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Key Problem / Motivation

Problem: Let f , g1, . . . , gs ∈ R[x] = R[x1, . . . , xn] and consider the
constrained polynomial optimization problem (CPOP)

f ∗K := inf
x∈K

f (x),

with K := {x ∈ Rn : gi (x) ≥ 0, i = 1, . . . , s}.

CPOP is equivalent to

f ∗K = sup{γ ∈ R : f (x)− γ ≥ 0 for all x ∈ K}.

Key Problem in real algebraic geometry.

Problem has countless applications, e.g., robotics, control
theory, economics, theoretical computer science.

Problem is decidable, but NP-hard in general.
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Common Approach

Solving CPOPs:
Using Positivstellensätze and relaxations, such problems can be
tackled via semidefinite optimization problem (SDP).
Typically: Putinar’s Positivstellensatz and Lasserre’s relaxation:

f
(d)
sos = sup

{
γ : f − γ = σ0 +

s∑
i=1

σigi , σi is SOS and deg(σigi ) ≤ 2d

}

Finding a degree d SOS certificate for nonnegativity of a
polynomial f can be performed by solving an SDP formulation of
size nO(d).

Issue:
For many applications, problems are too large or numerical issues
are too severe to find a (proper) solution via SOS/SDP.

Idea:
Find new ways to certify nonnegativity independent of SOS.
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Some Notation

We define R[x]n,2d as the vector space of real polynomials in
n variables of degree at most 2d .

We define the cone of nonnegative polynomials as

Pn,2d := {f ∈ R[x]n,2d : f (x) ≥ 0 for all x ∈ Rn}.

We define the cone of sums of squares as

Σn,2d :=

f ∈ Pn,2d : f =
r∑

j=1

s2
j with s1, . . . , sr ∈ R[x]n,d

 .
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Circuit Polynomials

Definition

Let f ∈ R[x] be supported on A ⊂ Nn. Then f is called a circuit
polynomial if it is of the form

f =
r∑

j=0

fα(j)x
α(j) + fβx

β

with the following conditions:

(C1) New(f ) is a simplex with even vertices α(0), . . . ,α(r).

(C2) β =
r∑

j=0

λjα(j) with λj > 0 and
r∑

j=0

λj = 1.

(C3) For all j : fα(j) > 0.

Note: Support set A = {α(0), . . . ,α(n),β} is a circuit.

Example: The Motzkin polynomial 1 + x4y2 + x2y4 − 3x2y2 is a
circuit polynomial.
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Circuit Polynomials

For every circuit polynomial f , we define the corresponding
circuit number as

Θf :=
r∏

j=0

(
fα(j)

λj

)λj
.

Facts:

Nonnegativity of circuit polynomials can be checked easily via
the condition: |fβ| ≤ Θf or f is a sum of monomial squares.

Writing a polynomial as a sum of nonnegative circuit
polynomials (SONC) is a certificate of nonnegativity.
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Sums of Nonnegative Circuit Polynomials

Definition

Let the set of sums of nonnegative circuit polynomials
(SONC) be

Cn,2d :=

{
p ∈ R[x]n,2d :

p =
∑k

i=1 µi fi , ∀ i : µi ≥ 0,
fi is NN circuit polyn. in R[x]n,2d

}

Theorem (Iliman, de Wolff, 2014 and D., 2018+)

Cn,2d is a convex cone in Pn,2d which satisfies:

Cn,2d ⊆ Σn,2d if and only if (n, 2d) ∈ {(1, 2d), (n, 2), (2, 4)}.
Σn,2d 6⊆ Cn,2d for 2d ≥ 4.

Σn,2 6⊆ Cn,2 for n ≥ 2.

Theorem (D., Iliman, de Wolff, 2016)

For every n, d ∈ N∗ the cone Cn,2d is full-dimensional in Pn,2d .
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Sums of Nonnegative Circuit Polynomials

Lemma (D., Iliman, de Wolff, 2016)

For every n, d ∈ N∗ there exists f , g ∈ Cn,2d such that
f · g /∈ Cn,4d .

Lemma (D., Kurpisz, de Wolff, 2018)

For every d ≥ 2, n ∈ N∗ the SONC cone Cn,2d is not closed under
affine transformation of variables.

Problem: How can one check efficiently, whether a polynomial has
a SONC decomposition?
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Constrained Polynomial Optimization

Consider the CPOP:

f ∗K := inf
x∈K

f (x) = sup{γ ∈ R : f (x)− γ ≥ 0 for all x ∈ K}.

Approximations for f ∗K :

d-th Lasserre’s relaxation: f
(d)
sos = sup {γ : f − γ is SOS on K}

SONC relaxation: fsonc = sup {γ : f − γ is SONC on K}

Key strength of f
(d)
sos : (Finite) convergence based on Putinar’s

Positivstellensatz.
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A Positivstellensatz for SONC

Bad news: Proof of Putinar’s Positivstellensatz does not
generalize from SOS to SONC, since Cn,2d is not closed under
multiplication.

Good news: We obtain straightforwardly:

Theorem (D., Iliman, de Wolff, 2016)

Schmüdgen-like Positivstellensatz holds for SONC.
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A Positivstellensatz for SONC

Theorem (D., Iliman, de Wolff, 2016); rough version

Let f (x) ∈ R[x] and K be a compact semi-algebraic set defined by
g1(x), . . . , gs(x) ∈ R[x]. If f (x) is strictly positive for all x ∈ K ,
then there exist d , q ∈ N∗, such that

f (x) =
∑
finite

s(x)H(q)(x)

where
every s(x) ∈ Cn,2d ,

every H(q)(x) is a product of at most q of the gi (x):

H(q)(x) =

q∏
i=1

gi (x).

Note: An analog Positivstellensatz was given by Chandrasekaran
and Shah for signomials via sums of arithmetic geometric
exponentials (SAGE).
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A Converging Hierarchy

We define:

f (d)
sonc := sup

{
γ ∈ R : f (x)− γ =

∑
finite

s(x)H(q)(x)

}

Clearly we have: f
(d)
sonc ≤ f ∗K .

The SONC Positivstellensatz yields a degree dependent converging
hierarchy:

Theorem (D., Iliman, de Wolff, 2016)

Let f ∈ R[x], and K be a compact, semi-algebraic set. Then

f (d)
sonc ↑ f ∗K , for d →∞.
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SONC Certificates via Relative Entropy Programming

Good news:

The bounds f
(d)
sonc are given by a relative entropy

program:

Relative entropy programs are convex.

Efficiently solvable with interior point methods.

Theorem (D., Iliman, de Wolff, 2016)

Let f ∈ R[x], and K be a compact, semi-algebraic set. Then for

every d the bound f
(d)
sonc is computable via an explicit relative

entropy program.

Note: For a given support, searching through the space of degree
d SONC certificates can be computed via a REP of size nO(d).
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ζj

)
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Optimization over the Hypercube

Let f , g1, . . . , gn, p1, . . . , pm ∈ R[x] = R[x1, . . . , xn] with
gj(x) = (xj − aj)(xj − bj) for chosen aj , bj ∈ R. Consider the
constrained hypercube optimization problem (CHOP)

min f (x)

s.t. gj(x) = 0 for j = 1, . . . , n

pi (x) ≥ 0 for i = 1, . . . ,m

x ∈ Rn

We denote HP as the feasible set: the n-dimensional hypercube H
constrained by polynomial inequalities given by P.

Several key problems from theoretical computer science are
equivalent to solving a CHOP. E.g., MAX CUT, Sparsest Cut,
Knapsack, Maximum constraint satisfaction (CSP), Problem
scheduling, etc.
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Optimization over the Hypercube

Let f , g1, . . . , gn, p1, . . . , pm ∈ R[x] = R[x1, . . . , xn] with
gj(x) = (xj − aj)(xj − bj) for chosen aj , bj ∈ R. Consider the
constrained hypercube optimization problem (CHOP)

min
x∈HP

f (x)

We denote HP as the feasible set: the n-dimensional hypercube H
constrained by polynomial inequalities given by P.

Several key problems from theoretical computer science are
equivalent to solving a CHOP. E.g., MAX CUT, Sparsest Cut,
Knapsack, Maximum constraint satisfaction (CSP), Problem
scheduling, etc.

Main goal: Find certificates with good complexity bounds in n
and maximal total degree d .
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Key Facts for SOS Certificates on the Boolean Hypercube

For every feasible n-variate CHOP with constraints of degree
at most d there exists a degree 2n + 2d SOS certificate.

Finding a degree d SOS certificate for nonnegativity of a
polynomial f on HP can be performed by solving an SDP of
size nO(d).
⇒ SOS certificate with at most nO(d) squared polynomials.
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Our Main Results for SONC Certificates on HP

Assumption: |P| = poly(n).

Theorem (D., Kurpisz, de Wolff, 2018)

For every polynomial f , nonnegative over the boolean hypercube,
constrained with polynomial inequalities of degree at most d , there
exists a degree n + d SONC certificate.

Theorem (D., Kurpisz, de Wolff, 2018)

Let f be an n-variate polynomial, nonnegative on the constrained
hypercube HP . If there exists a degree d SONC certificate for f ,
then there exists a degree d SONC certificate for f involving at
most nO(d) many nonnegative circuit polynomials.
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Proof strategy

1 Develop a Kronecker delta function for SONC on H:

δv(x) :=
∏

j∈[n]: vj=aj

(
−xj + bj
bj − aj

)
·

∏
j∈[n]: vj=bj

(
xj − aj
bj − aj

)

For every v ∈ H it holds that:

δv(x) =

{
0, for every x ∈ H\{v},
1, for x = v.

For every v ∈ H the Kronecker delta function can be written as

δv =
2n∑
j=1

sjH
(n)
j =

2n∑
j=1

sj

n∏
i=1

gi,j ,

for s1, . . . , s2n ∈ R≥0.
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Proof strategy

2 Let d ∈ N and f ∈ R[x]n,2d+2 such that f vanishes on H.
Then there exist s1, . . . , s2n ∈ Cn,2d such that

f =
n∑

j=1

sjgj +
n∑

j=1

sn+j(−gj).

Use statement: Let f ∈ R[x]n,2d+2 be a polynomial vanishing
on H. Then f =

∑n
j=1 pjgj for some polynomials pj ∈ R[x]n,2d .

Decompose pj =
∑`

i=1 ajimji and tackle individual monomials.
If ajimji is a monomial square, then it is SONC.
Otherwise add nonnegative circuit polynomial with interior
term ajimji , and subtract redundant monomial squares.
Trick: Minus sign can be pushed into the g ′j s.
Confirm that the degrees did not increase.
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Proof strategy

3 When restricted to the hypercube H, a polynomial f can be
represented as

f (x) =
∑
v∈HP

δv(x)f (v) +
∑

v∈H\HP

δv(x)f (v).

If v ∈ H\HP with f (v) < 0, then choose pv ∈ P such that
pv(v) < 0. Prove for all x ∈ H the decomposition

f (x) =
∑
v∈HP

δv(x)f (v) +
∑

v∈H\HP

δv(x)pv(x)
f (v)

pv(v)
.

This is a polynomial of degree at most n + d .
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Proof strategy

4 Conclude a degree at most n + d decomposition

f (x) =
n∑

j=1

sj(x)gj(x) +
n∑

j=1

sn+j(x)(−gj(x)) +

∑
v∈HP

δv(x)f (v) +
∑

v∈H\HP

δv(x)pv(x)
f (v)

pv(v)
,

for some s1, . . . , s2n ∈ Cn,n+d−2 and pv ∈ P.
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Developments regarding Positivstellensätze

As a consequence of the decomposition of f in the previous
theorem we can prove:

The function

fa(x) := (a− 1)
n∏

i=1

(
xi + 1

2

)
+ 1

has no Putinar-like SONC representation over H = {±1}n if
a > 2n−1

2n−2−1
.

Corollary (D., Kurpisz, de Wolff, 2018)

There exists no equivalent of Putinar’s Positivstellensatz for SONC.
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We summarize

1 SONC polynomials provide a valid certificate for optimization
over the n-variate constrained hypercube HP .

2 For f ≥ 0 on HP , with deg(pi ) ≤ d , there exists a degree
n + d SONC certificate.

3 If f admits a degree d SONC certificate on HP , then there
exists a degree d SONC certificate for f involving at most
nO(d) many nonnegative circuit polynomials.
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Open Problems

1 We showed the existence of a ‘short’ SONC certificate
containing at most nO(d) nonnegative circuit polynomials. But
can the corresponding REP also be formulated in time nO(d)?

2 We also showed: SONC is not closed under affine
transformation. What is its closure? How can we compute
such extended SONC certificates efficiently?

3 How is the situation over other varieties?

Mareike Dressler Optimization over the Hypercube via SONC Polynomials



Open Problems

1 We showed the existence of a ‘short’ SONC certificate
containing at most nO(d) nonnegative circuit polynomials. But
can the corresponding REP also be formulated in time nO(d)?

2 We also showed: SONC is not closed under affine
transformation. What is its closure? How can we compute
such extended SONC certificates efficiently?

3 How is the situation over other varieties?

Mareike Dressler Optimization over the Hypercube via SONC Polynomials



Open Problems

1 We showed the existence of a ‘short’ SONC certificate
containing at most nO(d) nonnegative circuit polynomials. But
can the corresponding REP also be formulated in time nO(d)?

2 We also showed: SONC is not closed under affine
transformation. What is its closure? How can we compute
such extended SONC certificates efficiently?

3 How is the situation over other varieties?

Mareike Dressler Optimization over the Hypercube via SONC Polynomials



Thank You

Thank you for your attention!
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