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Non-signalling correlations

Let X , Y , A and B be finite sets.

Alice (resp. Bob) receives an input x (resp. y) drawn from the set
X (resp. Y ) and produces an output a (resp. b) from the set A
(resp. B).

The statistics of the answers is observed.
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Non-signalling correlations

Let p(a, b|x , y) be the probability that the pair (a, b) is produced,
given the input pair (x , y).

For a fixed (x , y), the tuple (p(a, b|x , y))(a,b)∈A×B is a probability
distribution on A× B.

We assume that A and B do not communicate: expressed by the
fact that the marginal distributions are well-defined:

p(a|x) =
∑
b∈B

p(a, b|x , y), p(b|y) =
∑
a∈A

p(a, b|x , y).

A non-signalling (NS) correlation is a family

{(p(a, b|x , y))(a,b)∈A×B : x ∈ X , y ∈ Y }

of probability distributions satisfying these conditions.

Notation: Cns.
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Classes of NS correlations

A correlation p is called

deterministic if there exist functions f : X → A and
g : Y → B such that

p(a, b|x , y) = 1 if and only if a = f (x) and b = g(y).

Notation: Cdet.

local if

p(a, b|x , y) =
m∑

k=1

λkp
k
1 (a|x)pk2 (b|y),

for some probability distributions pk1 , pk2 , and non-negative
reals λ1, . . . , λm with sum 1.

Notation: Cloc.
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Classes of NS correlations

quantum if

p(a, b|x , y) = 〈(Ex ,a ⊗ Fy ,b)η, η〉,

where (Ex ,a)ca=1 (resp. (Fy ,b)cb=1) is a PVM on a finite
dimensional Hilbert space.

Notation: Cq.

spacially quantum if

p(a, b|x , y) = 〈(Ex ,a ⊗ Fy ,b)η, η〉,

where (Ex ,a)ca=1 (resp. (Fy ,b)cb=1) is a PVM on a (perhaps
infinite dimensional) Hilbert space.

Notation: Cqs.
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Classes of NS correlations

approximately quantum if p ∈ Cq.

Notation: Cqa.

quantum commuting if

p(a, b|x , y) := 〈Ex ,aFy ,bη, η〉,

where (Ex ,a)ca=1 and (Fy ,b)cb=1 are commuting POVM’s on a
Hilbert space.

Notation: Cqc.

Cdet ⊆ Cloc ⊆ Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc ⊆ Cns
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Non-local games

A non-local game is a tuple G = (X ,Y ,A,B, λ), where

X and Y are input sets for players Alice and Bob, respectively;

A and B are output sets for players Alice and Bob,
respectively, and

λ : X × Y × A× B → {0, 1} is a rule function.

Alice and Bob play cooperatively against a verifier R.

Upon receiving inputs (x , y), Alice and Bob reply with certain
outputs (a, b).

They win if λ(x , y , a, b) = 1, and lose otherwise.

Alice and Bob know the rule function but are not allowed to
communicate after the game commences. However, they are
allowed to decide on a joint strategy beforehand.
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Strategies for non-local games

A deterministic strategy is given by two functions f : X → A and
g : Y → B.

It is a perfect (or winning) strategy if

λ(x , y , f (x), g(y)) = 1, x ∈ X , y ∈ Y .

However, Alice and Bob may employ randomness in their choices
of outputs, deciding their outputs according to a probability
distribution.

Let p(a, b|x , y) be the probability that Alice and Bob give outputs
(a, b) when they are given inputs (x , y).

Then p(·, ·|x , y) is a probability distribution for each pair (x , y),
and since the players are not allowed to communicate, the family p
is non-signalling.
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Winning strategies for non-local games

Definition

Let x ∈ {det, loc, q, qs, qa, qc,ns}.

A winning, or perfect, x-strategy for a game G = (X ,Y ,A,B, λ) is
an element p ∈ Cx such that

λ(x , y , a, b) = 0 =⇒ p(a, b|x , y) = 0.

Cx(λ): the set of all perfect x-strategies for G = (X ,Y ,A,B, λ).

The elements of Cloc(λ) are called classical winning strategies.
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Examples of non-local games

The synchronicity game has X = Y , A = B, and
λ(x , y , a, b) = 0 if and only if x = y and a 6= b.

A synchronous game has X = Y , A = B, and
λ(x , y , a, b) = 0 provided x = y and a 6= b.

Let G = (V (G ),E (G )) be a graph. The graph colouring
game for G has X = Y = V (G ), A = B, and λ(x , y , a, b) = 1
unless

either x = y and a 6= b, or (x , y) ∈ E (G ) and a = b.

Let G and H be graphs. The graph homomorphism game
G → H has X = Y = V (G ), A = B = V (H), and
λ(x , y , a, b) = 1 unless

either x = y and a 6= b, or (x , y) ∈ E (G ) and (a, b) 6∈ E (H).

The graph isomorphism game G ' H.
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Winning classically vs quantumly

Games that can be won using a quantum strategy only:

Colouring the Hadamard graph ΩN on {1,−1}N using
N colours (Avis-Hasegawa-Kikuchi-Sasaki).

(v ,w) is an edge if and only if v · w = 0.

Filling successfully the Mermin-Peres magic square.

Alice receives a row of a 3 by 3 square, Bob a column, and

they are required to assign 1 or −1 to the entries, the

product of Alice’s entries being 1, the product of Bob’s

entries being -1, and assigning the same value to the

common entry of the selected row and column.
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The C*-algebra A(X ,A)

We let A(X ,A) be the free product of |X | copies of `∞(A),
amalgamated over the unit:

A(X ,A) = `∞(A) ∗1 · · · ∗1 `
∞(A)︸ ︷︷ ︸

|X | times

.

Let ex ,a be the canonical basis vectors of the x-th copy of `∞(A).

Thus, ex ,a is a projection in A(X ,A) for all x ∈ X and all a ∈ A,
and ∑

a∈A
ex ,a = 1, x ∈ X .

A dense spanning set for A(X ,A) is formed by the words
ex1,a1 . . . exk ,ak .
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Representations of synchronous correlations

Let τ : A(X ,A)→ C be a trace. Setting

p(a, b|x , y) = τ(ex ,aey ,b), x , y ∈ X , a, b ∈ A,

we obtain a winning qc-strategy for the synchronicity game.

The converse is also true:

Theorem (Severini-Stahlke-Paulsen-T-Winter)

If p is a winning qc-strategy for the synchronicity game then there
exists a trace τ on A(X ,A) such that

p(a, b|x , y) = τ(ex ,aey ,b), x , y ∈ X , a, b ∈ A.

Write p = pτ .
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Representations of synchronous correlations

Theorem (Kim-Paulsen-Schafhauser, S-S-P-T-W)

Suppose that p ∈ Cqc is a synchronous correlation.

p ∈ Cqa if and only if there exists an amenable trace
τ : A(X ,A)→ C with p = pτ ;

p ∈ Cq if and only if there exists a finite dimensional
*-representation π : A(X ,A)→M and a trace τ ′ :M→ C
such that p = pτ , where τ = τ ′ ◦ π;

p ∈ Cloc if and only if there exists an abelian *-representation
π : A(X ,A)→ D and a trace τ ′ : D → C such that p = pτ ,
where τ = τ ′ ◦ π.
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Imitation games – definition

Definition

G = (X ,Y ,A,B, λ) is called an imitation game if

for every x ∈ X and a, a′ ∈ A with a 6= a′, there exists y ∈ Y
such that ∑

b∈B
λ (a, b|x , y)λ

(
a′, b|x , y

)
= 0;

for every y ∈ Y and b, b′ ∈ B with b 6= b′, there exists x ∈ X
such that ∑

a∈A
λ (a, b|x , y)λ

(
a, b′|x , y

)
= 0.
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Imitation games – definition

Set
Ex ,y = {(a, b) ∈ A× B : λ(x , y , a, b) = 1},

E a
x ,y = {b ∈ B : λ(x , y , a, b) = 1},

and
Eb
x ,y = {a ∈ A : λ(x , y , a, b) = 1}.

For imitation games,

for all x ∈ X , and all possible answers a 6= a′ of Alice,
∃ y ∈ Y such that E a

x ,y ∩ E a′
x ,y = ∅, and

for all y ∈ X , and all possible answers b 6= b′ of Bob,
∃ x ∈ X such that Eb

x ,y ∩ Eb′
x ,y = ∅.

Thus, the answers Bob gives when he is asked y are “determined”
by the answers of Alice when asked x , and vice versa.
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Imitation games – examples

Every synchronous game is an imitation game. Indeed,
E a
x ,x = {a}, and so, given x ∈ X , we can take y = x , having

E a
x ,x ∩ E a′

x ,x = ∅.

G is called unique if, for every (x , y) ∈ X ×Y , the set Ex ,y (of
“allowed” pairs (a, b)) is the graph of a bijection f : A→ B.
Thus, E a

x ,y = {f (a)} and hence every unique game is an
imitation game.

G is called a mirror game if there exist functions ξ : X → Y
and η : Y → X such that

E a
x ,ξ(x) ∩ E a′

x ,ξ(x) = ∅, x ∈ X , a 6= a′,

and
Eb
η(y),y ∩ Eb′

η(y),y = ∅, y ∈ Y , b 6= b′.

Every mirror game is an imitation game.
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Imitation games – examples

Cleve-Mittal: a binary constraint system (BCS) game has
Y = {v1, . . . , vn}, a set of variables that take values in
{1,−1}.

A constraint is an equation f ((v)v∈V ) = 1, where V ⊆ Y and
f : {1,−1}V → {1,−1} is a function.

X is a set of constraints, say (Vx , fx), x ∈ X .

A = ∪x∈X{1,−1}Vx and B = {1,−1}.

Given x ∈ X , y ∈ Y , a ∈ A and b ∈ B, writing a = (az)z∈V ,
we let λ(x , y , a, b) = 1 precisely when

V = Vx , fx(a) = 1 and ay = b.

Every BCS game is an imitation game.
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Imitation games – examples

Let V be a set of n variables, and C be a finite set of possible
values of these variables.

In a variable assignment game upon V and C ,

X and Y are sets of subsets of V ;

for every v ∈ V there exist x ∈ X and y ∈ Y with v ∈ x ∩ y ;

A = B = ∪W⊆VCW .

λ(x , y , (av )v∈W , (bv )v∈W ′) = 1 implies that x = W , y = W ′

and av = bv for every v ∈ x ∩ y .

Example: Peres-Mermin square

Every variable assignment game is an imitation game.
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The C*-algebra of an imitation game

Let G = (X ,Y ,A,B, λ) be an imitation game.

The C*-algebra C ∗(G) of G is the universal unital C*-algebra
generated by elements (px ,a)x∈X ,a∈A and (qy ,b)y∈Y ,b∈B satisfying
the following relations:

1 for every x ∈ X , (px ,a)a∈A are pairwise orthogonal projections
with

∑
a∈A px ,a = 1;

2 for every y ∈ Y , (qy ,b)b∈B are pairwise orthogonal projections
with

∑
b∈A qy ,b = 1;

3 If λ(x , y , a, b) = 0 then px ,aqy ,b = 0.

Generalises the C*-algebra of a synchronous game (Ortiz-Paulsen,
Helton-Meyer-Paulsen-Satriano).

Description in special cases?
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The C*-algebra of a variable assignment game

Let G = (X ,Y ,A,B, λ) be a variable assignment game with a set
of variables V and a set of values C .

Let C(G) be the universal C*-algebra generated by projections ev ,c ,
with v ∈ V , c ∈ C , and with relations

1
∑

c∈C ev ,c = 1, v ∈ V ;

2 If v ,w ∈ x for some x ∈ X or v ,w ∈ y for some y ∈ Y , then
ev ,cew ,d = ew ,dev ,c for all c and d ;

3 If λ(x , y , (av )v∈x , (bw )w∈y ) = 0 then(∏
v∈x

ev ,av

)(∏
w∈y

ew ,bw

)
= 0.
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The C*-algebra of a variable assignment game

Theorem

Let G = (X ,Y ,A,B, λ) be a variable assignment game with a set
of variables V and a set of values C . Then C ∗(G) ∼= C(G)
canonically.

Proof

Consider the assignment

px ,(av )v∈V
7→
{ ∏

v∈x ev ,av if x = V ,
0 otherwise

and

qy ,(bv )v∈V
7→
{ ∏

v∈y ev ,av if y = V ,

0 otherwise
.

This assignment extends to a *-homomorphism π : C ∗(G)→ C(G).
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The C*-algebra of a variable assignment game

Proof continued

Suppose px ,(av )v∈x
and qy ,(bv )v∈y

are the canonical generators of

C ∗ (G). For x ∈ X , v ∈ x , y ∈ Y , w ∈ y , and c ∈ C , let

axv ,c =
∑

a∈C x ,av=c

px ,a, byw ,c =
∑

b∈C y ,bw=c

qy ,b.

Note
∑

c∈C axv ,c =
∑

d∈C byw ,d = 1, v ∈ x , w ∈ y .

Since we have that px ,aqy ,b = 0 whenever av 6= bv , we have that
axv ,cb

y
v ,d = 0 if v ∈ x ∩ y and c 6= d . So∑

c∈C
axv ,cb

y
v ,c = 1.
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The C*-algebra of a variable assignment game

Proof continued

Thus, if ξ ∈ H is a unit vector, then∑
c∈C

〈
ξ|axv ,cbyv ,c |ξ

〉
=
∑
c∈C

〈
ξ|a∗v ,cav ,c |ξ

〉
=
∑
c∈C

〈
ξ|b∗v ,cbv ,c |ξ

〉
= 1.

So β = (byv ,cξ)c∈C and α = (axv ,cξ)c∈C are unit vectors in ⊕c∈CH
with 〈α|β〉 = 1; thus α = β.

Hence axv ,c = byv ,c for every v ∈ x ∩ y and c ∈ C .

Thus axv ,c = ax
′

v ,c = av ,c for any x , x ′ ∈ X , v ∈ x ∩ x ′ and c ∈ C .
Hence the map

ev ,c 7→ av ,c

extends to a *-hom. ρ : C(G)→ C ∗(G) with ρ ◦ π = π ◦ ρ = id.
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Linear BCS games

Cleve-Liu-Slofstra: BCS S with constraints
f : {1,−1}W → {1,−1} of the form

f ((λv )v∈W ) = (−1)ρ
∏
v∈W

λv , where ρ ∈ {0, 1} .

The solution group Γ (S) associated to such a linear BCS is
generated by involutions u1, . . . , un, J subject to the relations:

J commutes with u1, . . . , un;

uv , uw commute whenever the constraint (−1)ρ
∏

i∈x λi = 1
belongs to the system with v ,w ∈ x , in which case
Jρ
∏

i∈x ui = 1.

Let GS be the corresponding BCS game.

Proposition

C ∗ (GS) ∼= C ∗(Γ(S))/〈J + 1〉.
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Quantum commuting strategies for imitation games

Theorem

Let G = (X ,Y ,A,B, λ) be an imitation game and

p : A× B × X × Y → [0, 1]

be a non-signalling correlation. The following are equivalent:

p ∈ Cqc(λ);

C ∗(G) is non-zero, and there exists a tracial state

τ : C ∗(G)→ C

such that

p(a, b|x , y) = τ(px ,aqy ,b), for all x , y , a, b.
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Quantum spacial strategies for imitation games

Theorem

Let G = (X ,Y ,A,B, λ) be an imitation game and

p : A× B × X × Y → [0, 1]

be a non-signalling correlation. The following are equivalent:

p ∈ Cqs(λ);

p ∈ Cq(λ);

C ∗(G) is non-zero, and there exists a finite dimensional
C*-algebra M with a tracial state τ and a unital
*-homomorphism π : C ∗(G)→M such that

p(a, b|x , y) = (τ ◦ π)(px ,aqy ,b).
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Ingredients of the proof

A spacial winning strategy for G has the form

p(a, b|x , y) = 〈(Px ,a ⊗ Qy ,b)ξ, ξ〉,

for some PVM’s (Px ,a)a∈A and (Qy ,b)b∈B on H and K and a
unit vector ξ ∈ H ⊗ K .

Use Schmidt decomposition to write

ξ =
∞∑
i=1

αiφi ⊗ ψi ,

where (φi )i∈N and (ψi )i∈N are orthonormal families.

For a given α, set Iα = {i : αi = α}, Hα = span{φi : i ∈ Iα},
Kα = span{ψi : i ∈ Iα}.
for x ∈ X , b ∈ B, y ∈ Y , let

Πx
y ,b =

∑
a∈A,λ(x ,y ,a,b)=1

Px ,a.
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Ingredients of the proof

Show that (Πx
y ,b ⊗ I )ξ = (I ⊗ Qy ,b)ξ.

Show that Πx
y ,b leave Hα invariant, Px ,a leave Hα invariant,

and

Hα = span{Πx
y ,bφi : i ∈ Iα, y , b, x} = span{Px ,aφi : i ∈ Iα, x , a}.

Letting Πx ,α
y ,b be the restriction of Πx

y ,b to Hα, and similarly for

Pαx ,a, show that Πx ,α
y ,b does not depend on x , so set

Πα
y ,b = Πx ,α

y ,b .

For each α, the families {Pαx ,a} and {Πα
y ,b} determine a

*-representation πα of C ∗(G) into B(C|Iα|).

In addition,

p(a, b|x , y) =
∑
α

µα(τα ◦ πα)(Pαx ,aΠα
y ,b).

Use the fact that in finite dimensional vector spaces every
infinite convex combination of vectors is a finite one.
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Local strategies for imitation games

Theorem

Let G = (X ,Y ,A,B, λ) be an imitation game and

p : A× B × X × Y → [0, 1]

be a non-signalling correlation. The following are equivalent:

p ∈ Cloc(λ);

C ∗(G) is non-zero, and there exists a finite dimensional
abelian C*-algebra D with a tracial state τ and a unital
*-homomorphism π : C ∗(G)→ D such that

p(a, b|x , y) = (τ ◦ π)(px ,aqy ,b).
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The operator system S(X ,A)

What can we say for general games?

Recall that A(X ,A) is the universal C*-algebra generated by
projections ex ,a, x ∈ X , a ∈ A, subject to the relations∑

a∈A
ex ,a = 1, x ∈ X .

We define
SX ,A = span{ex ,a : x ∈ X , a ∈ A}.

SX ,A is an operator system, its matrix order structure being
inherited from A(X ,A).

Reason for passing to SX ,A: richer tensor theory.
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Tensor products of operator systems

Let S and T be operator systems and S ⊗ T be the vector space
tensor product.

The minimal tensor product: S ⊗min T ⊆ B(H ⊗ K ).

The commuting tensor product: X ∈ Mn(S ⊗c T )+ if
(φ · ψ)(n)(X ) ≥ 0 for all cp φ : S → B(H) and ψ : T → B(H)
with commuting ranges.

Here (φ · ψ)(x ⊗ y) = φ(x)ψ(y).

The maximal tensor product: Mn(S ⊗max T )+ is the
Archimedeanisation of the cone of A∗(X ⊗ Y )A, where
X ∈ Mk(S)+, Y ∈ Ml(T )+, A ∈ Mkl ,n(C).

S ⊗max T → S ⊗c T → S ⊗min T completely positive.
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Winning strategies for general non-local games

For s ∈ (SX ,A⊗SY ,B)d, set

ps(a, b|x , y) = s(ex ,a ⊗ ey ,b), (x , y) ∈ X × Y , (a, b) ∈ A× B.

The collection ps is non-signalling.

Conversely, given a non-signalling p, let sp ∈ (SX ,A⊗SY ,B)d be
given by

sp(ex ,a ⊗ ey ,b) = p(a, b|x , y), (x , y) ∈ X × Y , (a, b) ∈ A× B.

p → sp is a bijection between (SX ,A⊗SY ,B)d and the set of all
non-signalling collections on (X ,Y ,A,B).
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Winning strategies for general non-local games

Let G = (X ,Y ,A,B, λ) be a non-local game.

J(λ) = span{ex ,a ⊗ ey ,b : λ(x , y , a, b) = 0} ⊆ SX ,A⊗SY ,B .

For τ ∈ {max, c,min} and J ⊆ SX ,A⊗SY ,B , let

Pτ (J) = {s ∈ (SX ,A⊗τ SY ,B)d : a state with J ⊆ ker(s)}.

Theorem

The map p → sp is a continuous affine isomorphism between

(i) Cns(λ) and Pmax(J(λ));

(ii) Cqc(λ) and Pc(J(λ));

(iii) Cqa(λ) and Pmin(J(λ));

 a complete description of the classes of non-signalling
correlations (trivial game) via states on op. sys. tensor products.
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Harder games

For λ : X × Y × A× B → {0, 1}, let

N(λ) = {(x , y , a, b) : λ(x , y , a, b) = 0}.

If G1 = (X ,Y ,A,B, λ1) and G2 = (X ,Y ,A,B, λ2) are games, we
say that

G1 is harder than G2 if λ1 ≤ λ2, that is, if N(λ2) ⊆ N(λ1).

For Σ ⊆ Cns, let

λΣ : X × Y × A× B → {0, 1}

be defined by
N(λΣ) = ∩p∈ΣN(p).

λΣ is the rule function of the hardest game for which every
element of Σ is a winning strategy.
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Winning harder games with no extra effort

Let G = (X ,Y ,A,B, λ) be a game. Set λx = λCx(λ); thus,

λx(x , y , a, b) = 0 ⇐⇒ p(a, b|x , y) = 0 for every p ∈ Cx(λ).

Note the inequalities

λloc ≤ λq ≤ λqs ≤ λqa ≤ λqc ≤ λns ≤ λ.

Set
Ref x(G) = (X ,Y ,A,B, λx)

and call it the reflexive x-cover of G.

Call G x-reflexive if Refx(G) = G.

Example

Consider the graph colouring game for the graph
G = {(1, 2), (2, 3), (3, 4)}. Then every 2-colouring of G is also a
2-colouring of the 4-cycle.
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Winning strategies for reflexive games

Theorem

The spaces Jx(λ) are kernels, and

(i) the winning strategies for Refns(G) are in one-to-one
correspondence with the states of (SX ,A⊗max SY ,B)/Jmax(λ);

(ii) the winning strategies for Refqc(G) are in one-to-one
correspondence with the states of (SX ,A⊗c SY ,B)/Jc(λ);

(iii) the winning strategies for Refqa(G) are in one-to-one
correspondence with the states of (SX ,A⊗min SY ,B)/Jmin(λ).
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Mirror games

Let G = (X ,Y ,A,B, λ) be a game. Recall

E a
x ,y = {b ∈ B : λ(x , y , a, b) = 1} and Eb

x ,y = {a ∈ A : λ(x , y , a, b) = 1}.

G is a mirror game if there exist functions

ξ : X → Y and η : Y → X

such that
E a
x ,ξ(x) ∩ E a′

x ,ξ(x) = ∅, x ∈ X , a 6= a′,

and
Eb
η(y),y ∩ Eb′

η(y),y = ∅, y ∈ Y , b 6= b′.
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Quantum commuting strategies revisited

Theorem

Let G = (X ,Y ,A,B, λ) be a mirror game, p ∈ Cqc(λ) and
s ∈ S(A(X ,A)⊗max A(Y ,B)) be such that p = ps . Then

(i) the functional τ : A(X ,A)→ C given by τ(z) = s(z ⊗ 1),
z ∈ A(X ,A), is a tracial state, and

(ii) there exists a set Q = {qy ,b : y ∈ Y , b ∈ B} of projections in
A(X ,A) such that

∑
b∈B qy ,b = 1 for all y ∈ Y , and

p(a, b|x , y) = τ(ex ,aqy ,b), x ∈ X , y ∈ Y , a ∈ A, b ∈ B.

For s ∈ S(A(X ,A)⊗max A(Y ,B)) we get precisely amenable
traces.
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A Hilbert-space-free proof

We may assume that

∪a∈AE a
x ,ξ(x) = B and ∪b∈B Eb

η(y),y = A, x ∈ X , y ∈ Y .

For x ∈ X , y ∈ Y , a ∈ A and b ∈ B, let

px ,a =
∑

b∈E a
x,ξ(x)

fξ(x),b, qy ,b =
∑

a∈Eb
η(y),y

eη(y),a.

For u1, u2 ∈ A(X ,A)⊗max A(Y ,B), write

u1 ∼ u2 if s(u1 − u2) = 0.

Then ∼ is an equivalence relation.
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Proof continued

Fix x ∈ X and a ∈ A. Then

s(ex ,a ⊗ 1) =
∑
b∈B

s(ex ,a ⊗ fξ(x),b) =
∑

b∈E a
x,ξ(x)

s(ex ,a ⊗ fξ(x),b)

= s(ex ,a ⊗ px ,a).

If a′ 6= a then
E a′

x ,ξ(x) ∩ E a
x ,ξ(x) = ∅

so s(ex ,a′ ⊗ fξ(x),b) = 0 whenever b ∈ E a
x ,ξ(x).

Thus

s(ex ,a′ ⊗ px ,a) =
∑

b∈E a
x,ξ(x)

s(ex ,a′ ⊗ fξ(x),b) = 0.
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Proof continued

=⇒ s(1⊗ px ,a) =
∑
a′∈A

s(ex ,a′ ⊗ px ,a) = s(ex ,a ⊗ px ,a).

=⇒ ex ,a ⊗ 1 ∼ ex ,a ⊗ px ,a ∼ 1⊗ px ,a, x ∈ X , a ∈ A.

Set hx ,a = ex ,a ⊗ 1− 1⊗ px ,a. Then hx ,a = h∗x ,a and

h2
x ,a = ex ,a ⊗ 1− ex ,a ⊗ px ,a − ex ,a ⊗ px ,a + 1⊗ px ,a;

thus,
h2
x ,a ∼ 0.
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Proof continued

The Cauchy-Schwarz inequality implies

uhx ,a ∼ 0 and hx ,au ∼ 0, x ∈ X , a ∈ A

for every u ∈ A(X ,A)⊗max A(Y ,B).

In particular,

zex ,a ⊗ 1 ∼ z ⊗ px ,a ∼ ex ,az ⊗ 1, x ∈ X , a ∈ A, z ∈ A(X ,A).

Similarly,

zqy ,b ⊗ 1 ∼ z ⊗ fy ,b ∼ qy ,bz ⊗ 1, y ∈ Y , b ∈ B, z ∈ A(X ,A).
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Proof continued

Let z and w be words on E := {ex ,a : x ∈ X , a ∈ A}. We
show that

zw ⊗ 1 ∼ wz ⊗ 1,

from where it follows that τ is a trace.

Induction on |w |: for |w | = 1, the claim is already proved.

Let |w | = n and write w = w ′e, where e ∈ E . Then

zw ⊗ 1 = zw ′e ⊗ 1 ∼ ezw ′ ⊗ 1 ∼ w ′ez ⊗ 1 = wz ⊗ 1.

Ivan Todorov QUB



Proof continued

Let z and w be words on E := {ex ,a : x ∈ X , a ∈ A}. We
show that

zw ⊗ 1 ∼ wz ⊗ 1,

from where it follows that τ is a trace.

Induction on |w |: for |w | = 1, the claim is already proved.

Let |w | = n and write w = w ′e, where e ∈ E . Then

zw ⊗ 1 = zw ′e ⊗ 1 ∼ ezw ′ ⊗ 1 ∼ w ′ez ⊗ 1 = wz ⊗ 1.

Ivan Todorov QUB



Proof continued

Let z and w be words on E := {ex ,a : x ∈ X , a ∈ A}. We
show that

zw ⊗ 1 ∼ wz ⊗ 1,

from where it follows that τ is a trace.

Induction on |w |: for |w | = 1, the claim is already proved.

Let |w | = n and write w = w ′e, where e ∈ E . Then

zw ⊗ 1 = zw ′e ⊗ 1 ∼ ezw ′ ⊗ 1 ∼ w ′ez ⊗ 1 = wz ⊗ 1.

Ivan Todorov QUB



Thank you very much!
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