Optimization over the Hypercube via Sums of Nonnegative Circuit Polynomials

Mareike Dressler

(Joint work with A. Kurpisz and T. de Wolff)

UCSanDiego

Banff Workshop on:
Geometry of Real Polynomials, Convexity, and Optimization

May 31, 2019

Key Problem / Motivation

Problem: Let $f, g_{1}, \ldots, g_{s} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and consider the CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEM (CPOP)

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x}),
$$

with $K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, i=1, \ldots, s\right\}$.

Key Problem / Motivation

Problem: Let $f, g_{1}, \ldots, g_{s} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and consider the CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEM (CPOP)

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x}),
$$

with $K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, i=1, \ldots, s\right\}$.
CPOP is equivalent to

$$
f_{K}^{*}=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\}
$$

Key Problem / Motivation

Problem: Let $f, g_{1}, \ldots, g_{s} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and consider the CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEM (CPOP)

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x}),
$$

with $K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, i=1, \ldots, s\right\}$.
CPOP is equivalent to

$$
f_{K}^{*}=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\}
$$

- Key Problem in real algebraic geometry.

Key Problem / Motivation

Problem: Let $f, g_{1}, \ldots, g_{s} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and consider the CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEM (CPOP)

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x}),
$$

with $K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, i=1, \ldots, s\right\}$.
CPOP is equivalent to

$$
f_{K}^{*}=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\}
$$

- Key Problem in real algebraic geometry.
- Problem has countless applications, e.g., robotics, control theory, economics, theoretical computer science.

Key Problem / Motivation

Problem: Let $f, g_{1}, \ldots, g_{s} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and consider the CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEM (CPOP)

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x}),
$$

with $K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, i=1, \ldots, s\right\}$.
CPOP is equivalent to

$$
f_{K}^{*}=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\}
$$

- Key Problem in real algebraic geometry.
- Problem has countless applications, e.g., robotics, control theory, economics, theoretical computer science.
- Problem is decidable, but NP-hard in general.

Common Approach

Solving CPOPs:

Using Positivstellensätze and relaxations, such problems can be tackled via SEmidefinite optimization problem (SDP). Typically: Putinar's Positivstellensatz and Lasserre's relaxation:

$$
f_{\text {sos }}^{(d)}=\sup \left\{\gamma: f-\gamma=\sigma_{0}+\sum_{i=1}^{s} \sigma_{i} g_{i}, \sigma_{i} \text { is SOS and } \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq 2 d\right\}
$$

Common Approach

Solving CPOPs:

Using Positivstellensätze and relaxations, such problems can be tackled via SEmidefinite optimization problem (SDP).
Typically: Putinar's Positivstellensatz and Lasserre's relaxation:
$f_{\text {sos }}^{(d)}=\sup \left\{\gamma: f-\gamma=\sigma_{0}+\sum_{i=1}^{s} \sigma_{i} g_{i}, \sigma_{i}\right.$ is SOS and $\left.\operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq 2 d\right\}$
Finding a degree d SOS certificate for nonnegativity of a polynomial f can be performed by solving an SDP formulation of size $n^{O(d)}$.

Common Approach

Solving CPOPs:

Using Positivstellensätze and relaxations, such problems can be tackled via SEmidefinite optimization problem (SDP).
Typically: Putinar's Positivstellensatz and Lasserre's relaxation:
$f_{\text {sos }}^{(d)}=\sup \left\{\gamma: f-\gamma=\sigma_{0}+\sum_{i=1}^{s} \sigma_{i} g_{i}, \sigma_{i}\right.$ is SOS and $\left.\operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq 2 d\right\}$
Finding a degree d SOS certificate for nonnegativity of a polynomial f can be performed by solving an SDP formulation of size $n^{O(d)}$.

Issue:

For many applications, problems are too large or numerical issues are too severe to find a (proper) solution via SOS/SDP.

Common Approach

Solving CPOPs:

Using Positivstellensätze and relaxations, such problems can be tackled via SEmidefinite optimization problem (SDP).
Typically: Putinar's Positivstellensatz and Lasserre's relaxation:
$f_{\text {sos }}^{(d)}=\sup \left\{\gamma: f-\gamma=\sigma_{0}+\sum_{i=1}^{s} \sigma_{i} g_{i}, \sigma_{i}\right.$ is SOS and $\left.\operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq 2 d\right\}$
Finding a degree d SOS certificate for nonnegativity of a polynomial f can be performed by solving an SDP formulation of size $n^{O(d)}$.

Issue:

For many applications, problems are too large or numerical issues are too severe to find a (proper) solution via SOS/SDP.

Idea:
Find new ways to certify nonnegativity independent of SOS.

Some Notation

- We define $\mathbb{R}[\mathbf{x}]_{n, 2 d}$ as the vector space of real polynomials in n variables of degree at most $2 d$.

Some Notation

- We define $\mathbb{R}[\mathbf{x}]_{n, 2 d}$ as the vector space of real polynomials in n variables of degree at most $2 d$.
- We define the CONE of NONNEGATIVE Polynomials as

$$
P_{n, 2 d}:=\left\{f \in \mathbb{R}[\mathbf{x}]_{n, 2 d}: f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Some Notation

- We define $\mathbb{R}[\mathbf{x}]_{n, 2 d}$ as the vector space of real polynomials in n variables of degree at most $2 d$.
- We define the CONE of NONNEGATIVE Polynomials as

$$
P_{n, 2 d}:=\left\{f \in \mathbb{R}[\mathbf{x}]_{n, 2 d}: f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- We define the cone of sums of squares as

$$
\Sigma_{n, 2 d}:=\left\{f \in P_{n, 2 d}: f=\sum_{j=1}^{r} s_{j}^{2} \text { with } s_{1}, \ldots, s_{r} \in \mathbb{R}[\mathbf{x}]_{n, d}\right\}
$$

Circuit Polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{x}]$ be supported on $A \subset \mathbb{N}^{n}$. Then f is called a CIRCUIT POLYNOMIAL if it is of the form

$$
f=\sum_{j=0}^{r} f_{\alpha(j)} \mathbf{x}^{\alpha(j)}+f_{\beta} \mathbf{x}^{\beta}
$$

with the following conditions:

Circuit Polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{x}]$ be supported on $A \subset \mathbb{N}^{n}$. Then f is called a CIRCUIT POLYNOMIAL if it is of the form

$$
f=\sum_{j=0}^{r} f_{\alpha(j)} \mathbf{x}^{\alpha(j)}+f_{\beta} \mathbf{x}^{\beta}
$$

with the following conditions:

(C1) $\operatorname{New}(f)$ is a simplex with even vertices $\alpha(0), \ldots, \alpha(r)$.
(C2) $\boldsymbol{\beta}=\sum_{j=0}^{r} \lambda_{j} \alpha(j)$ with $\lambda_{j}>0$ and $\sum_{j=0}^{r} \lambda_{j}=1$.
(C3) For all $j: f_{\alpha(j)}>0$.

Circuit Polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{x}]$ be supported on $A \subset \mathbb{N}^{n}$. Then f is called a Circuit POLYNOMIAL if it is of the form

$$
f=\sum_{j=0}^{r} f_{\alpha(j)} \mathbf{x}^{\alpha(j)}+f_{\beta} \mathbf{x}^{\beta}
$$

with the following conditions:

(C1) $\operatorname{New}(f)$ is a simplex with even vertices $\alpha(0), \ldots, \alpha(r)$.
(C2) $\boldsymbol{\beta}=\sum_{j=0}^{r} \lambda_{j} \boldsymbol{\alpha}(j)$ with $\lambda_{j}>0$ and $\sum_{j=0}^{r} \lambda_{j}=1$.
(C3) For all $j: f_{\alpha(j)}>0$.
Note: Support set $A=\{\boldsymbol{\alpha}(0), \ldots, \boldsymbol{\alpha}(n), \boldsymbol{\beta}\}$ is a CIRCUIT.

Circuit Polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{x}]$ be supported on $A \subset \mathbb{N}^{n}$. Then f is called a CIRCUIT POLYNOMIAL if it is of the form

$$
f=\sum_{j=0}^{r} f_{\alpha(j)} \mathbf{x}^{\alpha(j)}+f_{\beta} \mathbf{x}^{\beta}
$$

with the following conditions:

(C1) $\operatorname{New}(f)$ is a simplex with even vertices $\alpha(0), \ldots, \alpha(r)$.
(C2) $\boldsymbol{\beta}=\sum_{j=0}^{r} \lambda_{j} \alpha(j)$ with $\lambda_{j}>0$ and $\sum_{j=0}^{r} \lambda_{j}=1$.
(C3) For all $j: f_{\alpha(j)}>0$.
Note: Support set $A=\{\boldsymbol{\alpha}(0), \ldots, \boldsymbol{\alpha}(n), \boldsymbol{\beta}\}$ is a CIRCUIT.
Example: The Motzkin polynomial $1+x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}$ is a circuit polynomial.

Circuit Polynomials

For every circuit polynomial f, we define the corresponding CIRCUIT NUMBER as

$$
\Theta_{f}:=\prod_{j=0}^{r}\left(\frac{f_{\alpha(j)}}{\lambda_{j}}\right)^{\lambda_{j}}
$$

Circuit Polynomials

For every circuit polynomial f, we define the corresponding
CIRCUIT NUMBER as

$$
\Theta_{f}:=\prod_{j=0}^{r}\left(\frac{f_{\alpha(j)}}{\lambda_{j}}\right)^{\lambda_{j}}
$$

Facts:

- Nonnegativity of circuit polynomials can be checked easily via the condition: $\left|f_{\boldsymbol{\beta}}\right| \leq \Theta_{f}$ or f is a sum of monomial squares.

Circuit Polynomials

For every circuit polynomial f, we define the corresponding
CIRCUIT NUMBER as

$$
\Theta_{f}:=\prod_{j=0}^{r}\left(\frac{f_{\alpha(j)}}{\lambda_{j}}\right)^{\lambda_{j}}
$$

Facts:

- Nonnegativity of circuit polynomials can be checked easily via the condition: $\left|f_{\boldsymbol{\beta}}\right| \leq \Theta_{f}$ or f is a sum of monomial squares.
- Writing a polynomial as a SUM of nonnegative circuit polynomials (SONC) is a certificate of nonnegativity.

Sums of Nonnegative Circuit Polynomials

Definition

Let the set of Sums of nonnegative circuit polynomials (SONC) be

$$
C_{n, 2 d}:=\left\{p \in \mathbb{R}[\mathbf{x}]_{n, 2 d}: \begin{array}{l}
p=\sum_{i=1}^{k} \mu_{i} f_{i}, \forall i: \mu_{i} \geq 0 \\
f_{i} \text { is NN circuit polyn. in } \mathbb{R}[\mathbf{x}]_{n, 2 d}
\end{array}\right\}
$$

Sums of Nonnegative Circuit Polynomials

Definition

Let the set of SUMS OF NONNEGATIVE CIRCUIT POLYNOMIALS (SONC) be
$C_{n, 2 d}:=\left\{p \in \mathbb{R}[\mathbf{x}]_{n, 2 d}: \begin{array}{l}p=\sum_{i=1}^{k} \mu_{i} f_{i}, \forall i: \mu_{i} \geq 0, \\ \\ f_{i} \text { is NN circuit polyn. in } \mathbb{R}[\mathbf{x}]_{n, 2 d}\end{array}\right\}$

Theorem (Iliman, de Wolff, 2014 and D., 2018+)

$C_{n, 2 d}$ is a convex cone in $P_{n, 2 d}$ which satisfies:

- $C_{n, 2 d} \subseteq \Sigma_{n, 2 d}$ if and only if $(n, 2 d) \in\{(1,2 d),(n, 2),(2,4)\}$.
- $\Sigma_{n, 2 d} \nsubseteq C_{n, 2 d}$ for $2 d \geq 4$.
- $\Sigma_{n, 2} \nsubseteq C_{n, 2}$ for $n \geq 2$.

Sums of Nonnegative Circuit Polynomials

Definition

Let the set of SUMS OF NONNEGATIVE CIRCUIT POLYNOMIALS (SONC) be
$C_{n, 2 d}:=\left\{p \in \mathbb{R}[\mathbf{x}]_{n, 2 d}: \begin{array}{l}p=\sum_{i=1}^{k} \mu_{i} f_{i}, \forall i: \mu_{i} \geq 0, \\ f_{i} \text { is NN circuit polyn. in } \mathbb{R}[\mathbf{x}]_{n, 2 d}\end{array}\right\}$

Theorem (lliman, de Wolff, 2014 and D., 2018+)

$C_{n, 2 d}$ is a convex cone in $P_{n, 2 d}$ which satisfies:

- $C_{n, 2 d} \subseteq \Sigma_{n, 2 d}$ if and only if $(n, 2 d) \in\{(1,2 d),(n, 2),(2,4)\}$.
- $\Sigma_{n, 2 d} \nsubseteq C_{n, 2 d}$ for $2 d \geq 4$.
- $\Sigma_{n, 2} \nsubseteq C_{n, 2}$ for $n \geq 2$.

Theorem (D., Iliman, de Wolff, 2016)

For every $n, d \in \mathbb{N}^{*}$ the cone $C_{n, 2 d}$ is full-dimensional in $P_{n, 2 d}$.

Sums of Nonnegative Circuit Polynomials

Lemma (D., lliman, de Wolff, 2016)
For every $n, d \in \mathbb{N}^{*}$ there exists $f, g \in C_{n, 2 d}$ such that $f \cdot g \notin C_{n, 4 d}$.

Sums of Nonnegative Circuit Polynomials

Lemma (D., Iliman, de Wolff, 2016)

For every $n, d \in \mathbb{N}^{*}$ there exists $f, g \in C_{n, 2 d}$ such that $f \cdot g \notin C_{n, 4 d}$.

Lemma (D., Kurpisz, de Wolff, 2018)
For every $d \geq 2, n \in \mathbb{N}^{*}$ the SONC cone $C_{n, 2 d}$ is not closed under affine transformation of variables.

Sums of Nonnegative Circuit Polynomials

Lemma (D., Iliman, de Wolff, 2016)

For every $n, d \in \mathbb{N}^{*}$ there exists $f, g \in C_{n, 2 d}$ such that $f \cdot g \notin C_{n, 4 d}$.

Lemma (D., Kurpisz, de Wolff, 2018)
For every $d \geq 2, n \in \mathbb{N}^{*}$ the SONC cone $C_{n, 2 d}$ is not closed under affine transformation of variables.

Problem: How can one check efficiently, whether a polynomial has a SONC decomposition?

Constrained Polynomial Optimization

Consider the CPOP:

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x})=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\} .
$$

Constrained Polynomial Optimization

Consider the CPOP:

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x})=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\} .
$$

Approximations for f_{K}^{*} :
d-th Lasserre's relaxation: $f_{\text {sos }}^{(d)}=\sup \{\gamma: f-\gamma$ is SOS on $K\}$

Constrained Polynomial Optimization

Consider the CPOP:

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x})=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\} .
$$

Approximations for f_{K}^{*} :
d-th Lasserre's relaxation: $f_{\text {sos }}^{(d)}=\sup \{\gamma: f-\gamma$ is SOS on $K\}$
SONC relaxation: $f_{\text {sonc }}=\sup \{\gamma: f-\gamma$ is SONC on $K\}$

Constrained Polynomial Optimization

Consider the CPOP:

$$
f_{K}^{*}:=\inf _{\mathbf{x} \in K} f(\mathbf{x})=\sup \{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma \geq 0 \text { for all } \mathbf{x} \in K\} .
$$

Approximations for f_{K}^{*} :
d-th Lasserre's relaxation: $f_{\text {sos }}^{(d)}=\sup \{\gamma: f-\gamma$ is SOS on $K\}$
SONC relaxation: $f_{\text {sonc }}=\sup \{\gamma: f-\gamma$ is SONC on $K\}$
Key strength of $f_{\text {sos }}^{(d)}$: (Finite) convergence based on Putinar's Positivstellensatz.

A Positivstellensatz for SONC

- Bad news: Proof of Putinar's Positivstellensatz does not generalize from SOS to SONC, since $C_{n, 2 d}$ is not closed under multiplication.

A Positivstellensatz for SONC

- Bad news: Proof of Putinar's Positivstellensatz does not generalize from SOS to SONC, since $C_{n, 2 d}$ is not closed under multiplication.
- Good news: We obtain straightforwardly:

Theorem (D., Iliman, de Wolff, 2016)
 Schmüdgen-like Positivstellensatz holds for SONC.

A Positivstellensatz for SONC

Theorem (D., Iliman, de Wolff, 2016); rough version

Let $f(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ and K be a compact semi-algebraic set defined by $g_{1}(\mathbf{x}), \ldots, g_{s}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$. If $f(\mathbf{x})$ is strictly positive for all $\mathbf{x} \in K$, then there exist $d, q \in \mathbb{N}^{*}$, such that

$$
f(\mathbf{x})=\sum_{\text {finite }} s(\mathbf{x}) H^{(q)}(\mathbf{x})
$$

where

- every $s(\mathbf{x}) \in C_{n, 2 d}$,
- every $H^{(q)}(\mathbf{x})$ is a product of at most q of the $g_{i}(\mathbf{x})$:

$$
H^{(q)}(\mathbf{x})=\prod_{i=1}^{q} g_{i}(\mathbf{x})
$$

A Positivstellensatz for SONC

Theorem (D., Iliman, de Wolff, 2016); rough version

Let $f(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ and K be a compact semi-algebraic set defined by $g_{1}(\mathbf{x}), \ldots, g_{s}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$. If $f(\mathbf{x})$ is strictly positive for all $\mathbf{x} \in K$, then there exist $d, q \in \mathbb{N}^{*}$, such that

$$
f(\mathbf{x})=\sum_{\text {finite }} s(\mathbf{x}) H^{(q)}(\mathbf{x})
$$

where

- every $s(\mathbf{x}) \in C_{n, 2 d}$,
- every $H^{(q)}(\mathbf{x})$ is a product of at most q of the $g_{i}(\mathbf{x})$:

$$
H^{(q)}(\mathbf{x})=\prod_{i=1}^{q} g_{i}(\mathbf{x})
$$

Note: An analog Positivstellensatz was given by Chandrasekaran and Shah for signomials via sums of arithmetic geometric exponentials (SAGE).

A Converging Hierarchy

We define:

$$
f_{\mathrm{sonc}}^{(d)}:=\sup \left\{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma=\sum_{\text {finite }} s(\mathbf{x}) H^{(q)}(\mathbf{x})\right\}
$$

A Converging Hierarchy

We define:

$$
f_{\mathrm{sonc}}^{(d)}:=\sup \left\{\gamma \in \mathbb{R}: f(\mathbf{x})-\gamma=\sum_{\text {finite }} s(\mathbf{x}) H^{(q)}(\mathbf{x})\right\}
$$

Clearly we have: $f_{\text {sonc }}^{(d)} \leq f_{K}^{*}$.
The SONC Positivstellensatz yields a degree dependent converging hierarchy:

Theorem (D., Iliman, de Wolff, 2016)

Let $f \in \mathbb{R}[\mathbf{x}]$, and K be a compact, semi-algebraic set. Then

$$
f_{\text {sonc }}^{(d)} \uparrow f_{K}^{*}, \text { for } d \rightarrow \infty
$$

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:

Definition

Let $\boldsymbol{\nu}, \boldsymbol{\zeta} \in \mathbb{R}_{\geq 0}^{n}$ and $\boldsymbol{\delta} \in \mathbb{R}^{n}$. A RELATIVE ENTROPY PROGRAM (REP) is of the form:

$$
\begin{cases}\operatorname{minimize} & p_{0}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}) \\ \text { subject to: } & (1) \quad p_{i}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}) \leq 1 \text { for all } i=1, \ldots, m \\ & (2) \quad \nu_{j} \log \left(\frac{\nu_{j}}{\zeta_{j}}\right) \leq \delta_{j} \text { for all } j=1, \ldots, n\end{cases}
$$

where p_{0}, \ldots, p_{m} are linear functionals and the constraints (2) are jointly convex functions in $\boldsymbol{\nu}, \boldsymbol{\zeta}$, and $\boldsymbol{\delta}$ defining the relative entropy cone.

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:

Definition

Let $\boldsymbol{\nu}, \boldsymbol{\zeta} \in \mathbb{R}_{\geq 0}^{n}$ and $\boldsymbol{\delta} \in \mathbb{R}^{n}$. A RELATIVE ENTROPY PROGRAM (REP) is of the form:

$$
\begin{cases}\operatorname{minimize} & p_{0}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}) \\ \text { subject to: } & (1) \quad p_{i}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}) \leq 1 \text { for all } i=1, \ldots, m \\ & (2) \nu_{j} \log \left(\frac{\nu_{j}}{\zeta_{j}}\right) \leq \delta_{j} \text { for all } j=1, \ldots, n\end{cases}
$$

where p_{0}, \ldots, p_{m} are linear functionals and the constraints (2) are jointly convex functions in $\boldsymbol{\nu}, \boldsymbol{\zeta}$, and $\boldsymbol{\delta}$ defining the relative entropy cone.

- Relative entropy programs are convex.

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:

Definition

Let $\boldsymbol{\nu}, \boldsymbol{\zeta} \in \mathbb{R}_{\geq 0}^{n}$ and $\boldsymbol{\delta} \in \mathbb{R}^{n}$. A Relative entropy program (REP) is of the form:

$$
\begin{cases}\operatorname{minimize} & p_{0}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}), \\ \text { subject to: } & (1) \quad p_{i}(\boldsymbol{\nu}, \boldsymbol{\zeta}, \boldsymbol{\delta}) \leq 1 \text { for all } i=1, \ldots, m, \\ & \text { (2) } \nu_{j} \log \left(\frac{\nu_{j}}{\zeta_{j}}\right) \leq \delta_{j} \text { for all } j=1, \ldots, n,\end{cases}
$$

where p_{0}, \ldots, p_{m} are linear functionals and the constraints (2) are jointly convex functions in $\boldsymbol{\nu}, \boldsymbol{\zeta}$, and $\boldsymbol{\delta}$ defining the relative entropy cone.

- Relative entropy programs are convex.
- Efficiently solvable with interior point methods.

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:
- Relative entropy programs are convex.
- Efficiently solvable with interior point methods.

Theorem (D., Iliman, de Wolff, 2016)

Let $f \in \mathbb{R}[\mathbf{x}]$, and K be a compact, semi-algebraic set. Then for every d the bound $f_{\text {sonc }}^{(d)}$ is computable via an explicit relative entropy program.

SONC Certificates via Relative Entropy Programming

Good news:

- The bounds $f_{\text {sonc }}^{(d)}$ are given by a RELATIVE ENTROPY PROGRAM:
- Relative entropy programs are convex.
- Efficiently solvable with interior point methods.

Theorem (D., Iliman, de Wolff, 2016)

Let $f \in \mathbb{R}[\mathbf{x}]$, and K be a compact, semi-algebraic set. Then for every d the bound $f_{\text {sonc }}^{(d)}$ is computable via an explicit relative entropy program.

Note: For a given support, searching through the space of degree d SONC certificates can be computed via a REP of size $n^{O(d)}$.

Optimization over the Hypercube

Let $f, g_{1}, \ldots, g_{n}, p_{1}, \ldots, p_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $g_{j}(\mathbf{x})=\left(x_{j}-a_{j}\right)\left(x_{j}-b_{j}\right)$ for chosen $a_{j}, b_{j} \in \mathbb{R}$. Consider the CONSTRAINED HYPERCUBE OPTIMIZATION PROBLEM (CHOP)

$$
\begin{gathered}
\min f(\mathbf{x}) \\
\text { s.t. } \quad g_{j}(\mathbf{x})=0 \text { for } j=1, \ldots, n \\
\\
p_{i}(\mathbf{x}) \geq 0 \text { for } i=1, \ldots, m \\
\\
\\
\mathbf{x} \in \mathbb{R}^{n}
\end{gathered}
$$

Optimization over the Hypercube

Let $f, g_{1}, \ldots, g_{n}, p_{1}, \ldots, p_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $g_{j}(\mathbf{x})=\left(x_{j}-a_{j}\right)\left(x_{j}-b_{j}\right)$ for chosen $a_{j}, b_{j} \in \mathbb{R}$. Consider the CONSTRAINED HYPERCUBE OPTIMIZATION PROBLEM (CHOP)

$$
\begin{gathered}
\min f(\mathbf{x}) \\
\text { s.t. } \quad g_{j}(\mathbf{x})=0 \text { for } j=1, \ldots, n \\
\\
p_{i}(\mathbf{x}) \geq 0 \text { for } i=1, \ldots, m \\
\\
\\
\mathbf{x} \in \mathbb{R}^{n}
\end{gathered}
$$

We denote $\mathcal{H}_{\mathcal{P}}$ as the feasible set: the n-dimensional hypercube \mathcal{H} constrained by polynomial inequalities given by \mathcal{P}.

Optimization over the Hypercube

Let $f, g_{1}, \ldots, g_{n}, p_{1}, \ldots, p_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $g_{j}(\mathbf{x})=\left(x_{j}-a_{j}\right)\left(x_{j}-b_{j}\right)$ for chosen $a_{j}, b_{j} \in \mathbb{R}$. Consider the CONSTRAINED HYPERCUBE OPTIMIZATION PROBLEM (CHOP)

$$
\begin{gathered}
\min f(\mathbf{x}) \\
\text { s.t. } \quad g_{j}(\mathbf{x})=0 \text { for } j=1, \ldots, n \\
\\
p_{i}(\mathbf{x}) \geq 0 \text { for } i=1, \ldots, m \\
\\
\\
\mathbf{x} \in \mathbb{R}^{n}
\end{gathered}
$$

We denote $\mathcal{H}_{\mathcal{P}}$ as the feasible set: the n-dimensional hypercube \mathcal{H} constrained by polynomial inequalities given by \mathcal{P}.
Several key problems from theoretical computer science are equivalent to solving a CHOP. E.g., MAX CUT, Sparsest Cut, Knapsack, Maximum constraint satisfaction (CSP), Problem scheduling, etc.

Optimization over the Hypercube

Let $f, g_{1}, \ldots, g_{n}, p_{1}, \ldots, p_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $g_{j}(\mathbf{x})=\left(x_{j}-a_{j}\right)\left(x_{j}-b_{j}\right)$ for chosen $a_{j}, b_{j} \in \mathbb{R}$. Consider the CONSTRAINED HYPERCUBE OPTIMIZATION PROBLEM (CHOP)

$$
\min _{\mathbf{x} \in \mathcal{H}_{\mathcal{P}}} f(\mathbf{x})
$$

We denote $\mathcal{H}_{\mathcal{P}}$ as the feasible set: the n-dimensional hypercube \mathcal{H} constrained by polynomial inequalities given by \mathcal{P}.
Several key problems from theoretical computer science are equivalent to solving a CHOP. E.g., MAX CUT, Sparsest Cut, Knapsack, Maximum constraint satisfaction (CSP), Problem scheduling, etc.

Main goal: Find certificates with good complexity bounds in n and maximal total degree d.

Key Facts for SOS Certificates on the Boolean Hypercube

- For every feasible n-variate CHOP with constraints of degree at most d there exists a degree $2 n+2 d$ SOS certificate.

Key Facts for SOS Certificates on the Boolean Hypercube

- For every feasible n-variate CHOP with constraints of degree at most d there exists a degree $2 n+2 d$ SOS certificate.
- Finding a degree d SOS certificate for nonnegativity of a polynomial f on $\mathcal{H}_{\mathcal{P}}$ can be performed by solving an SDP of size $n^{O(d)}$.
\Rightarrow SOS certificate with at most $n^{O(d)}$ squared polynomials.

Our Main Results for SONC Certificates on $\mathcal{H}_{\mathcal{P}}$

Assumption: $|\mathcal{P}|=\operatorname{poly}(n)$.

Theorem (D., Kurpisz, de Wolff, 2018)

For every polynomial f, nonnegative over the boolean hypercube, constrained with polynomial inequalities of degree at most d, there exists a degree $n+d$ SONC certificate.

Our Main Results for SONC Certificates on $\mathcal{H}_{\mathcal{P}}$

Assumption: $|\mathcal{P}|=\operatorname{poly}(n)$.

Theorem (D., Kurpisz, de Wolff, 2018)

For every polynomial f, nonnegative over the boolean hypercube, constrained with polynomial inequalities of degree at most d, there exists a degree $n+d$ SONC certificate.

Theorem (D., Kurpisz, de Wolff, 2018)

Let f be an n-variate polynomial, nonnegative on the constrained hypercube $\mathcal{H}_{\mathcal{P}}$. If there exists a degree d SONC certificate for f, then there exists a degree d SONC certificate for f involving at most $n^{O(d)}$ many nonnegative circuit polynomials.

Proof strategy

Proof strategy

(1) Develop a Kronecker delta function for SONC on \mathcal{H} :

$$
\delta_{v}(\mathrm{x}):=\prod_{j \in[n]: v_{j}=a_{j}}\left(\frac{-x_{j}+b_{j}}{b_{j}-a_{j}}\right) \cdot \prod_{j \in[n]: v_{j}=b_{j}}\left(\frac{x_{j}-a_{j}}{b_{j}-a_{j}}\right)
$$

Proof strategy

(1) Develop a Kronecker delta function for SONC on \mathcal{H} :

$$
\delta_{v}(\mathrm{x}):=\prod_{j \in[n]: v_{j}=a_{j}}\left(\frac{-x_{j}+b_{j}}{b_{j}-a_{j}}\right) \cdot \prod_{j \in[n]: v_{j}=b_{j}}\left(\frac{x_{j}-a_{j}}{b_{j}-a_{j}}\right)
$$

- For every $\mathbf{v} \in \mathcal{H}$ it holds that:

$$
\delta_{\mathbf{v}}(\mathbf{x})= \begin{cases}0, & \text { for every } \mathbf{x} \in \mathcal{H} \backslash\{\mathbf{v}\} \\ 1, & \text { for } \mathbf{x}=\mathbf{v}\end{cases}
$$

Proof strategy

(1) Develop a Kronecker delta function for SONC on \mathcal{H} :

$$
\delta_{v}(\mathrm{x}):=\prod_{j \in[n]: v_{j}=a_{j}}\left(\frac{-x_{j}+b_{j}}{b_{j}-a_{j}}\right) \cdot \prod_{j \in[n]: v_{j}=b_{j}}\left(\frac{x_{j}-a_{j}}{b_{j}-a_{j}}\right)
$$

- For every $\mathbf{v} \in \mathcal{H}$ it holds that:

$$
\delta_{\mathbf{v}}(\mathbf{x})= \begin{cases}0, & \text { for every } \mathbf{x} \in \mathcal{H} \backslash\{\mathbf{v}\} \\ 1, & \text { for } \mathbf{x}=\mathbf{v}\end{cases}
$$

- For every $\mathbf{v} \in \mathcal{H}$ the Kronecker delta function can be written as

$$
\delta_{v}=\sum_{j=1}^{2^{n}} s_{j} H_{j}^{(n)}=\sum_{j=1}^{2^{n}} s_{j} \prod_{i=1}^{n} g_{i, j},
$$

for $s_{1}, \ldots, s_{2^{n}} \in \mathbb{R}_{\geq 0}$.

Proof strategy

(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

Proof strategy

(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
- Decompose $p_{j}=\sum_{i=1}^{\ell} a_{j i} m_{j i}$ and tackle individual monomials.
(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
- Decompose $p_{j}=\sum_{i=1}^{\ell} a_{j i} m_{j i}$ and tackle individual monomials.
- If $a_{j i} m_{j i}$ is a monomial square, then it is SONC.

Proof strategy

(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
- Decompose $p_{j}=\sum_{i=1}^{\ell} a_{j i} m_{j i}$ and tackle individual monomials.
- If $a_{j i} m_{j i}$ is a monomial square, then it is SONC.
- Otherwise add nonnegative circuit polynomial with interior term $a_{j i} m_{j i}$, and subtract redundant monomial squares.

Proof strategy

(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
- Decompose $p_{j}=\sum_{i=1}^{\ell} a_{j i} m_{j i}$ and tackle individual monomials.
- If $a_{j i} m_{j i}$ is a monomial square, then it is SONC.
- Otherwise add nonnegative circuit polynomial with interior term $a_{j i} m_{j i}$, and subtract redundant monomial squares.
Trick: Minus sign can be pushed into the $g_{j}^{\prime} s$.
(2) Let $d \in \mathbb{N}$ and $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ such that f vanishes on \mathcal{H}. Then there exist $s_{1}, \ldots, s_{2 n} \in C_{n, 2 d}$ such that

$$
f=\sum_{j=1}^{n} s_{j} g_{j}+\sum_{j=1}^{n} s_{n+j}\left(-g_{j}\right)
$$

- Use statement: Let $f \in \mathbb{R}[\mathbf{x}]_{n, 2 d+2}$ be a polynomial vanishing on \mathcal{H}. Then $f=\sum_{j=1}^{n} p_{j} g_{j}$ for some polynomials $p_{j} \in \mathbb{R}[\mathbf{x}]_{n, 2 d}$.
- Decompose $p_{j}=\sum_{i=1}^{\ell} a_{j i} m_{j i}$ and tackle individual monomials.
- If $a_{j i} m_{j i}$ is a monomial square, then it is SONC.
- Otherwise add nonnegative circuit polynomial with interior term $a_{j i} m_{j i}$, and subtract redundant monomial squares.
Trick: Minus sign can be pushed into the $g_{j}^{\prime} s$.
- Confirm that the degrees did not increase.

Proof strategy

(3) When restricted to the hypercube \mathcal{H}, a polynomial f can be represented as

$$
f(\mathbf{x})=\sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})
$$

(3) When restricted to the hypercube \mathcal{H}, a polynomial f can be represented as

$$
f(\mathbf{x})=\sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})
$$

If $\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}$ with $f(\mathbf{v})<0$, then choose $p_{\mathbf{v}} \in \mathcal{P}$ such that $p_{\mathbf{v}}(\mathbf{v})<0$. Prove for all $\mathbf{x} \in \mathcal{H}$ the decomposition

$$
f(\mathbf{x})=\sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) p_{\mathbf{v}}(\mathbf{x}) \frac{f(\mathbf{v})}{p_{\mathbf{v}}(\mathbf{v})}
$$

(3) When restricted to the hypercube \mathcal{H}, a polynomial f can be represented as

$$
f(\mathbf{x})=\sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})
$$

If $\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}$ with $f(\mathbf{v})<0$, then choose $p_{\mathbf{v}} \in \mathcal{P}$ such that $p_{\mathbf{v}}(\mathbf{v})<0$. Prove for all $\mathbf{x} \in \mathcal{H}$ the decomposition

$$
f(\mathbf{x})=\sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) p_{\mathbf{v}}(\mathbf{x}) \frac{f(\mathbf{v})}{p_{\mathbf{v}}(\mathbf{v})}
$$

This is a polynomial of degree at most $n+d$.

Proof strategy

(9) Conclude a degree at most $n+d$ decomposition

$$
\begin{aligned}
f(\mathbf{x})= & \sum_{j=1}^{n} s_{j}(\mathbf{x}) g_{j}(\mathbf{x})+\sum_{j=1}^{n} s_{n+j}(\mathbf{x})\left(-g_{j}(\mathbf{x})\right)+ \\
& \sum_{\mathbf{v} \in \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) f(\mathbf{v})+\sum_{\mathbf{v} \in \mathcal{H} \backslash \mathcal{H}_{\mathcal{P}}} \delta_{\mathbf{v}}(\mathbf{x}) p_{\mathbf{v}}(\mathbf{x}) \frac{f(\mathbf{v})}{p_{\mathbf{v}}(\mathbf{v})},
\end{aligned}
$$

for some $s_{1}, \ldots, s_{2 n} \in C_{n, n+d-2}$ and $p_{v} \in \mathcal{P}$.

Developments regarding Positivstellensätze

As a consequence of the decomposition of f in the previous theorem we can prove:
The function

$$
f_{a}(\mathbf{x}):=(a-1) \prod_{i=1}^{n}\left(\frac{x_{i}+1}{2}\right)+1
$$

has no Putinar-like SONC representation over $\mathcal{H}=\{ \pm 1\}^{n}$ if $a>\frac{2 n-1}{2^{n-2}-1}$.

Developments regarding Positivstellensätze

As a consequence of the decomposition of f in the previous theorem we can prove:
The function

$$
f_{a}(\mathbf{x}):=(a-1) \prod_{i=1}^{n}\left(\frac{x_{i}+1}{2}\right)+1
$$

has no Putinar-like SONC representation over $\mathcal{H}=\{ \pm 1\}^{n}$ if $a>\frac{2 n-1}{2^{n-2}-1}$.

Corollary (D., Kurpisz, de Wolff, 2018)
There exists no equivalent of Putinar's Positivstellensatz for SONC.

We summarize

(1) SONC polynomials provide a valid certificate for optimization over the n-variate constrained hypercube $\mathcal{H}_{\mathcal{P}}$.
(2) For $f \geq 0$ on $\mathcal{H}_{\mathcal{P}}$, with $\operatorname{deg}\left(p_{i}\right) \leq d$, there exists a degree $n+d$ SONC certificate.
(3) If f admits a degree d SONC certificate on $\mathcal{H}_{\mathcal{P}}$, then there exists a degree d SONC certificate for f involving at most $n^{O(d)}$ many nonnegative circuit polynomials.

Open Problems

(1) We showed the existence of a 'short' SONC certificate containing at most $n^{O(d)}$ nonnegative circuit polynomials. But can the corresponding REP also be formulated in time $n^{O(d)}$?

Open Problems

(1) We showed the existence of a 'short' SONC certificate containing at most $n^{O(d)}$ nonnegative circuit polynomials. But can the corresponding REP also be formulated in time $n^{O(d)}$?
(2) We also showed: SONC is not closed under affine transformation. What is its closure? How can we compute such extended SONC certificates efficiently?

Open Problems

(1) We showed the existence of a 'short' SONC certificate containing at most $n^{O(d)}$ nonnegative circuit polynomials. But can the corresponding REP also be formulated in time $n^{O(d)}$?
(2) We also showed: SONC is not closed under affine transformation. What is its closure? How can we compute such extended SONC certificates efficiently?
(3) How is the situation over other varieties?

Thank you for your attention!

Literature

- S. Iliman, T. de Wolff, "Amoebas, Nonnegative Polynomials and Sums of Squares Supported on Circuits",
Research in the Mathematical Sciences, 3 (1) (2016), 1-35; see also ArXiv 1402.0462.
- S. Iliman, T. de Wolff, "Lower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming", SIAM Journal of Optimization, 26 (2) (2016), 1128-1146; see also Arxiv 1402.6185.
- M. Dressler, S. Iliman, T. de Wolff, "An Approach to Constrained Polynomial Optimization via Nonnegative Circuit Polynomials and Geometric Programming",
Journal of Symbolic Computation (MEGA 2017 special issue); see also Arxiv 1602.06180.
- M. Dressler, S. Iliman, T. de Wolff, "A Positivstellensatz for Sums of Nonnegative Circuit Polynomials", SIAM Journal on Applied Algebra and Geometry, 1 (1) (2017), 536-555; see also Arxiv 1607.06010.
- M. Dressler, A Kurpisz, T. de Wolff, "Optimization over the Boolean Hypercube via Sums of Nonnegative Circuit Polynomials", Arxiv 1802.10004, accepted for a talk at MFCS 2018 and FLoC 2018.

