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The numerical range
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Let A be a complex d x d-matrix.
The numerical range of A is the set

W(A) = {FAx | x € CY with ||x|| = 1} c C

Remark. (1) W(A) contains the eigenvalues of A.
(2) A is Hermitian if and only if W(A) is a real line segment.
(3) If Ais normal, W(A) is the convex hull of the eigenvalues.

Toeplitz-Hausdorff Theorem (1919).
The set W(A) is a convex subset of C = R?.
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Example.
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Trace trick
x*Ax =tr(x*Ax) = tr(A(xx")) = (A, xx™)

By the Toeplitz-Hausdorff Theorem:

W(A) = {(A, X): X Hermitian and psd, tr(X) = 1,rk(X) =1}
= {(A, X): X Hermitian and psd, tr(X) =1}
= ms(Her) n {tr =1})

Define Hermitian matrices

Re(4)=>(4+A') and  Im(A)=-(A-A)

— A =Re(A) +ilm(A)

0100 (1)502 0 -1 0 2i
o R R R IR I R

4000 20320 -2i 0 2 0



Kippenhahn’s Theorem

Let A be a complex d x d matrix and let
p= det(xold + x1Re(A) + lem(A))
with spectrahedron

S(A) ={(a, a;) e R*|I; + aRe(A) + a,Im(A) >0}



Kippenhahn’s Theorem

Let A be a complex d x d matrix and let
p= det(xold + x1Re(A) + lem(A))
with spectrahedron

S(A) ={(a, a;) e R*|I; + aRe(A) + a,Im(A) >0}

ﬁheorem. (Kippenhahn 1951) )
The numerical range W ( A) is the convex dual

S(A)° ={(u,u;) €R* | (u,a) > -1foralla e S(A)}

of S(A). It is the convex hull of the points (u, u,) for which (1, uy, u, | lies on the
Uual curveof V ={p=0}. )

The dual curve V* is the closure of the set of points (1, u;, u,) for which the line
Xo + U1X]+ Urxy =0

is tangent to V (at some regular point).



Hyperbolic Curves

For any hermitian matrices Aj, A,, the polynomial f = det(xol; + x1A; + x245) is
hyperbolic with respect to e = (1,0,0), i.e. all roots of f(t, aj, a;) are real for all
(al, dz) c R2,




Hyperbolic curves

0100 0102 0 -5 0 2i
A= Re(A) = | 2 Im(A) =] 2 '
000 3 W01 M 00
4000 20 20 -2i 0 2 0

p = det(xols + x1Re(A) + x,Im(A))

1
- E(25x;* +25x5 + 434x7x5 — 120x5x7 — 120x3x5 + 16x; )



Hyperbolic curves
p= 116 25x; + 25x5 + 434x{x5 — 120x5x7 — 120x5x5 + 16x,

Dual curve is given by

250000u; + 4380000u;°u5 — 5475000131’ + 1446000ubu; — 68559000u5ulus + 47610625u0u1 + 8787776ulus
+179739600uiulu; + 429249700uulu’ — 209547000140u1 +1446000u; u2 +179739600uiu;us — 1058169786 uyu; 15
—1493997480udu; u5 + 476341350ugu; + 4380000uiuy’ — 68559000uiuius + 429249700usuius — 1493997480uiu;u;
+2442311100us uius — 476982000u us + 2500001 — 5475000uzuy’ + 47610625u5u5 — 209547000usus + 476341350u5u;
— 476982000uy u5 + 82355625u;f = 0




Duality for plane curves

Let V = {p = 0} be a plane curve of degree d.
If V' is smooth, the dual curve V* isirreducible of degree d(d - 1).

If V is generic (and smooth), then V* has two types of singularities:
e The bitangent lines of V correspond to nodes of V*.

e The inflection lines of V correspond to cusps of V*.




Duality for hyperbolic curves

Gheorem. (Kippenhahn for hyperbolic curves) \
Let p € R[x, x1, x2| be hyperbolic with respect to e = (1,0, 0).

The convex dual of the hyperbolicity region A,(f,e) n{xy = 1} is the convex hull of
kthe dual curve of { f = 0} in the dual plane {u, = 1}. Y




Duality for hyperbolic curves

Gheorem. (Kippenhahn for hyperbolic curves) \
Let p € R[x, x1, x2| be hyperbolic with respect to e = (1,0, 0).

The convex dual of the hyperbolicity region A,(f,e) n{xy = 1} is the convex hull of
kthe dual curve of { f = 0} in the dual plane {u, = 1}. Y

Problem: What about isolated real points (nodes) of the dual curve?



Duality for hyperbolic curves

7
xi+ x5+ 4x1 x5 — 4dxixi — 4xixs +3x5 =0
12288u1” + 890881113 — 40961 uj + 248064ubu; — 150784u1 usul —14976udug + 340800u°us — 4105601’ u;us
+137328uluiug + 4800u’uf + 248064 u; ud — 410560u; uSul + 283881u; uyuy — 85260uiusul + 3619ujud
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— 4096uyul — 14976uSuy + 4800uSul + 3619usud — 1860uiuy’ + 225us” = 0
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The joint numerical range

Let Ay, ..., A, be Hermitian d x d-matrices.
The joint numerical range of A;,..., A, is the set

W(Ay,...,A,) = {(ETAlx,...,ETAnx) | x € C" with | x| :1} c R”

The joint numerical range is not convex in general (studied by Li&Poon 2000).

The convex hull can be described as

convW(Ay,...,A,) = {((Al, X),.... (A X)) | X =0, trace(X) :1}

where (A, B) = trace(ABT) and X > 0 means that X is Hermitian and positive
semidefinite.

The set convW (A;,...,A,) is again the convex dual of the spectrahedron

{xeR” ‘ Id+x1A1+---+annzO}



Projective duality in higher dimensions

Let V c P" be a projective variety. The dual variety of V (over C) is

V' = {u € (]P’”)* | dp € Vreg: TP(V) C {Z Uix; = O}}

In words: V* parametrizes all hyperplanes tangent to V at reqular points.
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Projective duality in higher dimensions

Let V c P" be a projective variety. The dual variety of V (over C) is

V* = {u c (]Pm)* | dp € Vreg: TP(V) C {Z Uu;x; = O}}

In words: V* parametrizes all hyperplanes tangent to V at reqular points.

Facts:
(1) If Visirreducible, then biduality holds: (V*)* = V.

2) If V = {f = 0} is ageneric hypersurface of degree d, then V* is a hypersurface
of degree d(d - 1)"".

(3) Determinantal hypersurfaces are not generic in this sense, for n > 3:
The variety V* is usually not a hypersurface.

Examples. For the general determinantal hypersurface {det(X) = 0} in the space

d+1

P(2) of all symmetric d x d-matrices, the dual variety is the set of all symmetric
matrices of rank 1 (the Veronese variety).



Famous example

84

Cayley’s cubic Steiner’s quartic
2X1X2X3 — XoXi — XoX5 — XoX2 + X uius — uius — usus — 2ugutus = 0
X0 X1 X2

=det| x; x9g x3|=0
X2 X3 X0



1 00 00 -1 000
A= 0-111, A,=100 0 |, A3=]1000
010 100 001

(Chien and Nakazato 2010)

p(ug, uy, Uy, uz) = det(ugid +u Ay + U As + U3As)

_ 32 2 2 _ .3 _ .2 2
= Uy + Uz — 2UogU] — Ugl,) — U] — U U3 + UL,

The projective dual is a surface defined by

A2a2 2 2 3 2.2
q(x0, X1, X2, X3) =4x5%5 + 8x0x1X5 — 4x0X5%3 — 24x0x35 + 4x1 X3

2 3, .4 2,2 4
— 4x1x5x3 — 8x1X5 + X5 + 8x5x5 + 20x3.

Its singular locus is {(xo, x1, X2, x3) € P° : x5 = x3 =0}

Example



Example

The projective dual is a surface defined by

q(x0, X1, X2, X3) = 4x5x5 + 8X0X1X5 — 4x0x§x3 24x0x3 + 4x7 X3
— 4x1%5x3 — 8x1%; + X5 + 8x3x3 + 20x3.

Its singular locus is {(xo, x1, X2, x3) € P° : x5 = x3 =0}




How to fix it

Gheorem. (Sinn 2015/P-Sinn-Weis 2019) )
Let p € R[xy,...,x,| beirreducible and hyperbolic with respectto e = (1,0...,0).
Let V = {p =0} c P"andlet V* be the dual projective variety.
The convex dual of the hyperbolicity region C(p,e) n {xo = 1} is the closure of the
\_convex hull of Vig,(R) n{ug = 1}, where Vi,(R) is the set of regular real points of V*.)

4
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Gheorem. (Sinn 2015/P-Sinn-Weis 2019) )
Let p € R[xy,...,x,| beirreducible and hyperbolic with respectto e = (1,0...,0).
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A\

Qorolla ry. (PSW2019) The convex hull of the joint numerical range of Hermitian d x d\
matrices Ay, . .., A, is the closure of the convex hull of the real non-singular part of the
Qlual variety of the hyperbolic hypersurface det(xol; + x1A1 + -+ + x,Ap). )




