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The numerical range
Let A be a complex d × d-matrix.
The numerical range of A is the set

W(A) = �xTAx � x ∈ Cd with �x� = �� ⊂ C

Remark. (�)W(A) contains the eigenvalues of A.
(�) A is Hermitian if and only ifW(A) is a real line segment.
(�) If A is normal,W(A) is the convex hull of the eigenvalues.
Toeplitz-Hausdorff Theorem (����).
The setW(A) is a convex subset ofC = R�.

Example.
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Trace trick
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Trace trick

x∗Ax = tr(x∗Ax) = tr(A(xx∗)) = �A, xx∗�
By the Toeplitz-Hausdorff Theorem:

W(A) = {�A, X�∶X Hermitian and psd, tr(X) = �, rk(X) = �}= {�A, X�∶X Hermitian and psd, tr(X) = �}= πA(Cd×d
her ∩ {tr = �})
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Trace trick

x∗Ax = tr(x∗Ax) = tr(A(xx∗)) = �A, xx∗�
By the Toeplitz-Hausdorff Theorem:

W(A) = {�A, X�∶X Hermitian and psd, tr(X) = �, rk(X) = �}= {�A, X�∶X Hermitian and psd, tr(X) = �}= πA(Her+d ∩ {tr = �})
Hyperbolic Curves

For any hermitian matrices A�,A�, the polynomial f = det(x�Id + x�A� + x�A�) is
hyperbolic with respect to e = (�, �, �), i.e. all roots of f (t, a�, a�) are real for all(a�, a�) ∈ R�.
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The joint numerical range
Let A�, . . . ,An be Hermitian d × d-matrices.
The joint numerical range of A�, . . . ,An is the set

W(A�, . . . ,An) = ��xTA�x , . . . , xTAnx� � x ∈ Cn with �x� = �� ⊂ Rn

The joint numerical range is not convex in general (studied by Li&Poon ����).
The convex hull can be described as

convW(A�, . . . ,An) = ���A�, X�, . . . , �An, X�� � X � �, trace(X) = ��
where �A, B� = trace(ABT) and X � � means that X is Hermitian and positive
semidefinite.

The set convW(A�, . . . ,An) is again the convex dual of the spectrahedron

�x ∈ Rn � Id + x�A� + ⋅ ⋅ ⋅ + xnAn � ��
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