From finite to infinite dimensional moment problems

Maria Infusino

University of Konstanz

Workshop: Geometry of Real Polynomials, Convexity and Optimization Banff – May, 2019

Outline

Motivation and Framework

- The classical full *K*-Moment Problem (KMP)
- A general formulation of the full KMP

Our strategy for solving the general KMP

- The character space as a projective limit
- Extending cylindrical quasi-measures

Outcome of our "projective limit" approach

- Old and new results for the KMP
- Final remarks and open questions

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

The classical moment problem in one dimension

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^\mu := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^\mu := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^\mu := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Radon measure with all moments finite

Moment Sequence of μ

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

$$\mu$$
 non-neg. Radon measure
with all moments finite \downarrow \downarrow $-$ Moment Sequence of μ

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional K-Moment Problem (KMP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers and a closed $K \subseteq \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on K s.t. for any n = 0, 1, ..., N we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

If yes, μ is called *K*-representing (Radon) measure for *m*.

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Radon measure with all moments finite \downarrow \leftarrow ----- Moment Sequence of μ

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional K-Moment Problem (KMP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers and a closed $K \subseteq \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on K s.t. for any n = 0, 1, ..., N we have

$$m_n = \underbrace{\int_K x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

If yes, μ is called K-representing (Radon) measure for m.

 $N = \infty \rightsquigarrow \mathsf{Full} \mathsf{KMP}$ $N \in \mathbb{N} \rightsquigarrow \mathsf{Truncated} \mathsf{KMP}$

Let μ be a nonnegative Radon measure on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

$$\mu$$
 non-neg. Radon measure
with all moments finite \downarrow \downarrow $-$ Moment Sequence of μ

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional K-Moment Problem (KMP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers and a closed $K \subseteq \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on K s.t. for any n = 0, 1, ..., N we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

If yes, μ is called *K*-representing (Radon) measure for *m*.

 $N = \infty \rightsquigarrow \text{Full KMP}$ $N \in \mathbb{N} \rightsquigarrow \text{Truncated KMP}$

Our strategy for solving the general KMP Outcome of our "projective limit" approach

The classical full *K*-Moment Problem (KMP) A general formulation of the full KMP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$\begin{array}{rccc} {}_{m} \colon & \mathbb{R}[x] & \to & \mathbb{R} \\ & p(x) \coloneqq \sum\limits_{n=0}^{N} a_{n} \, x^{n} & \mapsto & L_{m}(p) \coloneqq \sum\limits_{n=0}^{N} a_{n} \, m_{n}. \end{array}$$

Note:

If μ is a *K*-representing Radon measure for *m*, then

$$L_m(p) = \sum_{n=0}^{N} a_n m_n = \sum_{n=0}^{N} a_n \int_{K} x^n \mu(dx) = \int_{K} p(x) \mu(dx)$$

Our strategy for solving the general KMP Outcome of our "projective limit" approach

The classical full *K*-Moment Problem (KMP) A general formulation of the full KMP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$\begin{array}{rccc} {}_m \colon & \mathbb{R}[x] & \to & \mathbb{R} \\ & p(x) \coloneqq \sum_{n=0}^N a_n \, x^n & \mapsto & L_m(p) \coloneqq \sum_{n=0}^N a_n \, m_n. \end{array}$$

Note:

If μ is a K-representing Radon measure for m, then

$$L_m(p) = \sum_{n=0}^{N} a_n m_n = \sum_{n=0}^{N} a_n \int_{K} x^n \mu(dx) = \int_{K} p(x) \mu(dx).$$

The one dimensional K-Moment Problem (KMP)

Given a sequence $m = (m_n)_{n=0}^{\infty}$ of real numbers and a closed $K \subseteq \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on K s.t. for any $p \in \mathbb{R}[x]$ we have

$$L_m(p) = \int_K p(x)\mu(dx) ?$$

Our strategy for solving the general KMP Outcome of our "projective limit" approach

The classical full *K*-Moment Problem (KMP) A general formulation of the full KMP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$\begin{array}{rccc} {}_m \colon & \mathbb{R}[x] & \to & \mathbb{R} \\ & p(x) \coloneqq \sum_{n=0}^N a_n \, x^n & \mapsto & L_m(p) \coloneqq \sum_{n=0}^N a_n \, m_n. \end{array}$$

Note:

If μ is a K-representing Radon measure for m, then

$$L_m(p) = \sum_{n=0}^{N} a_n m_n = \sum_{n=0}^{N} a_n \int_{K} x^n \mu(dx) = \int_{K} p(x) \mu(dx).$$

The one-dimensional *K*-Moment Problem (KMP)

Given a linear functional $L : \mathbb{R}[x] \to \mathbb{R}$ and a closed $K \subseteq \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on K s.t. for any $p \in \mathbb{R}[x]$ we have

$$L(p) = \int_K p(x)\mu(dx) ?$$

The classical full finite dimensional K-moment problem

Let $\mathbf{x} := (x_1, \dots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (KMP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and a closed $K \subseteq \mathbb{R}^d$, does there exist a nonnegative Radon measure μ supported on K s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_K p(\mathbf{x}) \mu(d\mathbf{x}) \; ?$$

The classical full finite dimensional K-moment problem

Let $\mathbf{x} := (x_1, \dots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (KMP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and a closed $K \subseteq \mathbb{R}^d$, does there exist a nonnegative Radon measure μ supported on K s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_K p(\mathbf{x}) \mu(d\mathbf{x}) \; ?$$

- What if we have infinitely many real variables?
- What if K is an infinite dimensional ℝ-vector space?
- What if we take a generic unital commutative \mathbb{R} -algebra A instead of $\mathbb{R}[x]$?

The classical full finite dimensional K-moment problem

Let $\mathbf{x} := (x_1, \dots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (KMP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and a closed $K \subseteq \mathbb{R}^d$, does there exist a nonnegative Radon measure μ supported on K s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_K p(\mathbf{x}) \mu(d\mathbf{x}) \; ?$$

- What if we have infinitely many real variables?
- What if K is an infinite dimensional R-vector space?
- What if we take a generic unital commutative \mathbb{R} -algebra A instead of $\mathbb{R}[x]$?

Infinite dimensional K-Moment Problem

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

• $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$

General setting

• A = unital commutative \mathbb{R} -algebra

The classical K-moment problem

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

• $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$

• $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$

General setting

• A = unital commutative \mathbb{R} -algebra

The classical K-moment problem

$$L(p) = \int_{\mathbb{R}^d} a(\alpha) \mu(d\alpha), \ \forall a \in \mathbb{R}[\mathbf{x}]?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

• $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$

• $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = \text{Hom}(A; \mathbb{R})$ character space of A

The classical K-moment problem

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$

• For
$$a \in \mathbb{R}[\mathbf{x}]$$
,
 $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$,
 $\forall \alpha \in \mathbb{R}^d$.

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A

The classical K-moment problem

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$
- For $a \in \mathbb{R}[\mathbf{x}]$, $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$, $\forall \alpha \in \mathbb{R}^d$.

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a)$, $\forall \alpha \in X(A)$.

The classical K-moment problem

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$
- For $a \in \mathbb{R}[\mathbf{x}]$, $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$, $\forall \alpha \in \mathbb{R}^d$.
- \mathbb{R}^d is given the product topology

The classical K-moment problem

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and $K \subseteq \mathbb{R}^d$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a)$, $\forall \alpha \in X(A)$.

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$
- For $a \in \mathbb{R}[\mathbf{x}]$, $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$, $\forall \alpha \in \mathbb{R}^d$.
- \mathbb{R}^d is given the product topology

The classical K-moment problem

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and $K \subseteq \mathbb{R}^d$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(p) = \int_{\mathbb{R}^d} a(lpha) \mu(dlpha), \; orall a \in \mathbb{R}[\mathbf{x}]?$$

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a)$, $\forall \alpha \in X(A)$.
- X(A) is given the weakest topology ω_A
 s.t. all â, a ∈ A are continuous.

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$
- For $a \in \mathbb{R}[\mathbf{x}]$, $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$, $\forall \alpha \in \mathbb{R}^d$.
- \mathbb{R}^d is given the product topology

The classical K-moment problem

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ and $K \subseteq X(\mathbb{R}[\mathbf{x}])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(\mathbb{R}[\mathbf{x}])} \hat{a}(\alpha) \mu(d\alpha), \, \forall a \in \mathbb{R}[\mathbf{x}]?$$

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a)$, $\forall \alpha \in X(A)$.
- X(A) is given the weakest topology ω_A
 s.t. all â, a ∈ A are continuous.

The classical full K – Moment Problem (KMP) A general formulation of the full KMP

A general formulation of the full KMP

Classical setting

- $\mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \ldots, x_d]$
- $\mathbb{R}^d \cong \operatorname{Hom}(\mathbb{R}[x_1,\ldots,x_d];\mathbb{R})$
- For $a \in \mathbb{R}[\mathbf{x}]$, $\hat{a} : \mathbb{R}^d \to \mathbb{R}$ is $\hat{a}(\alpha) := a(\alpha)$, $\forall \alpha \in \mathbb{R}^d$.
- \mathbb{R}^d is given the product topology

The classical K-moment problem

Given a linear functional $L: \mathbb{R}[x] \to \mathbb{R}$ and

 $K \subseteq X(\mathbb{R}[x])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(\mathbb{R}[\mathbf{x}])} \hat{a}(\alpha) \mu(d\alpha), \, \forall a \in \mathbb{R}[\mathbf{x}]?$$

General setting

- A = unital commutative \mathbb{R} -algebra
- $X(A) = Hom(A; \mathbb{R})$ character space of A
- For $a \in A$ the **Gelfand transform** $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a)$, $\forall \alpha \in X(A)$.
- X(A) is given the weakest topology ω_A
 s.t. all â, a ∈ A are continuous.

The general K-moment problem

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall a \in A?$$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

Results' types for the classical KMP

Let $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be linear.

Riesz-Haviland

Let $K \subseteq \mathbb{R}^d$ be closed. $L(\operatorname{Psd}(K)) \subseteq [0, \infty) \Leftrightarrow \exists K$ -representing measure for L. where $\operatorname{Psd}(K) := \{ p \in \mathbb{R}[x] : p \ge 0 \text{ on } K \}.$

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

Results' types for the classical KMP

Let $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be linear.

Riesz-Haviland

Let $K \subseteq \mathbb{R}^d$ be closed. $L(\operatorname{Psd}(K)) \subseteq [0, \infty) \Leftrightarrow \exists K$ -representing measure for L. where $\operatorname{Psd}(K) := \{p \in \mathbb{R}[\mathbf{x}] : p \ge 0 \text{ on } K\}.$

Nussbaum type

(i)
$$L(p^2) \ge 0$$
 for all $p \in \mathbb{R}[\mathbf{x}]$.
(ii) $\forall i = 1, \dots, d : \sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{L(\chi_i^{2n})}} = \infty$
Carleman Condition
 \Downarrow
 $\exists ! \mathbb{R}^d$ -representing measure for L .

The classical full *K*-Moment Problem (KMP) A general formulation of the full KMP

Results' types for the classical KMP

Let $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be linear.

• *M* quadratic module of $\mathbb{R}[\mathbf{x}]$, i.e. $M + M \subseteq M, 1 \in M, a^2M \subseteq M, \forall a \in \mathbb{R}[\mathbf{x}]$

K_M := {*y* ∈ ℝ^d : *q*(*y*) ≥ 0, ∀*q* ∈ *M*} basic closed semi-algebraic set.

Riesz-Haviland Let $K \subseteq \mathbb{R}^d$ be closed. $L(Psd(K)) \subseteq [0,\infty) \Leftrightarrow \exists K$ -representing measure for I where $Psd(K) := \{p \in \mathbb{R}[\mathbf{x}] : p \ge 0 \text{ on } K\}.$ Nussbaum type (i) L(M) > 0 for some quadratic module M of $\mathbb{R}[\mathbf{x}]$, (ii) $\forall i = 1, \dots, d, \sum_{n=1}^{\infty} \frac{1}{\frac{2n}{L(X_{i}^{2n})}} = \infty$ Carleman Condition $\exists ! K_M$ -representing measure for L.

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

Results' types for the classical KMP

Let $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be linear.

- *M* quadratic module of $\mathbb{R}[\mathbf{x}]$, i.e. $M + M \subseteq M, 1 \in M, a^2M \subseteq M, \forall a \in \mathbb{R}[\mathbf{x}]$
- *M* Archimedean if $\forall a \in \mathbb{R}[\mathbf{x}], \exists n \in \mathbb{N}: n \pm a \in M$
- $\mathcal{K}_M := \{y \in \mathbb{R}^d : q(y) \ge 0, \forall q \in M\}$ basic closed semi-algebraic set.

Riesz-Haviland

Let $K \subseteq \mathbb{R}^d$ be closed. $L(\operatorname{Psd}(K)) \subseteq [0, \infty) \Leftrightarrow \exists K$ -representing measure for L. where $\operatorname{Psd}(K) := \{p \in \mathbb{R}[\mathbf{x}] : p \ge 0 \text{ on } K\}$.

Archimedean type

Nussbaum type

The classical full K – Moment Problem (KMP) A general formulation of the full KMP

Results' types for the classical KMP

Let $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ be linear.

- *M* quadratic module of $\mathbb{R}[\mathbf{x}]$, i.e. $M + M \subseteq M, 1 \in M, a^2M \subseteq M, \forall a \in \mathbb{R}[\mathbf{x}]$
- *M* Archimedean if $\forall a \in \mathbb{R}[\mathbf{x}], \exists n \in \mathbb{N}: n \pm a \in M$
- $\mathcal{K}_M := \{y \in \mathbb{R}^d : q(y) \ge 0, \forall q \in M\}$ basic closed semi-algebraic set.

Riesz-Haviland

Let $K \subseteq \mathbb{R}^d$ be closed. $L(\operatorname{Psd}(K)) \subseteq [0, \infty) \Leftrightarrow \exists K$ -representing measure for L. where $\operatorname{Psd}(K) := \{p \in \mathbb{R}[\mathbf{x}] : p \ge 0 \text{ on } K\}$.

Nussbaum type

Archimedean type

Closure type

- (i) $\underline{\tau}$ is a topology on $\mathbb{R}[\mathbf{x}]$ s.t. $\overline{M}^{\tau} \supseteq \operatorname{Psd}(K_M \cap \operatorname{sp}(\tau))$ for some M quadratic module of $\mathbb{R}[\mathbf{x}]$
- (ii) L is τ -continuous

(iii)
$$L(M) \ge 0$$

 $\exists ! K_M \cap \operatorname{sp}(\tau) - \text{representing measure for } L.$

Our strategy for solving the general KMP Outcome of our "projective limit" approach The classical full K-Moment Problem (KMP) A general formulation of the full KMP

What about infinite dimensional settings?

Riesz-Haviland type

• A = S(V)• $V = C_{\perp}^{+}(\mathbb{R}^{d})$ (Lenard 1975 (Krein, Nudelmann 1977) • V nuclear space, L continuous e.g. Berezansky; Borchers, Yngvason; Challifour, Slinker; Hergerfeldt; Schmüdgen 1975-90 • A general and K s.t. (*) (*) $\exists a \in A : \hat{a} \geq 0$ on $K \& \{\alpha \in X(A) : \hat{a}(\alpha) \leq n\}$ is compact $\forall n \in \mathbb{N}$ (Marshall 2003) • $A = \mathbb{R}[x, i \in \Omega]$ • Ω countable (Alpay, Jorgensen, Kimsey 2015) • Ω arbitrary, K described by countably many ineq. (Ghasemi, Kuhlmann, Marshall 2016) • A generated by $T \cup \{1\}$ lc s.t. $T' \subseteq X(A)$

(Schmüdgen 2017)

Nussbaum type

- A = S(V) with V nuclear
- -K = V' (Berezansky, Kondratiev, Šifrin 1970's) $-K = K_M, V = C_c^{\infty}(\mathbb{R}^d)$ (Infusino, Kuna, Rota 2014)
- $A = \mathbb{R}[x_i, i \in \Omega]^{\top}$ Ω arbitrary, $K = K_M$, M countably generated (Ghasemi, Kuhlmann, Marshall 2016)

Mixed type

• *A* =poly of point processes, *K* =point configurations,

(e.g. Berezansky, Kondratiev, Kuna, Lytvynov, Oliveira, Lebowitz, Speer, 1999–2011.)

• A =polynomials of Brownian motion,

K = Wiener space of \mathbb{R} (Albeverio, Herzberg 2008)

Archimedean property

• A general, $K = K_M$ with M Archimedean quadratic mod. (Putinar, Jacobi, Prestel 93-01) • A general, $K = K_M$ with T weakly torsion preprime, M archimedean T-module (Marshall 01) • $A = \mathbb{R}[x_i, i \in \Omega]$ and Ω countable, K_P compact and P preordering (Alpay, Jorgensen, Kimsey 2015)

Closure type

• (A, τ) topological algebras with involution, L continuous (e.g. Berg, Christiansen, Ressel, Schmüdgen 1970's) • (A, τ) Imc algebra, L continuous, $K = K_M \cap sp(\tau), M$ 2d-power module (Ghasemi, Kuhlmann, Marshall 2014) • A = S(V) and V lc, L continuous, $K = K_M \cap B \subseteq V', M$ 2d-power module (Infusino, Ghasemi, Kuhlmann, Marshall 2018)

The classical full K-Moment Problem (KMP) A general formulation of the full KMP

Urge for a general approach to the infinite dimensional KMP

...beyond:

- analysis of interacting particle systems $\rightsquigarrow K =$ point configuration spaces
- solving KMP for $\rightsquigarrow K$ =space of solutions of PDEs or SDEs,
- computation of the ground state energy of systems of non-relativistic electrons KMP for wave functions
- random packing and heterogeneous materials

The *K*-moment problem for unital commutative \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall \ a \in A?$$

If yes, μ is called K-representing (Radon) measure for L.

Our idea

construct X(A) as a projective limit of all $(X(S), \mathcal{B}_S)$

- $\bullet~S$ finitely generated subalgebra of A with $1\in S$
- \mathcal{B}_S Borel σ -algebra on X(S) w.r.t. ω_S .

The *K*-moment problem for unital commutative \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall \ a \in A?$$

If yes, μ is called *K*-representing (Radon) measure for *L*.

Our idea

construct X(A) as a projective limit of all $(X(S), \mathcal{B}_S)$

- S finitely generated subalgebra of A with $1 \in S$
- \mathcal{B}_S Borel σ -algebra on X(S) w.r.t. ω_S .

finite dimensional moment theory

The *K*-moment problem for unital commutative \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall \ a \in A?$$

If yes, μ is called K-representing (Radon) measure for L.

The *K*-moment problem for unital commutative \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall \ a \in A?$$

If yes, μ is called K-representing (Radon) measure for L.

The K-moment problem for unital commutative \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$ and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha), \ \forall \ a \in A?$$

If yes, μ is called K-representing (Radon) measure for L.

The character space as a projective limit of topological spaces

- A =unital commutative \mathbb{R} -algebra
- For any $S \subseteq A$ subalgebra
 - X(S)=character space of A=Hom(S; ℝ)
 - For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
 - $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
 - $\equiv \text{ topology induced by the embedding } \begin{cases} X(S) \hookrightarrow \mathbb{R}^S \\ \alpha \mapsto (\hat{a}(\alpha))_{a \in S} \end{cases}$
A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
 - $\equiv \text{ topology induced by the embedding} \begin{cases} X(S) \hookrightarrow \mathbb{R}^{S} \\ \alpha \mapsto (\hat{a}(\alpha))_{\alpha \in S} \end{cases}$

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

1) $(X(S), \omega_S)$ Hausdorff topological space

A = unital commutative \mathbb{R} -algebra

For any $S \subset A$ subalgebra

- X(S) = character space of A = Hom $(S; \mathbb{R})$
- For $a \in S$ the Gelfand transform $\hat{a}_S : X(S) \to \mathbb{R}$ is $\hat{a}_S(\alpha) := \alpha(a), \forall \alpha \in X(S)$.
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
 - $\equiv \text{ topology induced by the embedding} \begin{cases} X(S) \hookrightarrow \mathbb{R}^{S} \\ \alpha \mapsto (\hat{a}(\alpha))_{\alpha \in S} \end{cases}$

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

1) $(X(S), \omega_S)$ Hausdorff topological space

2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

A = unital commutative \mathbb{R} -algebra

For any $S \subset A$ subalgebra

- X(S) = character space of A = Hom $(S; \mathbb{R})$
- For $a \in S$ the Gelfand transform $\hat{a}_S : X(S) \to \mathbb{R}$ is $\hat{a}_S(\alpha) := \alpha(a), \forall \alpha \in X(S)$.
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
 - $\equiv \text{ topology induced by the embedding} \begin{cases} X(S) \hookrightarrow \mathbb{R}^{S} \\ \alpha & \mapsto & (\hat{a}(\alpha))_{a \in S} \end{cases}$

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

1) $(X(S), \omega_S)$ Hausdorff topological space

2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

3) $\pi_{S,T}$ is continuous.

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
 - $\equiv \text{ topology induced by the embedding} \begin{cases} X(S) \hookrightarrow \mathbb{R}^{S} \\ \alpha \mapsto (\hat{a}(\alpha))_{a \in S}. \end{cases}$

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

- 1) $(X(S), \omega_S)$ Hausdorff topological space
- 2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

 $\pi_{S,T}: \begin{array}{ccc} X(T) & \rightarrow & X(S) \\ \alpha & \mapsto & \alpha \upharpoonright_{S} \end{array} \quad \text{then } \forall S \subseteq T \subseteq R \quad \begin{array}{ccc} \pi_{T,R} & & \\ \pi_{T,R} & & \\ \text{in } J: & & X(T) \end{array} \xrightarrow{\kappa_{S,T}} X(S)$

3) $\pi_{S,T}$ is continuous.

1) 2) 3) $\Leftrightarrow \{(X(S), \omega_S), \pi_{S,T}, J\}$ is a projective system of Hausdorff top. spaces

Proposition

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$ and for any $S \in J$

 $\pi_{\mathcal{S}} := \pi_{\mathcal{S},\mathcal{A}} : X(\mathcal{A}) \to X(\mathcal{S}), \alpha \mapsto \alpha \restriction_{\mathcal{S}}$

Then $\{(X(A), \omega_A), \pi_S, J\}$ is a **projective limit** of $\{(X(S), \omega_S), \pi_{S,T}, J\}$

Proof

•
$$\pi_{S,T} \circ \pi_T = \pi_S$$
 for all $S \subseteq T$ in J

- ω_A coincides with the weakest topology w.r.t. which all π_S 's are continuous
- For any topological space (Y, τ_Y) and any continuous $f_S : Y \to X(S)$ with $S \in J$ and $f_S = \pi_{S,T} \circ f_T, \forall S \subseteq T, \exists !$ continuous $f : Y \to X(A)$ s.t. $\pi_S \circ f = f_S \forall S \in J$.

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For $a \in S$ the Gelfand transform $\hat{a}_S : X(S) \to \mathbb{R}$ is $\hat{a}_S(\alpha) := \alpha(a), \forall \alpha \in X(S)$.
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
- $\mathcal{B}_S :=$ Borel σ -algebra on X(S) w.r.t. ω_S

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
- $\mathcal{B}_S :=$ Borel σ -algebra on X(S) w.r.t. ω_S

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

1) $(X(S), \mathcal{B}_S)$ Borel measurable space

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
- $\mathcal{B}_S :=$ Borel σ -algebra on X(S) w.r.t. ω_S

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

- 1) $(X(S), \mathcal{B}_S)$ Borel measurable space
- 2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
- $\mathcal{B}_S :=$ Borel σ -algebra on X(S) w.r.t. ω_S

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

- 1) $(X(S), \mathcal{B}_S)$ Borel measurable space
- 2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

 $\begin{array}{cccc} \pi_{S,T}: X(T) & \to & X(S) \\ \alpha & \mapsto & \alpha \upharpoonright S \end{array} & \text{then } \forall S \subseteq T \subseteq R & \pi_{T,R} \\ \text{in } J: & & & \\ \end{array}$

3) $\pi_{S,T}$ is measurable.

A =unital commutative $\mathbb{R}-$ algebra

For any $S \subseteq A$ subalgebra

- X(S)=character space of A=Hom(S; ℝ)
- For a ∈ S the Gelfand transform â_S : X(S) → ℝ is â_S(α) := α(a), ∀α ∈ X(S).
- $\omega_S :=$ weakest topology on X(S) s.t. all \hat{a}_S , $a \in S$ are continuous
- $\mathcal{B}_S :=$ Borel σ -algebra on X(S) w.r.t. ω_S

Consider the directed partially ordered set:

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

- 1) $(X(S), \mathcal{B}_S)$ Borel measurable space
- 2) For any $S, T \in J$ s.t. $S \subseteq T$, we define

 $\begin{array}{cccc} \pi_{S,T}: X(T) & \to & X(S) \\ \alpha & \mapsto & \alpha \upharpoonright_{S} \end{array} & \begin{array}{c} \text{then } \forall S \subseteq T \subseteq R & & & \\ \text{in } J: & & X(T) & \xrightarrow{\pi_{S,T}} & \\ \end{array} \\ \end{array} \xrightarrow{\pi_{S,T}} X(S)$

3) $\pi_{S,T}$ is measurable.

1) 2) 3) $\Leftrightarrow \{(X(S), \omega_S), \pi_{S,T}, J\}$ is a projective system of measurable spaces

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces

 $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ associated projective system of Borel measurable spaces

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces

 $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ associated projective system of Borel measurable spaces

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ associated projective system of Borel measurable spaces

 $\Sigma_J :=$ the smallest σ -algebra on X(A) s.t. all the $\pi_S, S \in J$ are measurable.

then

Proposition

 $\{(X(A), \Sigma_J), \pi_S, J\}$ is a projective limit of $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ associated projective system of Borel measurable spaces

 $\Sigma_J :=$ the smallest σ -algebra on X(A) s.t. all the $\pi_S, S \in J$ are measurable.

cylinder σ -algebra on X(A)

Proposition

 $\{(X(A), \Sigma_J), \pi_S, J\}$ is a **projective limit** of $\{(X(S), \mathcal{B}_S), \pi_{S, T}, J\}$

Let $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ $\{(X(S), \omega_S), \pi_{S,T}, J\}$ projective system of Hausdorff top. spaces $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ associated projective system of Borel measurable spaces

 $\Sigma_J :=$ the smallest σ -algebra on X(A) s.t. all the $\pi_S, S \in J$ are measurable.

cylinder σ -algebra on X(A)

Proposition

 $\{(X(A), \Sigma_J), \pi_S, J\}$ is a projective limit of $\{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$

- cylinder set in X(A): $\pi_S^{-1}(M)$ for some $S \in J$ and $M \in \mathcal{B}_S$
- cylinder algebra on X(A): $C_J := \{\pi_S^{-1}(M) : M \in \mathcal{B}_S, \forall S \in J\}$
- cylinder σ -algebra on X(A): $\sigma(C_J) \equiv \Sigma_J$

 $\sigma(\mathcal{C}_J) \equiv \Sigma_J \subseteq \mathcal{B}_A$

The character space as a projective limit

A = unital commutative \mathbb{R} -algebra

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$

Proposition

{ $(X(A), \omega_A), \pi_S, J$ } is the projective limit of { $(X(S), \omega_S), \pi_{S,T}, J$ } { $(X(A), \Sigma_J), \pi_S, J$ } is the projective limit of { $(X(S), \mathcal{B}_S), \pi_{S,T}, J$ } where for any $S \in J$

•
$$\pi_{S} := \pi_{S,A} : X(A) \to X(S), \alpha \mapsto \alpha \restriction_{S}$$

• Σ_J the smallest σ -algebra on X(A) s.t. all the $\pi_S, S \in J$ are measurable

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \} = \text{projective system of Borel measurable spaces}$ $\{ (X(A), \Sigma_J), \pi_S, J \} \text{ projective limit of } \mathcal{P}$

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \} = \text{projective system of Borel measurable spaces}$ $\{ (X(A), \Sigma_J), \pi_S, J \} \text{ projective limit of } \mathcal{P}$

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \} = \text{projective system of Borel measurable spaces}$ $\{ (X(A), \Sigma_J), \pi_S, J \} \text{ projective limit of } \mathcal{P}$

$$\left(\forall S \in J, \mu_S \text{ measure on } (X(S), \mathcal{B}_S) \right) \Rightarrow \left(\begin{array}{c} \mu : \mathcal{C}_J \to \mathbb{R}^+ s.t. \, \pi_{S \#} \mu = \mu_S, \forall S \in J \\ i.e.\mu(\pi_S^{-1}(E)) := \mu_S(E), E \in \mathcal{B}_S \end{array} \right)$$

Cylindrical quasi-measure

A cylindrical quasi-measure μ w.r.t. \mathcal{P} is a set function $\mu : \mathcal{C}_J \to \mathbb{R}^+$ s.t. $\pi_{S\#}\mu$ is a measure on $(X(S), \mathcal{B}_S)$ for all $S \in J$.

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \} = \text{projective system of Borel measurable spaces}$ $\{ (X(A), \Sigma_J), \pi_S, J \} \text{ projective limit of } \mathcal{P}$

$$\left(\forall S \in J, \mu_S \text{ measure on } (X(S), \mathcal{B}_S) \right) \Rightarrow \left(\begin{array}{c} \mu : \mathcal{C}_J \to \mathbb{R}^+ s.t. \, \pi_{S \#} \mu = \mu_S, \forall S \in J \\ i.e. \mu(\pi_S^{-1}(E)) := \mu_S(E), E \in \mathcal{B}_S \end{array} \right)$$

Cylindrical quasi-measure

A cylindrical quasi-measure μ w.r.t. \mathcal{P} is a set function $\mu : \mathcal{C}_J \to \mathbb{R}^+$ s.t. $\pi_{S\#}\mu$ is a measure on $(X(S), \mathcal{B}_S)$ for all $S \in J$.

NB: Cylindrical quasi-measures are NOT measures!

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\begin{aligned} \mathcal{P} &:= \{ (X(S), \mathcal{B}_S), \pi_{S, T}, J \} = \text{projective system of Borel measurable spaces} \\ \{ (X(A), \Sigma_J), \pi_S, J \} \text{ projective limit of } \mathcal{P} \end{aligned}$

$$\left(\forall S \in J, \mu_S \text{ measure on } (X(S), \mathcal{B}_S) \right) \Rightarrow \left(\begin{array}{c} \mu : \mathcal{C}_J \to \mathbb{R}^+ s.t. \, \pi_{S \#} \mu = \mu_S, \forall S \in J \\ i.e.\mu(\pi_S^{-1}(E)) := \mu_S(E), E \in \mathcal{B}_S \end{array} \right)$$

Cylindrical quasi-measure

A cylindrical quasi-measure μ w.r.t. \mathcal{P} is a set function $\mu : \mathcal{C}_J \to \mathbb{R}^+$ s.t.

 $\pi_{S\#}\mu$ is a measure on $(X(S), \mathcal{B}_S)$ for all $S \in J$.

Question 1

When can a cylindrical quasi-measure w.r.t. \mathcal{P} be extended to a measure on Σ_J ?

The character space as a projective limit Extending cylindrical quasi-measures

Cylindrical quasi-measures vs Measures

 $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} = \text{projective system of Borel measurable spaces}$ $\{(X(A), \Sigma_J), \pi_S, J\}$ projective limit of \mathcal{P}

$$\left(\forall S \in J, \mu_S \text{ measure on } (X(S), \mathcal{B}_S) \right) \Rightarrow \left(\begin{array}{c} \mu : \mathcal{C}_J \to \mathbb{R}^+ s.t. \, \pi_{S \#} \mu = \mu_S, \forall S \in J \\ i.e. \mu(\pi_S^{-1}(E)) := \mu_S(E), E \in \mathcal{B}_S \end{array} \right)$$

Cylindrical quasi-measure

A cylindrical quasi-measure μ w.r.t. \mathcal{P} is a set function $\mu : \mathcal{C}_J \to \mathbb{R}^+$ s.t.

 $\pi_{S\#}\mu$ is a measure on $(X(S), \mathcal{B}_S)$ for all $S \in J$.

Question 1

When can a cylindrical quasi-measure w.r.t. \mathcal{P} be extended to a measure on Σ_J ?

Question 2

When can a cylindrical quasi-measure be extended to a Radon measure on \mathcal{B}_A ?

The character space as a projective limit Extending cylindrical quasi-measures

Extension theorems à la Prokhorov

 $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} =$ projective system of Borel measurable spaces

 $\begin{array}{c} \text{Cylindrical} \\ \text{quasi-measure on} & \text{measure on} \\ (X(A), \mathcal{C}_J) & \hookrightarrow & (X(A), \Sigma_J) & \hookrightarrow & (X(A), \mathcal{B}_A) \end{array}$

An exact projective system of measures w.r.t. \mathcal{P} is a family $\{\mu_S, S \in J\}$ s.t. • μ_S measure on \mathcal{B}_S for all $S \in J$ • $\pi_{S,T \#} \mu_T = \mu_S$ for all $S \subseteq T$ in J

The character space as a projective limit Extending cylindrical quasi-measures

Extension theorems à la Prokhorov

 $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} =$ projective system of Borel measurable spaces

 $\begin{array}{c} \text{Cylindrical} \\ \text{quasi-measure on} & \text{measure on} \\ (X(A), \mathcal{C}_J) & \hookrightarrow & (X(A), \Sigma_J) & \hookrightarrow & (X(A), \mathcal{B}_A) \end{array}$

An exact projective system of measures w.r.t. \mathcal{P} is a family $\{\mu_S, S \in J\}$ s.t. • μ_S measure on \mathcal{B}_S for all $S \in J$ • $\pi_{S,T \#} \mu_T = \mu_S$ for all $S \subseteq T$ in J

Extension theorems à la Prokhorov

 $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} =$ projective system of Borel measurable spaces

 $\begin{array}{ccc} \text{Cylindrical} \\ \text{quasi-measure on} & \text{measure on} & \text{Borel measure on} \\ (X(A), \mathcal{C}_J) & \hookrightarrow & (X(A), \Sigma_J) & \hookrightarrow & (X(A), \mathcal{B}_A) \end{array}$

An exact projective system of measures w.r.t. \mathcal{P} is a family $\{\mu_S, S \in J\}$ s.t. • μ_S measure on \mathcal{B}_S for all $S \in J$ • $\pi_{S,T \#} \mu_T = \mu_S$ for all $S \subseteq T$ in J

Answer to Question 1

If $\{\mu_{\mathcal{S}}, \mathcal{S} \in J\}$ is an exact projective system of Radon probabilities w.r.t. \mathcal{P} , then \exists ! **probability** ν on $(X(A), \Sigma_J)$ such that $\pi_{S \#} \nu = \mu_S$ for all $S \in J$.

Answer to Question 2

If $\{\mu_5, 5 \in J\}$ is an exact projective system of Radon probabilities w.r.t. \mathcal{P}_n then \exists ! Radon probability μ on $(X(A), \Sigma_J)$ such that $\pi_{S \#} \nu = \mu_S$ for all $S \in J$ iff

 $\forall \varepsilon > 0 \exists K \subset X(A) \text{ compact s.t. } \forall S \in J, \ \mu_S(\pi_S(K)) \geq 1 - \varepsilon \quad (\varepsilon\text{-K})$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Sketch of the proof

 $\begin{array}{l} \forall S \in J, \ \exists \ \mu_S \text{representing Radon measure for } L \upharpoonright_S \\ \text{s.t.} \ \forall S \subseteq T, \ \mu_S = \pi_{S,T \ \#} \mu_T \end{array}$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Existence of representing measures on the cylinder σ -alg.

Theorem* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\left(\begin{array}{c} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{array}\right)$

Sketch of the proof

 μ is a constructibly Radon measure [Ghasemi-Kulmann-Marshall, '16]

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S, T}, J \} \text{ projective system} \\ \downarrow \text{ EXISTENCE HP}$

↓ THM 1

 $\exists ! \mu \text{ measure on } (X(A), \Sigma_J) \text{ s.t. } \pi_{S \#} \mu = \mu_S, \quad \forall S \in J$

Hence, for any $a \in A$ we have $a \in S$ for some $S \in J$ and so

$$L(a) = L \upharpoonright_{S} (a) = \int_{X(S)} \hat{a}(\beta) d\mu_{S}(\beta) = \int_{X(A)} \hat{a}(\pi_{S}(\beta)) d\mu(\beta) = \int_{X(A)} \hat{a}(\alpha) d\mu(\alpha).$$

Existence of representing measures on the cylinder σ -alg.

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

(1.)
$$L(a^2) \ge 0$$
 for all $a \in A$.

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists ! X(A)$ -representing measure ν on $(X(A), \Sigma_J)$ for L.
Existence of representing measures on the cylinder σ -alg.

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

$$\begin{array}{ll} \text{I.}) & L(a^2) \geq 0 \ \text{for all} \ a \in A. \end{array}$$

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists X(A)$ -representing measure ν on $(X(A), \Sigma_J)$ for L.

Proof makes use of the following well-known finite-dimensional result:

Theorem (Nussbaum, 1965)

Let
$$L : \mathbb{R}[X_1, \ldots, X_d] \to \mathbb{R}$$
 be linear s.t. $L(1) = 1$. If

(i)
$$L(p^2) \ge 0$$
 for all $p \in \mathbb{R}[X_1, \dots, X_d]$.

(ii)
$$\forall i = 1, \dots, d : \sum_{n=1}^{\infty} \frac{1}{\frac{2n}{L(X_i^{2n})}} = \infty$$
 Carleman Condition

then $\exists ! \mathbb{R}^d$ -representing Radon measure for *L*.

Existence of representing measures on the cylinder σ -alg.

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

$$(I.) \quad L(a^2) \ge 0 \text{ for all } a \in A.$$

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists X(A)$ -representing measure ν on $(X(A), \Sigma_J)$ for L.

Special case: $A = \mathbb{R}[X_i, i \in \Omega]$ with Ω arbitrary index set.

Theorem (Ghasemi, Kuhlmann, Marshall, 2016)

Let $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$ be linear s.t. L(1) = 1. If

(i)
$$L(p^2) \ge 0$$
 for all $p \in \mathbb{R}[X_i, i \in \Omega]$.

(ii)
$$\forall i \in \Omega : \sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{L(X_i^{2n})}} = \infty.$$

then $\exists! \mathbb{R}^{\Omega}$ -representing constructibly Radon measure for *L*.

Existence of representing measures on the cylinder σ -alg.

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

$$(I.) \quad L(a^2) \ge 0 \text{ for all } a \in A.$$

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists X(A)$ -representing measure ν on $(X(A), \Sigma_J)$ for L.

Special case: $A = \mathbb{R}[X_i, i \in \Omega]$ with Ω arbitrary index set.

Theorem (Ghasemi, Kuhlmann, Marshall, 2016)

Let $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$ be linear s.t. L(1) = 1. If Ω is countable and

(i)
$$L(p^2) \ge 0$$
 for all $p \in \mathbb{R}[X_i, i \in \Omega]$.

(ii)
$$\forall i \in \Omega : \sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{L(X_i^{2n})}} = \infty.$$

then $\exists ! \mathbb{R}^{\Omega}$ -representing constructibly Radon measure for L.

Existence of representing measures on the cylinder σ -alg.

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

(1.)
$$L(a^2) \ge 0$$
 for all $a \in A$.

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists X(A)$ -representing measure ν on $(X(A), \Sigma_J)$ for L.

Special case: A = S(V) := symmetric tensor algebra of V real vector space.

Theorem (Schmüdgen, 2018)

Let
$$L: S(V) \to \mathbb{R}$$
 be linear s.t. $L(1) = 1$. If
(i) $L(p^2) \ge 0$ for all $p \in S(V)$.
(ii) $\forall p \in S(V) : \sum_{n=1}^{\infty} \frac{1}{\frac{2n}{\sqrt{L(p^{2n})}}} = \infty$.
then $\exists ! V^*$ -representing measure on Σ_I for L , where $J := \{S(W) : W \subseteq V, \dim(W) < \infty\}$.

Old and new results for the KMP Final remarks and open questions

Existence of Radon representing measures

Theorem** (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S + (\varepsilon \text{-} K) \end{pmatrix} \longleftrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Sketch of the proof $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ projective system

\Downarrow EXISTENCE HP+ (ε -K)

 $\begin{array}{l} \forall S \in J, \ \exists \ \mu_S \text{representing Radon measure for } L \upharpoonright_S \\ \text{s.t.} \ \forall S \subseteq T, \ \mu_S = \pi_{S,T}{}_{\#} \mu_T \text{ and } (\varepsilon\text{-}\mathsf{K}) \text{ holds} \end{array}$

Old and new results for the KMP Final remarks and open questions

Existence of Radon representing measures

Theorem** (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S + (\varepsilon \text{-} K) \end{pmatrix} \longleftrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Sketch of the proof $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ projective system

\Downarrow EXISTENCE HP+ (ε -K)

 $\begin{array}{l} \forall S \in J, \ \exists \ \mu_S \text{representing Radon measure for } L \upharpoonright_S \\ \text{s.t.} \ \forall S \subseteq T, \ \mu_S = \pi_{S,T}{}_{\#} \mu_T \text{ and } (\varepsilon\text{-}\mathsf{K}) \text{ holds} \end{array}$

Old and new results for the KMP

Existence of Radon representing measures

Theorem** (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subset A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S + (\varepsilon - K) \end{pmatrix} \longleftrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Sketch of the proof

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \}$ projective system

 \Downarrow EXISTENCE HP+ (ε -K)

 $\begin{array}{c} \forall S \in J, \ \exists \ \mu_S \text{representing Radon measure for } L \upharpoonright_S \\ \text{s.t. } \forall S \subseteq T, \ \mu_S = \pi_{S,T_{\#}} \mu_T \text{ and } (\varepsilon\text{-K}) \text{ holds} \end{array} \right\} \xrightarrow{} \begin{array}{c} \text{exact projective sys} \\ \text{of Radon probabilities} \end{array}$

 $\{\mu_{S}, S \in J\}$ fulfilling (ε -K)

Old and new results for the KMP Final remarks and open questions

Existence of Radon representing measures

Theorem** (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S + (\varepsilon - K) \end{pmatrix} \longleftrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Sketch of the proof $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ projective system

 \Downarrow EXISTENCE HP+ (ε -K)

 $\forall S \in J, \exists \mu_{S} \text{representing Radon measure for } L \upharpoonright_{S} \\ \text{s.t. } \forall S \subseteq T, \mu_{S} = \pi_{S,T}{}_{\#}\mu_{T} \text{ and } (\varepsilon\text{-K}) \text{ holds} \end{cases} \begin{cases} \{\mu_{S}, S \in J\} \\ \text{exact projective sys} \\ \text{of Radon probabilities} \\ \text{fulfilling } (\varepsilon\text{-K}) \\ \psi \text{ THM 2 (Prokhorov)} \end{cases}$

$$\exists !
u$$
 Radon measure on $(X(A), \mathcal{B}_J)$ s.t. ${\pi_S}_{\#}
u = \mu_S, \quad orall \, S \in J$

Old and new results for the KMP Final remarks and open questions

Existence of Radon representing measures

Theorem** (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S + (\varepsilon \text{-} K) \end{pmatrix} \longleftrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Sketch of the proof $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\}$ projective system

 \Downarrow EXISTENCE HP+ (ε -K)

 $\forall S \in J, \ \exists \ \mu_{S} \text{representing Radon measure for } L \upharpoonright_{S} \\ \text{s.t.} \ \forall S \subseteq T, \ \mu_{S} = \pi_{S,T \#} \mu_{T} \text{ and } (\varepsilon \text{-}\mathsf{K}) \text{ holds} }$

 \Downarrow THM 2 (Prokhorov)

 $\exists !\nu \text{ Radon measure on } (X(A), \mathcal{B}_J) \text{ s.t. } \pi_{S\#}\nu = \mu_S, \quad \forall S \in J$ Hence, for any $a \in A$ we have $a \in S$ for some $S \in J$ and so

$$L(a) = L \upharpoonright_{S} (a) = \int_{X(S)} \hat{a}(\beta) d\mu_{S}(\beta) = \int_{X(A)} \hat{a}(\pi_{S}(\beta)) d\nu(\beta) = \int_{X(A)} \hat{a}(\alpha) d\nu(\alpha).$$

Old and new results for the KMP Final remarks and open questions

Localization of the support

Theorem (I., Kuhlmann, Kuna, Michalski, 2018) Let A be a unital commutative \mathbb{R} -algebra, $L : A \to \mathbb{R}$ s.t. L(1) = 1 and $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ (*) $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_J \text{ for } L \end{pmatrix}$ (**) $\begin{pmatrix} \forall S \in J, \exists X(S) - \text{representing} \\ \text{Radon measure for } L \upharpoonright_S \\ +(\varepsilon - K) \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(A) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{pmatrix}$

Old and new results for the KMP Final remarks and open questions

Localization of the support

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$

 $\forall S \in J$, let $K^{(S)}$ be a closed subset of X(S) s.t. $\pi_{S,T}(K^{(T)}) \subseteq K^{(S)}$ for $T \supseteq S$ in J.

$$(*) \left(\begin{array}{c} \forall S \in J, \exists \ \mathcal{K}^{(S)} - \text{representing} \\ \text{Radon measure for } L \upharpoonright_{S} \end{array} \right) \Longrightarrow \left(\begin{array}{c} \exists \ X(A) - \text{representing} \\ \text{measure } \mu \text{ on } \Sigma_{J} \text{ for } L \\ \mu \left(X(A) \setminus \pi_{S}^{-1}(\mathcal{K}^{(S)}) \right) = 0, \forall S \in J. \end{array} \right) \\ (**) \left(\begin{array}{c} \forall S \in J, \exists \ \mathcal{K}^{(S)} - \text{representing} \\ \text{Radon measure for } L \upharpoonright_{S} \\ +(\varepsilon - \mathcal{K}) \end{array} \right) \Longrightarrow \left(\begin{array}{c} \exists \left(\bigcap_{S \in J} \pi_{S}^{-1}\left(\mathcal{K}^{(S)} \right) \right) - \text{representing} \\ \text{Radon measure } \nu \text{ for } L \end{array} \right)$$

Old and new results for the KMP Final remarks and open questions

Existence of K-representing measures: generalized Riesz-Haviland

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1, $K \subseteq X(A)$ closed.

$$\begin{pmatrix} L(\operatorname{Psd}_{A}(K)) \subseteq [0,\infty) \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(A) - \text{representing measure } \mu \text{ on } \Sigma_{J} \text{ for } L \\ \mu \left(X(A) \setminus \pi_{S}^{-1}(\pi_{S}(K)) \right) = 0, \forall S \in J. \end{pmatrix}$$

$$\begin{pmatrix} L(\operatorname{Psd}_{A}(K)) \subseteq [0,\infty) \\ +(\varepsilon \cdot K) \end{pmatrix} \Longrightarrow \left(\exists K - \text{representing Radon measure } \nu \text{ for } L. \end{pmatrix}$$

where
$$\operatorname{Psd}_A(K) := \{ a \in A : \hat{a}(\alpha) \ge 0 \text{ for all } \alpha \in K \}.$$

Theorem (Riesz, 1923; Haviland, 1936)

Let $L : \mathbb{R}[X_1, \dots, X_d] \to \mathbb{R}$ be linear s.t. L(1) = 1 and $K \subseteq \mathbb{R}^d$ closed.

$$ig(L(\mathrm{Psd}(\mathcal{K}))\subseteq [0,\infty)ig) \Longrightarrow ig(\exists \mathcal{K} ext{-representing Radon measure }
u ext{ for } L.$$

where $\operatorname{Psd}(K) := \{ p \in \mathbb{R}[X_1, \dots, X_d] : p(y) \ge 0 \text{ for all } y \in K \}.$

Old and new results for the KMP Final remarks and open questions

Existence of K-representing measures: generalized Riesz-Haviland

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1, $K \subseteq X(A)$ closed.

$$\begin{pmatrix} \mathcal{L}(\operatorname{Psd}_{\mathcal{A}}(\mathcal{K})) \subseteq [0,\infty) \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(\mathcal{A}) - \text{representing measure } \mu \text{ on } \Sigma_J \text{ for } L \\ \mu \left(X(\mathcal{A}) \setminus \pi_S^{-1}(\pi_S(\mathcal{K})) \right) = 0, \forall S \in J. \end{pmatrix}$$

$$\begin{pmatrix} L(\operatorname{Psd}_{\mathcal{A}}(K)) \subseteq [0,\infty) \\ +(\varepsilon \cdot \mathsf{K}) \end{pmatrix} \Longrightarrow \left(\exists K \text{-representing Radon measure } \nu \text{ for } L \right)$$

where $\operatorname{Psd}_A(K) := \{ a \in A : \hat{a}(\alpha) \ge 0 \text{ for all } \alpha \in K \}.$

Theorem (Ghasemi, Kuhlmann, Marshall, 2016)

Let $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$ be linear s.t. L(1) = 1 and $K \subseteq \mathbb{R}^d$ closed s.t. $K \in \Sigma_J$.

$$\left(L(\operatorname{Psd}(\mathcal{K})) \subseteq [0,\infty)\right) \Longrightarrow \left(\exists \mathcal{K}\text{-representing constructibly Radon measure } \nu \text{ for } L\right)$$

where $Psd(K) := \{ p \in \mathbb{R}[X_i, i \in \Omega] : p(y) \ge 0 \text{ for all } y \in K \}.$

Old and new results for the KMP Final remarks and open questions

Existence of K-representing measures: generalized Riesz-Haviland

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1, $K \subseteq X(A)$ closed.

$$\begin{pmatrix} L(\operatorname{Psd}_{\mathcal{A}}(\mathcal{K})) \subseteq [0,\infty) \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(\mathcal{A}) - \text{representing measure } \mu \text{ on } \Sigma_J \text{ for } L \\ \mu \left(X(\mathcal{A}) \setminus \pi_S^{-1}(\pi_S(\mathcal{K})) \right) = 0, \forall S \in J. \end{pmatrix}$$

$$\begin{pmatrix} L(\operatorname{Psd}_{\mathcal{A}}(K)) \subseteq [0,\infty) \\ +(\varepsilon \cdot K) \end{pmatrix} \Longrightarrow \left(\exists K \text{-representing Radon measure } \nu \text{ for } L.$$

where $\operatorname{Psd}_A(K) := \{ a \in A : \hat{a}(\alpha) \ge 0 \text{ for all } \alpha \in K \}.$

Theorem (Alpay, Jorgensen, Kimsey, 2015; Ghasemi, Kuhlmann, Marshall, 2016)

Let $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$ be linear s.t. L(1) = 1 and $K \subseteq \mathbb{R}^d$ closed s.t. $K \in \Sigma_J$. If Ω is countable, then

$$\left(L(\operatorname{Psd}(K)) \subseteq [0,\infty)\right) \Longrightarrow \left(\exists K \text{-representing constructibly Radon measure } \nu \text{ for } L.\right)$$

where $Psd(K) := \{ p \in \mathbb{R}[X_i, i \in \Omega] : p(y) \ge 0 \text{ for all } y \in K \}.$

Old and new results for the KMP Final remarks and open questions

Existence of K-representing measures: generalized Riesz-Haviland

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1, $K \subseteq X(A)$ closed.

$$\begin{pmatrix} \mathcal{L}(\mathrm{Psd}_{\mathcal{A}}(\mathcal{K})) \subseteq [0,\infty) \end{pmatrix} \Longrightarrow \begin{pmatrix} \exists X(\mathcal{A}) - \text{representing measure } \mu \text{ on } \Sigma_{J} \text{ for } L \\ \mu \left(X(\mathcal{A}) \setminus \pi_{S}^{-1}(\pi_{S}(\mathcal{K})) \right) = 0, \forall S \in J. \end{cases}$$

$$\begin{pmatrix} L(\operatorname{Psd}_{\mathcal{A}}(\mathcal{K})) \subseteq [0,\infty) \\ +(\varepsilon \cdot \mathcal{K}) \end{pmatrix} \Longrightarrow \left(\exists \ \mathcal{K}\text{-representing Radon measure } \nu \text{ for } L \right)$$

where $\operatorname{Psd}_{A}(K) := \{ a \in A : \hat{a}(\alpha) \geq 0 \text{ for all } \alpha \in K \}.$

Theorem (Marshall, 2003)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1, $K \subseteq X(A)$ closed. If $\exists a \in A$ s.t. $\hat{a} \ge 0$ on K and $\{\alpha \in X(A) : \hat{a}(\alpha) \le n\}$ is compact $\forall n \in \mathbb{N}$, then

$$ig(L(\mathrm{Psd}_{\mathcal{A}}(\mathcal{K}))\subseteq [0,\infty)ig) \Longrightarrow ig(\exists \mathcal{K} ext{-representing Radon measure }
u ext{ for } L.ig)$$

Existence of K-representing measures: Nussbaum's type results

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

- (1.) $L(Q) \ge 0$ for some quadratic module Q of A, i.e. $1 \in Q$, $Q + Q \subseteq Q$ and $a^2Q \subseteq Q$ for each $a \in A$
- (II.) For each $a \in A$, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(a^{2n})}}} = \infty$.

then $\exists ! X(A)$ -representing measure ν on Σ_J for L s.t. $\mu\left(X(A) \setminus \pi_S^{-1}(K_{Q \cap S})\right) = 0$, $\forall S \in J; K_{Q \cap S} := \{\alpha \in X(A) : \alpha(q) \ge 0, \forall q \in Q \cap S\}.$

Theorem (Lasserre, 2013; Infusino-Kuna-Rota, 2014)

Let $L: \mathbb{R}[X_1, \dots, X_d] \to \mathbb{R}$ be linear s.t. L(1) = 1. If

(i) $L(Q) \ge 0$ for some quadratic module Q of $\mathbb{R}[X_1, \ldots, X_d]$,

(ii)
$$\forall i = 1, \dots, d : \sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(X_i^{2n})}}} = \infty$$
 Carleman Condition

then $\exists ! K_Q$ -representing Radon measure for L; $K_Q := \{x \in \mathbb{R}^d : q(x) \ge 0, \forall q \in Q\}$.

Existence of K-representing measures: Nussbaum's type results

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1 and if

(1.) $L(Q) \ge 0$ for some quadratic module Q of A, i.e. $1 \in Q$, $Q + Q \subseteq Q$ and $a^2Q \subseteq Q$ for each $a \in A$

(II.) For each
$$a \in A$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{L(a^{2n})}} = \infty$.

(III.) (ε -K) holds

then \exists !Radon K_Q -representing measure for L; $K_Q := \{ \alpha \in X(A) : \alpha(q) \ge 0, \forall q \in Q \}.$

Theorem (Lasserre, 2013; Infusino-Kuna-Rota, 2014)

Let
$$L: \mathbb{R}[X_1, \dots, X_d] o \mathbb{R}$$
 be linear s.t. $L(1) = 1$. If

(i)
$$L(Q) \ge 0$$
 for some quadratic module Q of $\mathbb{R}[X_1, \ldots, X_d]$,

(ii)
$$\forall i = 1, \dots, d : \sum_{n=1}^{\infty} \frac{1}{\frac{2^n}{\sqrt{L(X_i^{2n})}}} = \infty$$
 Carleman Condition

then $\exists ! K_Q$ -representing Radon measure for L; $K_Q := \{x \in \mathbb{R}^d : q(x) \ge 0, \forall q \in Q\}$.

Existence of K-representing measures: the Archimedean property

Theorem (Jacobi-Prestel Positivstellensatz (2001))

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1.

 $\left(\begin{array}{c} L(Q) \subseteq [0, +\infty) \text{ for some} \\ \text{Archimedean quadratic module } Q \text{ of } A, \\ \text{i.e. } \forall a \in A, \exists N \in \mathbb{N} \colon N \pm a \in Q \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ K_Q - \text{representing} \\ \text{Radon measure for } L \end{array}\right)$

where
$$K_Q := \{ \alpha \in X(A) : \hat{q}(\alpha) \ge 0, \forall q \in Q \}.$$

Proof. For each $S \in J$, $Q \cap S$ is Archimedean. Then use the following to get a $K_{Q \cap S}$ -representing Radon measure for $L \upharpoonright_S$ and to prove that $\Rightarrow (\varepsilon \text{-}K)$ holds.

Theorem (Putinar, 1993)

Let
$$L : \mathbb{R}[X_1, \ldots, X_d] \to \mathbb{R}$$
 be linear s.t. $L(1) = 1$.

 $\left(\begin{array}{c} L(Q) \subseteq [0, +\infty) \text{ for some} \\ \text{Archimedean quadratic module } Q \text{ of } A \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ K_Q - \text{representing} \\ \text{Radon measure for } L \end{array}\right)$

where $K_Q := \{y \in \mathbb{R}^d : q(y) \ge 0, \forall q \in Q\}$ i.e. basic closed semi-algebraic set.

Existence of K-representing measures: the Archimedean property

Theorem (Jacobi-Prestel Positivstellensatz (2001))

Let A be a unital commutative \mathbb{R} -algebra, $L: A \to \mathbb{R}$ s.t. L(1) = 1.

 $\left(\begin{array}{c} L(Q) \subseteq [0, +\infty) \text{ for some} \\ \text{Archimedean quadratic module } Q \text{ of } A, \\ \text{i.e. } \forall a \in A, \exists N \in \mathbb{N} \colon N \pm a \in Q \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ K_Q - \text{representing} \\ \text{Radon measure for } L \end{array}\right)$

where $K_Q := \{ \alpha \in X(A) : \hat{q}(\alpha) \ge 0, \forall q \in Q \}.$

Theorem (Alpay, Jorgensen, Kimsey, 2015)

Let $L : \mathbb{R}[X_i, i \in \mathbb{N}] \to \mathbb{R}$ be linear s.t. L(1) = 1.

 $\left(\begin{array}{c} L(P) \subseteq [0, +\infty) \text{ for some preordering } P\\ \text{s.t. } P \cap S \text{ is finitely generated and}\\ \mathcal{K}_{P \cap \mathbb{R}[X_1, \dots, X_d]} \text{ is compact } \forall d \in \mathbb{N}. \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ \mathcal{K}_P - \text{representing}\\ \text{Radon measure for } L \end{array}\right)$

Note: $K_{P \cap \mathbb{R}[X_1,...,X_d]}$ is compact $\forall d \in \mathbb{N} \Rightarrow P$ Archimedean in $\mathbb{R}[X_i, i \in \mathbb{N}]$.

Existence of K-representing measures: the Archimedean property

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative \mathbb{R} -algebra, Q a quadratic module in A and $L: A \to \mathbb{R}$ s.t. L(1) = 1. If $\exists B_a, B_c$ subalgebras of A such that $B_a \cup B_c$ generates A as a real algebra with B_c countably generated and

(i) $Q \cap B_{\mathrm{a}}$ is Archimedean in B_{a}

(ii) For each
$$a \in B_c$$
, $\sum_{n=1}^{\infty} \frac{1}{\frac{2n}{\sqrt{L(a^{2n})}}} = \infty$

(iii)
$$L(Q) \subseteq [0, +\infty)$$

then $\exists ! K_Q$ -representing Radon measure with $K_Q := \{ \alpha \in X(A) : \alpha(q) \ge 0, \forall q \in Q \}.$

Theorem (Ghasemi, Kuhlmann, Marshall, 2016)

Let Q be a quadratic module in $\mathbb{R}[X_i, i \in \Omega]$ and $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$ be linear s.t. L(1) = 1. and . If $\exists \ \Lambda \subseteq \Omega$ countable such that

(i)
$$Q \cap \mathbb{R}[X_i]$$
 is Archimedian for all $i \in \Omega \setminus \Lambda$.

(ii) For each
$$i \in \Lambda$$
, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{L(X_i^{2n})}} = \infty$
(iii) $L(Q) \subseteq [0, +\infty)$

then $\exists ! K_Q$ -representing Radon measure with $K_Q := \{y \in \mathbb{R}^{\Omega} : q(y) \ge 0, \forall q \in Q\}.$

Old and new results for the KMP Final remarks and open questions

Final remarks and open questions

Open questions

- The partial archimedeanity of Q implies (ε -K). Does the converse hold?
- Does this approach applies to topological algebras?
- Does this approach apply to the truncated case?

Advantages & Potential of the projective limit approach

- it is powerful technique to exploit the finite dimensional moment theory to get new advances in the infinite dimensional one.
- it provides a direct bridge from the KMP to a rich spectrum of tools coming from the theory of projective limits.
- it offers a unified setting in which compare the results known so far about the infinite dimensional KMP.

Thank you for your attention

M. Infusino, S. Kuhlmann, T. Kuna, P. Michalski, *Projective limits* techniques for the infinite dimensional moment problem, arXiv:1906.01691