)_{c \in C}$ and $\alpha=\left(a_{v, c}^{x} \xi\right)_{c \in C}$ are unit vectors in $\oplus_{c \in C} \mathcal{H}$ with $\langle\alpha \mid \beta\rangle=1$ ；thus $\alpha=\beta$ ．

The C＊－algebra of a variable assignment game

Proof continued

Thus，if $\xi \in \mathcal{H}$ is a unit vector，then

$$
\sum_{c \in C}\langle\xi| a_{v, c}^{x} b_{v, c}^{y}|\xi\rangle=\sum_{c \in C}\langle\xi| a_{v, c}^{*} a_{v, c}|\xi\rangle=\sum_{c \in C}\langle\xi| b_{v, c}^{*} b_{v, c}|\xi\rangle=1
$$

So $\beta=\left(b_{v, c}^{y} \xi\right)_{c \in C}$ and $\alpha=\left(a_{v, c}^{x} \xi\right)_{c \in C}$ are unit vectors in $\oplus_{c \in C} \mathcal{H}$ with $\langle\alpha \mid \beta\rangle=1$ ；thus $\alpha=\beta$ ．

Hence $a_{v, c}^{x}=b_{v, c}^{y}$ for every $v \in x \cap y$ and $c \in C$ ．

The C*-algebra of a variable assignment game

Proof continued

Thus, if $\xi \in \mathcal{H}$ is a unit vector, then

$$
\sum_{c \in C}\langle\xi| a_{v, c}^{x} b_{v, c}^{y}|\xi\rangle=\sum_{c \in C}\langle\xi| a_{v, c}^{*} a_{v, c}|\xi\rangle=\sum_{c \in C}\langle\xi| b_{v, c}^{*} b_{v, c}|\xi\rangle=1 .
$$

So $\beta=\left(b_{v, c}^{y} \xi\right)_{c \in C}$ and $\alpha=\left(a_{v, c}^{x} \xi\right)_{c \in C}$ are unit vectors in $\oplus_{c \in C} \mathcal{H}$ with $\langle\alpha \mid \beta\rangle=1$; thus $\alpha=\beta$.
Hence $a_{v, c}^{x}=b_{v, c}^{y}$ for every $v \in x \cap y$ and $c \in C$.
Thus $a_{v, c}^{x}=a_{v, c}^{x^{\prime}}=a_{v, c}$ for any $x, x^{\prime} \in X, v \in x \cap x^{\prime}$ and $c \in C$. Hence the map

$$
e_{V, c} \mapsto a_{v, c}
$$

extends to a *-hom. $\rho: \mathfrak{C}(\mathcal{G}) \rightarrow C^{*}(\mathcal{G})$ with $\rho \circ \pi=\pi \circ \rho=\mathrm{id}$.

Linear BCS games

Cleve-Liu-Slofstra: BCS \mathcal{S} with constraints
$f:\{1,-1\}^{W} \rightarrow\{1,-1\}$ of the form

$$
f\left(\left(\lambda_{v}\right)_{v \in W}\right)=(-1)^{\rho} \prod_{v \in W} \lambda_{v}, \quad \text { where } \rho \in\{0,1\}
$$

The solution group $\Gamma(\mathcal{S})$ associated to such a linear BCS is generated by involutions u_{1}, \ldots, u_{n}, J subject to the relations:

- J commutes with u_{1}, \ldots, u_{n};
- u_{v}, u_{w} commute whenever the constraint $(-1)^{\rho} \prod_{i \in x} \lambda_{i}=1$ belongs to the system with $v, w \in x$, in which case $J^{\rho} \prod_{i \in x} u_{i}=1$.
Let $\mathcal{G}_{\mathcal{S}}$ be the corresponding BCS game.

Proposition

$$
C^{*}\left(\mathcal{G}_{\mathcal{S}}\right) \cong C^{*}(\Gamma(\mathcal{S})) /\langle J+1\rangle .
$$

Quantum commuting strategies for imitation games

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be an imitation game and

$$
p: A \times B \times X \times Y \rightarrow[0,1]
$$

be a non-signalling correlation. The following are equivalent:

- $p \in \mathcal{C}_{\mathrm{qc}}(\lambda)$;
- $C^{*}(\mathcal{G})$ is non-zero, and there exists a tracial state

$$
\tau: C^{*}(\mathcal{G}) \rightarrow \mathbb{C}
$$

such that

$$
p(a, b \mid x, y)=\tau\left(p_{x, a} q_{y, b}\right), \quad \text { for all } x, y, a, b
$$

Quantum spacial strategies for imitation games

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be an imitation game and

$$
p: A \times B \times X \times Y \rightarrow[0,1]
$$

be a non-signalling correlation. The following are equivalent:

- $p \in \mathcal{C}_{\mathrm{qs}}(\lambda)$;
- $p \in \mathcal{C}_{\mathrm{q}}(\lambda)$;
- $C^{*}(\mathcal{G})$ is non-zero, and there exists a finite dimensional C*-algebra \mathcal{M} with a tracial state τ and a unital *-homomorphism $\pi: C^{*}(\mathcal{G}) \rightarrow \mathcal{M}$ such that

$$
p(a, b \mid x, y)=(\tau \circ \pi)\left(p_{x, a} q_{y, b}\right) .
$$

Ingredients of the proof

- A spacial winning strategy for \mathcal{G} has the form

$$
p(a, b \mid x, y)=\left\langle\left(P_{x, a} \otimes Q_{y, b}\right) \xi, \xi\right\rangle
$$

for some PVM's $\left(P_{x, a}\right)_{a \in A}$ and $\left(Q_{y, b}\right)_{b \in B}$ on H and K and a unit vector $\xi \in H \otimes K$.

- Use Schmidt decomposition to write

$$
\xi=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i} \otimes \psi_{i}
$$

where $\left(\phi_{i}\right)_{i \in \mathbb{N}}$ and $\left(\psi_{i}\right)_{i \in \mathbb{N}}$ are orthonormal families.

- For a given α, set $I_{\alpha}=\left\{i: \alpha_{i}=\alpha\right\}, H_{\alpha}=\operatorname{span}\left\{\phi_{i}: i \in I_{\alpha}\right\}$, $K_{\alpha}=\operatorname{span}\left\{\psi_{i}: i \in I_{\alpha}\right\}$.
- for $x \in X, b \in B, y \in Y$, let

$$
\Pi_{y, b}^{x}=\sum_{a \in A, \lambda(x, y, a, b)=1} P_{x, a}
$$

Ingredients of the proof

- Show that $\left(\Pi_{y, b}^{x} \otimes I\right) \xi=\left(I \otimes Q_{y, b}\right) \xi$.
- Show that $\Pi_{y, b}^{x}$ leave H_{α} invariant, $P_{x, a}$ leave H_{α} invariant, and
$H_{\alpha}=\operatorname{span}\left\{\Pi_{y, b}^{x} \phi_{i}: i \in I_{\alpha}, y, b, x\right\}=\operatorname{span}\left\{P_{x, a} \phi_{i}: i \in I_{\alpha}, x, a\right\}$.
- Letting $\Pi_{y, b}^{x, \alpha}$ be the restriction of $\Pi_{y, b}^{x}$ to H_{α}, and similarly for $P_{x, a}^{\alpha}$, show that $\Pi_{y, b}^{x, \alpha}$ does not depend on x, so set $\Pi_{y, b}^{\alpha}=\Pi_{y, b}^{x, \alpha}$.
- For each α, the families $\left\{P_{x, a}^{\alpha}\right\}$ and $\left\{\Pi_{y, b}^{\alpha}\right\}$ determine a *-representation π_{α} of $C^{*}(\mathcal{G})$ into $\mathcal{B}\left(\mathbb{C}^{\left|I_{\alpha}\right|}\right)$.
- In addition,

$$
p(a, b \mid x, y)=\sum_{\alpha} \mu_{\alpha}\left(\tau_{\alpha} \circ \pi_{\alpha}\right)\left(P_{x, a}^{\alpha} \Pi_{y, b}^{\alpha}\right)
$$

- Use the fact that in finite dimensional vector spaces every infinite convex combination of vectors is a finite one.

Local strategies for imitation games

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be an imitation game and

$$
p: A \times B \times X \times Y \rightarrow[0,1]
$$

be a non-signalling correlation. The following are equivalent:

- $p \in \mathcal{C}_{\text {loc }}(\lambda)$;
- $C^{*}(\mathcal{G})$ is non-zero, and there exists a finite dimensional abelian C*-algebra \mathcal{D} with a tracial state τ and a unital *-homomorphism $\pi: C^{*}(\mathcal{G}) \rightarrow \mathcal{D}$ such that

$$
p(a, b \mid x, y)=(\tau \circ \pi)\left(p_{x, a} q_{y, b}\right)
$$

The operator system $\mathcal{S}(X, A)$

What can we say for general games?

The operator system $\mathcal{S}(X, A)$

What can we say for general games?
Recall that $\mathcal{A}(X, A)$ is the universal C^{*}-algebra generated by projections $e_{x, a}, x \in X, a \in A$, subject to the relations

$$
\sum_{a \in A} e_{x, a}=1, \quad x \in X
$$

We define

$$
\mathcal{S}_{X, A}=\operatorname{span}\left\{e_{x, a}: x \in X, a \in A\right\} .
$$

$\mathcal{S}_{X, A}$ is an operator system, its matrix order structure being inherited from $\mathcal{A}(X, A)$.

Reason for passing to $\mathcal{S}_{X, A}$: richer tensor theory.

Tensor products of operator systems

Let \mathcal{S} and \mathcal{T} be operator systems and $\mathcal{S} \otimes \mathcal{T}$ be the vector space tensor product.

- The minimal tensor product: $\mathcal{S} \otimes_{\min } \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$.
- The commuting tensor product: $X \in M_{n}\left(\mathcal{S} \otimes_{\mathrm{c}} \mathcal{T}\right)^{+}$if $(\phi \cdot \psi)^{(n)}(X) \geq 0$ for all $\mathrm{cp} \phi: \mathcal{S} \rightarrow \mathcal{B}(H)$ and $\psi: \mathcal{T} \rightarrow \mathcal{B}(H)$ with commuting ranges. Here $(\phi \cdot \psi)(x \otimes y)=\phi(x) \psi(y)$.
- The maximal tensor product: $M_{n}\left(\mathcal{S} \otimes_{\max } \mathcal{T}\right)^{+}$is the Archimedeanisation of the cone of $A^{*}(X \otimes Y) A$, where $X \in M_{k}(\mathcal{S})^{+}, Y \in M_{l}(\mathcal{T})^{+}, A \in M_{k l, n}(\mathbb{C})$.
$\mathcal{S} \otimes_{\max } \mathcal{T} \rightarrow \mathcal{S} \otimes_{\mathrm{c}} \mathcal{T} \rightarrow \mathcal{S} \otimes_{\text {min }} \mathcal{T}$ completely positive.

Winning strategies for general non-local games

For $s \in\left(\mathcal{S}_{X, A} \otimes \mathcal{S}_{Y, B}\right)^{\mathrm{d}}$, set

$$
p_{s}(a, b \mid x, y)=s\left(e_{x, a} \otimes e_{y, b}\right), \quad(x, y) \in X \times Y,(a, b) \in A \times B .
$$

The collection p_{s} is non-signalling.
Conversely, given a non-signalling p, let $s_{p} \in\left(\mathcal{S}_{X, A} \otimes \mathcal{S}_{Y, B}\right)^{\mathrm{d}}$ be given by

$$
s_{p}\left(e_{x, a} \otimes e_{y, b}\right)=p(a, b \mid x, y), \quad(x, y) \in X \times Y,(a, b) \in A \times B
$$

$p \rightarrow s_{p}$ is a bijection between $\left(\mathcal{S}_{X, A} \otimes \mathcal{S}_{Y, B}\right)^{\mathrm{d}}$ and the set of all non-signalling collections on (X, Y, A, B).

Winning strategies for general non-local games

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a non-local game.

$$
J(\lambda)=\operatorname{span}\left\{e_{x, a} \otimes e_{y, b}: \lambda(x, y, a, b)=0\right\} \subseteq \mathcal{S}_{X, A} \otimes \mathcal{S}_{Y, B} .
$$

For $\tau \in\{\max , \mathrm{c}, \min \}$ and $J \subseteq \mathcal{S}_{X, A} \otimes \mathcal{S}_{Y, B}$, let

$$
\mathcal{P}_{\tau}(J)=\left\{s \in\left(\mathcal{S}_{X, A} \otimes_{\tau} \mathcal{S}_{Y, B}\right)^{d}: \text { a state with } J \subseteq \operatorname{ker}(s)\right\} .
$$

Theorem

The map $p \rightarrow s_{p}$ is a continuous affine isomorphism between
(i) $\mathcal{C}_{\text {ns }}(\lambda)$ and $\mathcal{P}_{\text {max }}(J(\lambda))$;
(ii) $\mathcal{C}_{\mathrm{qc}}(\lambda)$ and $\mathcal{P}_{\mathrm{c}}(J(\lambda))$;
(iii) $\mathcal{C}_{\mathrm{qa}}(\lambda)$ and $\mathcal{P}_{\text {min }}(J(\lambda))$;
\rightsquigarrow a complete description of the classes of non-signalling correlations (trivial game) via states on op. sys, tensor products.

Harder games

For $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$, let

$$
N(\lambda)=\{(x, y, a, b): \lambda(x, y, a, b)=0\} .
$$

Harder games

For $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$, let

$$
N(\lambda)=\{(x, y, a, b): \lambda(x, y, a, b)=0\} .
$$

If $\mathcal{G}_{1}=\left(X, Y, A, B, \lambda_{1}\right)$ and $\mathcal{G}_{2}=\left(X, Y, A, B, \lambda_{2}\right)$ are games, we say that
\mathcal{G}_{1} is harder than \mathcal{G}_{2} if $\lambda_{1} \leq \lambda_{2}$, that is, if $N\left(\lambda_{2}\right) \subseteq N\left(\lambda_{1}\right)$.

Harder games

For $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$, let

$$
N(\lambda)=\{(x, y, a, b): \lambda(x, y, a, b)=0\} .
$$

If $\mathcal{G}_{1}=\left(X, Y, A, B, \lambda_{1}\right)$ and $\mathcal{G}_{2}=\left(X, Y, A, B, \lambda_{2}\right)$ are games, we say that
\mathcal{G}_{1} is harder than \mathcal{G}_{2} if $\lambda_{1} \leq \lambda_{2}$, that is, if $N\left(\lambda_{2}\right) \subseteq N\left(\lambda_{1}\right)$.
For $\Sigma \subseteq \mathcal{C}_{\mathrm{ns}}$, let

$$
\lambda_{\Sigma}: X \times Y \times A \times B \rightarrow\{0,1\}
$$

be defined by

$$
N\left(\lambda_{\Sigma}\right)=\cap_{p \in \Sigma} N(p)
$$

Harder games

For $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$, let

$$
N(\lambda)=\{(x, y, a, b): \lambda(x, y, a, b)=0\} .
$$

If $\mathcal{G}_{1}=\left(X, Y, A, B, \lambda_{1}\right)$ and $\mathcal{G}_{2}=\left(X, Y, A, B, \lambda_{2}\right)$ are games, we say that
\mathcal{G}_{1} is harder than \mathcal{G}_{2} if $\lambda_{1} \leq \lambda_{2}$, that is, if $N\left(\lambda_{2}\right) \subseteq N\left(\lambda_{1}\right)$.
For $\Sigma \subseteq \mathcal{C}_{\text {ns }}$, let

$$
\lambda_{\Sigma}: X \times Y \times A \times B \rightarrow\{0,1\}
$$

be defined by

$$
N\left(\lambda_{\Sigma}\right)=\cap_{p \in \Sigma} N(p)
$$

λ_{Σ} is the rule function of the hardest game for which every element of Σ is a winning strategy.

Winning harder games with no extra effort

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a game. Set $\lambda_{\mathrm{x}}=\lambda_{\mathcal{C}_{\mathrm{x}}(\lambda)}$; thus,

$$
\lambda_{\mathrm{x}}(x, y, a, b)=0 \Longleftrightarrow p(a, b \mid x, y)=0 \text { for every } p \in \mathcal{C}_{\mathrm{x}}(\lambda) .
$$

Winning harder games with no extra effort

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a game. Set $\lambda_{\mathrm{x}}=\lambda_{\mathcal{C}_{\mathrm{x}}(\lambda)}$; thus,

$$
\lambda_{\mathrm{x}}(x, y, a, b)=0 \Longleftrightarrow p(a, b \mid x, y)=0 \text { for every } p \in \mathcal{C}_{\mathrm{x}}(\lambda) .
$$

Note the inequalities

$$
\lambda_{\mathrm{loc}} \leq \lambda_{\mathrm{q}} \leq \lambda_{\mathrm{qs}} \leq \lambda_{\mathrm{qa}} \leq \lambda_{\mathrm{qc}} \leq \lambda_{\mathrm{ns}} \leq \lambda
$$

Set

$$
\operatorname{Ref}_{\mathrm{x}}(\mathcal{G})=\left(X, Y, A, B, \lambda_{\mathrm{x}}\right)
$$

and call it the reflexive x-cover of \mathcal{G}.
Call \mathcal{G} x-reflexive if $\operatorname{Ref}_{\mathrm{x}}(\mathcal{G})=\mathcal{G}$.

Example

Consider the graph colouring game for the graph $G=\{(1,2),(2,3),(3,4)\}$. Then every 2 -colouring of G is also a 2 -colouring of the 4 -cycle.

Winning strategies for reflexive games

Theorem

The spaces $J_{\mathrm{x}}(\lambda)$ are kernels, and
(i) the winning strategies for $\operatorname{Ref}_{\mathrm{ns}}(\mathcal{G})$ are in one-to-one correspondence with the states of $\left(\mathcal{S}_{X, A} \otimes_{\max } \mathcal{S}_{Y, B}\right) / J_{\max }(\lambda)$;
(ii) the winning strategies for $\operatorname{Ref}_{\mathrm{qc}}(\mathcal{G})$ are in one-to-one correspondence with the states of $\left(\mathcal{S}_{X, A} \otimes_{\mathrm{C}} \mathcal{S}_{Y, B}\right) / J_{\mathrm{c}}(\lambda)$;
(iii) the winning strategies for $\operatorname{Ref}_{\text {qa }}(\mathcal{G})$ are in one-to-one correspondence with the states of $\left(\mathcal{S}_{X, A} \otimes_{\min } \mathcal{S}_{Y, B}\right) / J_{\text {min }}(\lambda)$.

Mirror games

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a game. Recall $E_{x, y}^{a}=\{b \in B: \lambda(x, y, a, b)=1\}$ and $E_{x, y}^{b}=\{a \in A: \lambda(x, y, a, b)=1\}$.
\mathcal{G} is a mirror game if there exist functions

$$
\xi: X \rightarrow Y \text { and } \eta: Y \rightarrow X
$$

such that

$$
E_{x, \xi(x)}^{a} \cap E_{x, \xi(x)}^{a^{\prime}}=\emptyset, \quad x \in X, \quad a \neq a^{\prime}
$$

and

$$
E_{\eta(y), y}^{b} \cap E_{\eta(y), y}^{b^{\prime}}=\emptyset, \quad y \in Y, \quad b \neq b^{\prime}
$$

Quantum commuting strategies revisited

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a mirror game, $p \in \mathcal{C}_{\mathrm{qc}}(\lambda)$ and $s \in S\left(\mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)\right)$ be such that $p=p_{s}$. Then
(i) the functional $\tau: \mathcal{A}(X, A) \rightarrow \mathbb{C}$ given by $\tau(z)=s(z \otimes 1)$, $z \in \mathcal{A}(X, A)$, is a tracial state, and
(ii) there exists a set $\mathcal{Q}=\left\{q_{y, b}: y \in Y, b \in B\right\}$ of projections in $\mathcal{A}(X, A)$ such that $\sum_{b \in B} q_{y, b}=1$ for all $y \in Y$, and

$$
p(a, b \mid x, y)=\tau\left(e_{x, a} q_{y, b}\right), \quad x \in X, y \in Y, a \in A, b \in B .
$$

Quantum commuting strategies revisited

Theorem

Let $\mathcal{G}=(X, Y, A, B, \lambda)$ be a mirror game, $p \in \mathcal{C}_{\text {qc }}(\lambda)$ and $s \in S\left(\mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)\right)$ be such that $p=p_{s}$. Then
(i) the functional $\tau: \mathcal{A}(X, A) \rightarrow \mathbb{C}$ given by $\tau(z)=s(z \otimes 1)$, $z \in \mathcal{A}(X, A)$, is a tracial state, and
(ii) there exists a set $\mathcal{Q}=\left\{q_{y, b}: y \in Y, b \in B\right\}$ of projections in $\mathcal{A}(X, A)$ such that $\sum_{b \in B} q_{y, b}=1$ for all $y \in Y$, and

$$
p(a, b \mid x, y)=\tau\left(e_{x, a} q_{y, b}\right), \quad x \in X, y \in Y, a \in A, b \in B .
$$

For $s \in S\left(\mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)\right)$ we get precisely amenable traces.

A Hilbert-space-free proof

We may assume that

$$
\cup_{a \in A} E_{x, \xi(x)}^{a}=B \text { and } \cup_{b \in B} E_{\eta(y), y}^{b}=A, \quad x \in X, y \in Y
$$

A Hilbert-space-free proof

We may assume that

$$
\cup_{a \in A} E_{x, \xi(x)}^{a}=B \text { and } \cup_{b \in B} E_{\eta(y), y}^{b}=A, \quad x \in X, y \in Y
$$

For $x \in X, y \in Y, a \in A$ and $b \in B$, let

$$
p_{x, a}=\sum_{b \in E_{x, \xi(x)}^{a}} f_{\xi(x), b}, \quad q_{y, b}=\sum_{a \in E_{\eta(y), y}^{b}} e_{\eta(y), a} .
$$

A Hilbert-space-free proof

We may assume that

$$
\cup_{a \in A} E_{x, \xi(x)}^{a}=B \text { and } \cup_{b \in B} E_{\eta(y), y}^{b}=A, \quad x \in X, y \in Y
$$

For $x \in X, y \in Y, a \in A$ and $b \in B$, let

$$
p_{x, a}=\sum_{b \in E_{x, \xi(x)}^{a}} f_{\xi(x), b}, \quad q_{y, b}=\sum_{a \in E_{\eta(y), y}^{b}} e_{\eta(y), a} .
$$

For $u_{1}, u_{2} \in \mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)$, write

$$
u_{1} \sim u_{2} \text { if } s\left(u_{1}-u_{2}\right)=0 .
$$

Then \sim is an equivalence relation.

Proof continued

Fix $x \in X$ and $a \in A$. Then

$$
\begin{aligned}
s\left(e_{x, a} \otimes 1\right) & =\sum_{b \in B} s\left(e_{x, a} \otimes f_{\xi(x), b}\right)=\sum_{b \in E_{x, \xi(x)}^{a}} s\left(e_{x, a} \otimes f_{\xi(x), b}\right) \\
& =s\left(e_{x, a} \otimes p_{x, a}\right)
\end{aligned}
$$

Proof continued

Fix $x \in X$ and $a \in A$. Then

$$
\begin{aligned}
s\left(e_{x, a} \otimes 1\right) & =\sum_{b \in B} s\left(e_{x, a} \otimes f_{\xi(x), b}\right)=\sum_{b \in E_{x, \xi(x)}^{a}} s\left(e_{x, a} \otimes f_{\xi(x), b}\right) \\
& =s\left(e_{x, a} \otimes p_{x, a}\right) .
\end{aligned}
$$

If $a^{\prime} \neq a$ then

$$
E_{x, \xi(x)}^{a^{\prime}} \cap E_{x, \xi(x)}^{a}=\emptyset
$$

so $s\left(e_{x, a^{\prime}} \otimes f_{\xi(x), b}\right)=0$ whenever $b \in E_{x, \xi(x)}^{a}$.
Thus

$$
s\left(e_{x, a^{\prime}} \otimes p_{x, a}\right)=\sum_{b \in E_{x, \xi(x)}^{a}} s\left(e_{x, a^{\prime}} \otimes f_{\xi(x), b}\right)=0
$$

Proof continued

$$
\Longrightarrow \quad s\left(1 \otimes p_{x, a}\right)=\sum_{a^{\prime} \in A} s\left(e_{x, a^{\prime}} \otimes p_{x, a}\right)=s\left(e_{x, a} \otimes p_{x, a}\right) .
$$

Proof continued

$$
\begin{aligned}
& \Longrightarrow \quad s\left(1 \otimes p_{x, a}\right)=\sum_{a^{\prime} \in A} s\left(e_{x, a^{\prime}} \otimes p_{x, a}\right)=s\left(e_{x, a} \otimes p_{x, a}\right) . \\
& \Longrightarrow \quad e_{x, a} \otimes 1 \sim e_{x, a} \otimes p_{x, a} \sim 1 \otimes p_{x, a}, \quad x \in X, a \in A .
\end{aligned}
$$

Proof continued

$$
\begin{aligned}
& \Longrightarrow \quad s\left(1 \otimes p_{x, a}\right)=\sum_{a^{\prime} \in A} s\left(e_{x, a^{\prime}} \otimes p_{x, a}\right)=s\left(e_{x, a} \otimes p_{x, a}\right) . \\
& \Longrightarrow \quad e_{x, a} \otimes 1 \sim e_{x, a} \otimes p_{x, a} \sim 1 \otimes p_{x, a}, \quad x \in X, a \in A .
\end{aligned}
$$

Set $h_{x, a}=e_{x, a} \otimes 1-1 \otimes p_{x, a}$. Then $h_{x, a}=h_{x, a}^{*}$ and

$$
h_{x, a}^{2}=e_{x, a} \otimes 1-e_{x, a} \otimes p_{x, a}-e_{x, a} \otimes p_{x, a}+1 \otimes p_{x, a} ;
$$

thus,

$$
h_{x, a}^{2} \sim 0 .
$$

Proof continued

The Cauchy-Schwarz inequality implies

$$
u h_{x, a} \sim 0 \text { and } h_{x, a} u \sim 0, \quad x \in X, a \in A
$$

for every $u \in \mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)$.

Proof continued

The Cauchy-Schwarz inequality implies

$$
u h_{x, a} \sim 0 \text { and } h_{x, a} u \sim 0, \quad x \in X, a \in A
$$

for every $u \in \mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)$.
In particular,
$z e_{x, a} \otimes 1 \sim z \otimes p_{x, a} \sim e_{x, a} z \otimes 1, \quad x \in X, a \in A, z \in \mathcal{A}(X, A)$.

Proof continued

The Cauchy-Schwarz inequality implies

$$
u h_{x, a} \sim 0 \text { and } h_{x, a} u \sim 0, \quad x \in X, a \in A
$$

for every $u \in \mathcal{A}(X, A) \otimes_{\max } \mathcal{A}(Y, B)$.
In particular,
$z e_{x, a} \otimes 1 \sim z \otimes p_{x, a} \sim e_{x, a} z \otimes 1, \quad x \in X, a \in A, z \in \mathcal{A}(X, A)$.
Similarly,
$z q_{y, b} \otimes 1 \sim z \otimes f_{y, b} \sim q_{y, b} z \otimes 1, \quad y \in Y, b \in B, z \in \mathcal{A}(X, A)$.

Proof continued

Let z and w be words on $\mathcal{E}:=\left\{e_{x, a}: x \in X, a \in A\right\}$. We show that

$$
z w \otimes 1 \sim w z \otimes 1
$$

from where it follows that τ is a trace.

Proof continued

Let z and w be words on $\mathcal{E}:=\left\{e_{x, a}: x \in X, a \in A\right\}$. We show that

$$
z w \otimes 1 \sim w z \otimes 1
$$

from where it follows that τ is a trace.
Induction on $|w|$: for $|w|=1$, the claim is already proved.

Proof continued

Let z and w be words on $\mathcal{E}:=\left\{e_{x, a}: x \in X, a \in A\right\}$. We show that

$$
z w \otimes 1 \sim w z \otimes 1
$$

from where it follows that τ is a trace.
Induction on $|w|$: for $|w|=1$, the claim is already proved.
Let $|w|=n$ and write $w=w^{\prime} e$, where $e \in \mathcal{E}$. Then

$$
z w \otimes 1=z w^{\prime} e \otimes 1 \sim e z w^{\prime} \otimes 1 \sim w^{\prime} e z \otimes 1=w z \otimes 1 .
$$

Thank you very much!

