On Sum of Squares Representation of Convex Forms and
 Generalized Cauchy-Schwarz Inequalities

Bachir El Khadir

"Geometry of Real Polynomials, Convexity and Optimization" workshop in Banff, May 28, 2019

$\mathrm{H}_{\mathrm{n}, 2 \mathrm{~d}}$

Forms of degree $2 d$ in n variables

$$
\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

$$
\mathbf{P}_{\mathbf{n}, 2 \mathrm{~d}}=\sum_{\mathrm{n}, 2 \mathrm{~d}} ?
$$

$\mathbf{P}_{\mathbf{n}, 2 \mathrm{~d}}=\sum_{\mathrm{n}, 2 \mathrm{~d}}$?			
$\bigcirc \quad 2 d$	2	4	≥ 6
1	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark
3	\checkmark	\checkmark	\times
≥ 4	\checkmark	\times	\times

[Hilbert 1888]

$\mathbf{P}_{\mathbf{n}, 2 \mathrm{~d}}=\sum_{\mathrm{n}, 2 \mathrm{~d}}$?			
$\bigcirc 2 \mathrm{~d}$	2	4	≥ 6
1	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark
3	\checkmark	\checkmark	\times
≥ 4	\checkmark	\times	\times

[Hilbert 1888]

$\mathbf{P}_{\mathbf{n}, 2 \mathrm{~d}}=\sum_{\mathrm{n}, 2 \mathrm{~d}}$?			
$\bigcirc 2 \mathrm{~d}$	2	4	≥ 6
1	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark
3	\checkmark	\checkmark	\times
≥ 4	\checkmark	\times	\times

[Hilbert 1888]

'07, Parrilo asked: Are all convex forms sos?
'09, Blekherman: No
For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$

'07, Parrilo asked: Are all convex forms sos?
'09, Blekherman: No
For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$ Open problems:

'07, Parrilo asked: Are all convex forms sos?
'09, Blekherman: No
For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$

Open problems:
Find any element in $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \backslash \sum_{\mathrm{n}, 2 \mathrm{~d}}$

'07, Parrilo asked: Are all convex forms sos?
'09, Blekherman: No
For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$

Open problems:
Find any element in $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \backslash \sum_{\mathrm{n}, 2 \mathrm{~d}}$
What is the smallest ($\mathbf{n}, 2 \mathrm{~d}$) for which $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \nsubseteq \sum_{\mathrm{n}, 2 \mathrm{~d}}$?

'07, Parrilo asked: Are all convex forms sos?
'09, Blekherman: No
For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$

Open problems:
Find any element in $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \backslash \sum_{\mathrm{n}, 2 \mathrm{~d}}$
What is the smallest ($\mathbf{n}, 2 \mathrm{~d}$) for which $\mathbf{C}_{\mathrm{n}, 2 \mathrm{~d}} \nsubseteq \sum_{\mathrm{n}, 2 \mathrm{~d}}$?
($(\mathbf{n}, 2 \mathrm{~d})$ should be $\geq(3,6),(4,4)$)

'07, Parrilo asked:

Are all convex forms sos?

'09, Blekherman: No

For $2 \mathbf{d} \geq 4$, there are many more convex forms than sos as $n \rightarrow \infty$

Open problems:
Find any element in $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \backslash \sum_{\mathrm{n}, 2 \mathrm{~d}}$
What is the smallest ($\mathbf{n}, 2 \mathrm{~d}$) for which $\mathbf{C}_{\mathbf{n}, 2 \mathrm{~d}} \nsubseteq \sum_{\mathrm{n}, 2 \mathrm{~d}}$?
($(\mathbf{n}, 2 \mathrm{~d})$ should be $\geq(3,6),(4,4)$)

Today: Convex quaternary quartic forms are sos, i.e. $\mathbf{C}_{4,4} \subseteq \sum_{4,4}$

Outline

1. A curious generalization of the Cauchy-Schwarz inequality

2. Proof that all convex quaternary quartics are sos.

Generalized Cauchy-Schwarz Inequalities

Generalized Cauchy-Schwarz inequalities (1/3)

x^{\top} Qx psd $\longleftrightarrow x^{\top} Q y$ $\operatorname{deg} 2$ in x deg 1 in x and 1 in y

Generalized Cauchy-Schwarz inequalities (1/3)

x^{\top} Qx psd $\longleftrightarrow x^{\top} Q y$ $\operatorname{deg} 2$ in x deg 1 in x and 1 in y

Generalized Cauchy-Schwarz inequalities (1/3)

x^{\top} Qx psd
$\operatorname{deg} 2$ in x $\longleftrightarrow \quad \begin{aligned} & \mathrm{x}^{\top} \text { Qy } \\ & \operatorname{deg} 1 \text { in } \mathrm{x} \\ & \text { and } 1 \text { in } \mathrm{y}\end{aligned}$
$x^{\top} Q y \leq \sqrt{x^{\top} Q x} \sqrt{y^{\top} Q y}$

Generalized Cauchy-Schwarz inequalities (1/3)

$\begin{array}{ll} x^{\top} Q x \text { psd } \\ \operatorname{deg} 2 \text { in } x \end{array} \longleftrightarrow \begin{aligned} & x^{\top} Q y \\ & \operatorname{deg} 1 \text { in } x \\ & \text { and } 1 \text { in } y \end{aligned}$	$\begin{aligned} & p(x) \text { convex } \longleftrightarrow \\ & \operatorname{deg} 2 d \text { in } x \end{aligned}$	$B(x, y)$ bi-form deg d in x and d in y
$x^{\top} Q y \leq \sqrt{x^{\top} Q x} \sqrt{y^{\top} Q y}$		

Generalized Cauchy-Schwarz inequalities (1/3)

$\begin{array}{ll} x^{\top} Q x \text { psd } \\ \operatorname{deg} 2 \text { in } x \end{array} \longleftrightarrow \begin{aligned} & x^{\top} Q y \\ & \operatorname{deg} 1 \text { in } x \\ & \text { and } 1 \text { in } y \end{aligned}$	$\begin{aligned} & p(x) \text { convex } \longleftrightarrow \\ & \operatorname{deg} 2 d \text { in } x \end{aligned}$	$B(x, y)$ bi-form deg d in x and d in y
$x^{\top} Q y \leq \sqrt{x^{\top} Q x} \sqrt{y^{\top} Q y}$		

Generalized Cauchy-Schwarz inequalities (1/3)

x^{\top} Qx psd
 $\operatorname{deg} 2$ in \mathbf{x} $\operatorname{deg} 1$ in x and 1 in y
$\mathrm{p}(\mathrm{x})$ convex $\longleftrightarrow \mathrm{B}(\mathrm{x}, \mathrm{y})$ bi-form
deg d in x and d in y
$\operatorname{deg} 2 d$ in x

$$
\mathbf{p}(\mathbf{x})=\mathbf{B}(\mathbf{x}, \mathrm{x})
$$

$$
x^{\top} Q y \leq \sqrt{x^{\top} Q x} \sqrt{y^{\top} Q y}
$$

Generalized Cauchy-Schwarz inequalities (1/3)

x^{\top} Qx psd $\operatorname{deg} 2$ in x

$\operatorname{deg} 1$ in x and 1 in y
$\mathrm{p}(\mathrm{x})$ convex $\longleftrightarrow \mathrm{B}(\mathrm{x}, \mathrm{y})$ bi-form $\operatorname{deg} d$ in x and d in y

$$
p(x)=B(x, x)
$$

We want:

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{n}, \mathrm{~d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})}
$$

Generalized Cauchy-Schwarz inequalities (1/3)

$$
\begin{aligned}
\mathbf{B}(\mathbf{x}, \mathbf{y}) & =\frac{1}{\mathbf{d}!} \nabla^{d} \mathbf{p}(\mathbf{x}) \cdot(\underbrace{\mathbf{y}, \ldots, \mathbf{y}}_{\mathbf{d} \text { times }}) \\
& =\binom{2 \mathbf{d}}{\mathbf{d}}^{-1} \times \text { coefficient of } \alpha^{d} \beta^{d} \text { in } \mathbf{p}(\alpha \mathbf{x}+\beta \mathbf{y})
\end{aligned}
$$

Generalized Cauchy-Schwarz inequalities (1/3)

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}) \text { convex } \longleftrightarrow \mathrm{B}(\mathrm{x}, \mathrm{y}) \text { bi-form } \\
& \operatorname{deg} 2 d \text { in } x \\
& \text { deg } d \text { in } x \\
& \text { and } d \text { in } y \\
& \mathrm{p}(\mathrm{x})=\mathrm{B}(\mathrm{x}, \mathrm{x}) \\
& x^{\top} Q y \leq \sqrt{x^{\top} Q x} \sqrt{y^{\top} Q y} \\
& B(x, y) \leq K_{n, d} \sqrt{p(x)} \sqrt{p(y)}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{B}(\mathbf{x}, \mathrm{y}) & =\frac{1}{\mathrm{~d}!} \nabla^{d} \mathbf{p}(\mathbf{x}) \cdot(\underbrace{\mathrm{y}, \ldots, \mathrm{y}}_{\mathrm{d} \text { times }}) \\
& =\binom{2 \mathbf{d}}{\mathrm{~d}}^{-1} \times \text { coefficient of } \alpha^{d} \beta^{d} \text { in } \boldsymbol{p}(\alpha \mathbf{x}+\beta \mathbf{y})
\end{aligned}
$$

For instance:

$$
\cdot 2 \mathbf{d}=2 \rightarrow \mathbf{B}(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{Q} \mathbf{y} \quad \cdot 2 \mathbf{d}=4 \rightarrow \mathbf{B}(\mathbf{x}, \mathrm{y})=\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathrm{x}) \mathbf{y}
$$

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $p(x)$ of deg. $2 d$ satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{\mathrm{n}}
$$

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $\mathrm{p}(\mathrm{x})$ of deg. 2 d satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{d} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}
$$

$2 d$	2	4	6	8	10	12	14	\ldots
K_{d}	1	1	1	1.01	1	1.06	1	\ldots

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $\mathrm{p}(\mathrm{x})$ of deg. 2 d satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}
$$

$2 d$	2	4	6	8	10	12	14	\ldots
K_{d}	1	1	1	1.01	1	1.06	1	\ldots

How was this table computed? Via SDPs!

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $p(x)$ of deg. $2 d$ satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}
$$

2 d	2	4	6	8	10	12	14	\ldots	d odd	d even ≥ 4
$\mathrm{~K}_{\mathrm{d}}$	1	1	1	1.01	1	1.06	1	\ldots	1	>1

How was this table computed? Via SDPs!
(conjecture)

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $p(x)$ of deg. $2 d$ satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}
$$

$2 d$	2	4	6	8	10	12	14	\ldots	d odd	d even ≥ 4
K_{d}	1	1	1	1.01	1	1.06	1	\ldots	1	>1

How was this table computed? Via SDPs!

Complex variant:

\exists a constant L_{d} s.t. every convex form $\mathbf{p}(\mathbf{x})$ of deg. $2 \mathbf{d} \leq 16$ satisfies

$$
\sqrt{\mathbf{p}(\mathbf{z}) \mathbf{p}(\overline{\mathbf{z}})} \leq \mathrm{L}_{\mathrm{d}} \mathrm{~B}(\mathbf{z}, \overline{\mathbf{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}
$$

$2 d$	2	4	6	8	10	12	14	16	\ldots
L_{d}	1	1	2	5	14	42	132 6	429	\ldots

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $p(x)$ of deg. $2 d$ satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathrm{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}
$$

$2 d$	2	4	6	8	10	12	14	\ldots	d odd	d even ≥ 4
K_{d}	1	1	1	1.01	1	1.06	1	\ldots	1	>1

How was this table computed? Via SDPs!

Complex variant:

\exists a constant L_{d} s.t. every convex form $\mathbf{p}(\mathbf{x})$ of deg. $2 \mathbf{d} \leq 16$ satisfies

$$
\sqrt{\mathbf{p}(\mathbf{z}) \mathbf{p}(\overline{\mathbf{z}})} \leq \mathrm{L}_{\mathrm{d}} \mathrm{~B}(\mathbf{z}, \overline{\mathbf{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}
$$

$2 d$	2	4	6	8	10	12	14	16	\ldots
L_{d}	1	1	2	5	14	42	132 6	429	\ldots

Generalized Cauchy-Schwarz inequality (2/3)

Thm:

$\exists \mathrm{a}$ constant K_{d} s.t. every convex form $p(x)$ of deg. $2 d$ satisfies

$$
\mathrm{B}(\mathrm{x}, \mathrm{y}) \leq K_{\mathrm{d}} \sqrt{\mathbf{p}(\mathrm{x})} \sqrt{\mathrm{p}(\mathrm{y})} \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{\mathrm{n}}
$$

$2 d$	2	4	6	8	10	12	14	\ldots	d odd	d even ≥ 4
K_{d}	1	1	1	1.01	1	1.06	1	\ldots	1	>1

How was this table computed? Via SDPs!

Complex variant:

\exists a constant L_{d} s.t. every convex form $\mathbf{p}(\mathbf{x})$ of deg. $2 \mathbf{d} \leq 16$ satisfies

$$
\sqrt{\mathbf{p}(\mathbf{z}) \mathbf{p}(\overline{\mathbf{z}})} \leq \mathrm{L}_{\mathrm{d}} \mathrm{~B}(\mathbf{z}, \overline{\mathbf{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}
$$

2d	2	4	6	8	10	12	14	16		2d	
L_{d}	1	1	2	5	14	42	132 6	429	\ldots	$\binom{2 d}{d} /(d+1)$	

Catalan numbers describe the number of:

ways a polygon with $n+2$ sides can be cut into n triangles.
ways to use n rectangles to tile a stairstep shape $(1,2, \ldots, \boldsymbol{n}-1, \boldsymbol{n})$.
ways in which parentheses can be placed in a sequence of numbers to be multiplied, two at a time planar binary trees with $n+1$ leaves paths of length 2 n through an n-by-n grid that do not rise above the main diagonal

$$
\sqrt{\mathbf{p}(\mathbf{z}) \mathbf{p}(\overline{\mathrm{z}})} \leq \mathrm{L}_{\mathrm{d}} \mathbf{B}(\mathbf{z}, \overline{\mathrm{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}
$$

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{T} \nabla^{2} p(x) y \leq K_{4} \sqrt{p(x)} \sqrt{p(y)} \text { with } K_{4}=1
$$

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{T} \nabla^{2} p(x) y \leq K_{4} \sqrt{p(x)} \sqrt{p(y)} \text { with } K_{4}=1
$$

It is enough to prove:

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq 1 \text { whenever } p(x)=p(y)=1
$$

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{T} \nabla^{2} \mathbf{p}(x) y \leq K_{4} \sqrt{\mathbf{p}(\mathrm{x})} \sqrt{\mathbf{p}(\mathrm{y})} \text { with } K_{4}=1
$$

It is enough to prove:

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq 1 \text { whenever } p(x)=p(y)=1
$$

Why? For any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$, set $\tilde{\mathrm{x}}:=\frac{\mathrm{x}}{\mathrm{p}(\mathrm{x})^{\frac{1}{4}}}, \tilde{\mathrm{y}}:=\frac{\mathrm{y}}{\mathrm{p}(\mathrm{y})^{\frac{1}{4}}}+$ use homogeneity.

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq K_{4} \sqrt{\mathbf{p}(x)} \sqrt{p(y)} \text { with } K_{4}=1
$$

It is enough to prove:

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq 1 \text { whenever } p(x)=p(y)=1
$$

Why? For any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$, set $\tilde{x}:=\frac{\mathrm{x}}{\mathrm{p}(\mathrm{x})^{\frac{1}{4}}}, \tilde{y}:=\frac{\mathrm{y}}{\mathrm{p}(\mathrm{y})^{\frac{1}{4}}}+$ use homogeneity. It is enough to prove:
$\max _{\substack{\text { of deg } 4 \\ \text { on } 2 \text { vars }}} \frac{1}{12} \mathbf{e}_{2}^{\top} \nabla^{2} \mathbf{q}\left(\mathbf{e}_{1}\right) \mathbf{e}_{2} \leq 1$
s.t. q convex

$$
\mathbf{q}\left(\mathbf{e}_{1}\right)=\mathbf{q}\left(\mathrm{e}_{2}\right)=1 .
$$

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq K_{4} \sqrt{\mathbf{p}(x)} \sqrt{p(y)} \text { with } K_{4}=1
$$

It is enough to prove:

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq 1 \text { whenever } p(x)=p(y)=1
$$

Why? For any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$, set $\tilde{x}:=\frac{\mathrm{x}}{\mathrm{p}(\mathrm{x})^{\frac{1}{4}}}, \tilde{\mathrm{y}}:=\frac{\mathrm{y}}{\mathrm{p}(\mathrm{y})^{\frac{1}{4}}}+$ use homogeneity. It is enough to prove:
$\max _{\substack{\text { of deg } 4 \\ \text { on } 2 \text { vars }}} \frac{1}{12} \mathbf{e}_{2}^{\top} \nabla^{2} \mathbf{q}\left(\mathbf{e}_{1}\right) \mathbf{e}_{2} \leq 1$
s.t. q convex

$$
\mathbf{q}\left(\mathbf{e}_{1}\right)=\mathbf{q}\left(\mathbf{e}_{2}\right)=1 .
$$

Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbf{n}}$, set $\mathbf{q}(\alpha, \beta):=\mathbf{p}(\alpha \mathbf{x}+\beta \mathbf{y})$.

Generalized Cauchy-Schwarz inequality (3/3)

Thm: For any convex form $p(x)$ of degree 4 in n variables

$$
\frac{1}{12} y^{T} \nabla^{2} p(x) y \leq K_{4} \sqrt{p(x)} \sqrt{p(y)} \text { with } K_{4}=1
$$

It is enough to prove:

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq 1 \text { whenever } p(x)=p(y)=1
$$

Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbf{n}}$, set $\mathbf{q}(\alpha, \beta):=\mathbf{p}(\alpha \mathbf{x}+\beta \mathbf{y})$.

Generalized Cauchy-S، $d=2 \# 2 d=4$

model = SOSModel(...)

Thm: For any convex form $\mathrm{p}(\mathrm{x})$ of degre

$$
\frac{1}{12} y^{\top} \nabla^{2} p(x) y \leq K_{4} \sqrt{ }
$$

It is enough to prove:

$$
\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathbf{x}) \mathbf{y} \leq 1 \mathbf{w h}
$$

Why? For any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{\mathrm{n}}$, set $\tilde{\mathrm{x}}:=\frac{\mathrm{x}}{\mathrm{p}(\mathrm{x})^{2}}$ It is enough to prove:
\# declare a convex polynomial
@polyvar x[1:2]
@variable model q Poly(monomials(x, 2d))
@constraint model q in SOSConvexCone()
\# $q(1,0)=q(0,1)=1$
@constraint model $q(x=>[1,0])==1$
@constraint model $q(x=>[0,1])==1$
\# objective
@objective model Max coefficients(q)[d+1]
\# solve
optimize!(model)
$\max _{\substack{q \text { of deg } 4 \\ \text { in } 2 \text { vars }}} \frac{1}{12} \mathbf{e}_{2}{ }^{\top} \nabla^{2} \mathbf{q}\left(\mathbf{e}_{1}\right) \mathbf{e}_{2} \leq 1$
s.t. \quad q convex $=$ "sos-convex"

$$
\mathbf{q}\left(\mathbf{e}_{1}\right)=\mathbf{q}\left(\mathbf{e}_{2}\right)=1
$$

Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\boldsymbol{n}}$, set $\mathbf{q}(\alpha, \beta):=\mathbf{p}(\alpha \mathbf{x}+\beta \mathbf{y})$.

Convex Quaternary Quartics are SOS

Linear inequalities that $\Sigma_{4,4}$ satisfies

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\mathrm{B}(\mathrm{x}, \mathrm{y})=\frac{1}{12} \mathrm{y}^{\top} \nabla^{2} \mathrm{p}(\mathrm{x}) \mathrm{y}
$$

$$
\mathrm{B}(\cdot, \cdot) \text { is linear in } \mathrm{xx}^{\top} \otimes \mathrm{yy}^{\top}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\begin{aligned}
& \mathbf{B}(\mathbf{x}, \mathrm{y})=\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathbf{x}) \mathbf{y} \\
& \mathbf{B}(\cdot, \cdot) \text { is linear in } \mathbf{x} \mathbf{x}^{\top} \otimes \mathbf{y} \mathbf{y}^{\top}
\end{aligned}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

Applying $B(\cdot, \cdot)$ to both sides:

$$
\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)=\sum_{i, j=2}^{8} \pm \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\begin{aligned}
& \mathbf{B}(\mathbf{x}, \mathrm{y})=\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathbf{x}) \mathbf{y} \\
& \mathbf{B}(\cdot, \cdot) \text { is linear in } \mathbf{x} \mathbf{x}^{\top} \otimes \mathbf{y} \mathbf{y}^{\top}
\end{aligned}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

Applying $B(\cdot, \cdot)$ to both sides:

$$
\underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)}_{=\boldsymbol{p}\left(\mathbf{z}_{1}\right)}=\sum_{i, i=2}^{8} \pm \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\begin{aligned}
& \mathbf{B}(\mathbf{x}, \mathrm{y})=\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathbf{x}) \mathbf{y} \\
& \mathbf{B}(\cdot, \cdot) \text { is linear in } \mathrm{xx}^{\top} \otimes \mathbf{y} \mathbf{y}^{\top}
\end{aligned}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}{ }^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}{ }^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}{ }^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}{ }^{\top}
$$

Applying $B(\cdot, \cdot)$ to both sides:

$$
\underbrace{\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)}_{=\boldsymbol{p}\left(\mathbf{z}_{1}\right)}=\sum_{i, i=2}^{8} \underbrace{ \pm \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{p\left(\mathbf{z}_{i}\right)} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)}}
$$

$$
\text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
$$

Convex forms satisfy inequality (I)

Fix $p \in \mathbf{C}_{4,4}$. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that

$$
\mathbf{z}_{1} \mathbf{z}_{1}^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

$$
\begin{aligned}
& \mathbf{B}(\mathbf{x}, \mathrm{y})=\frac{1}{12} \mathbf{y}^{\top} \nabla^{2} \mathbf{p}(\mathbf{x}) \mathbf{y} \\
& \mathbf{B}(\cdot, \cdot) \text { is linear in } \mathrm{xx}^{\top} \otimes \mathbf{y} \mathbf{y}^{\top}
\end{aligned}
$$

Squaring both sides:

$$
\mathbf{z}_{1} \mathbf{z}_{1}{ }^{\top} \otimes \mathbf{z}_{1} \mathbf{z}_{1}{ }^{\top}=\sum_{i=2}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}{ }^{\top} \otimes \mathbf{z}_{i} \mathbf{z}_{i}{ }^{\top}
$$

Applying $B(\cdot, \cdot)$ to both sides:

$$
\begin{aligned}
& \underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)}_{=p\left(\mathbf{z}_{1}\right)}=\sum_{i, i=2}^{8} \underbrace{ \pm \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)}} \\
& \mathbf{p}\left(\mathbf{z}_{1}\right) \leq \sum_{i, i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} \\
& \text { WTS: } \sqrt{\mathbf{p}\left(\mathbf{z}_{1}\right)} \leq \sum_{i=2}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} .
\end{aligned}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.

$$
\text { WTS: } \sqrt{2} \sqrt{\left|\boldsymbol{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{k}\right)}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)+2 \mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\sum_{i, j=3}^{8} \pm \quad \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)
$$

WTS: $\sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\underbrace{\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)}_{=2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)}+2 \mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\sum_{i, j=3}^{8} \pm \mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)
$$

$$
\text { WTS: } \sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\underbrace{\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)}_{=2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)}+2 \mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\sum_{i, j=3}^{8} \pm \underbrace{\mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)}}
$$

$$
\text { WTS: } \sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\underbrace{\mathbf{B}\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)}_{=2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)}+2 \underbrace{\boldsymbol{B}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)}_{\geq\left|p\left(\mathbf{z}_{1}\right)\right|}=\sum_{i, j=3}^{8} \pm \underbrace{\mathbf{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)}}
$$

$$
\text { WTS: } \sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)}_{=2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)}+2 \underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)}_{\geq\left|\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right|}=\sum_{i, j=3}^{8} \pm \underbrace{\boldsymbol{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)}}
$$

All in all:

$$
\begin{aligned}
& 2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)+2\left|\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right| \leq \sum_{i, j=3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} . \\
& \text { WTS: } \sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}
\end{aligned}
$$

Convex forms satisfy inequality (II)

Let $\mathbf{z}_{1}=\overline{\mathbf{z}_{2}} \in \mathbb{C}^{4}$, and $\mathbf{z}_{3}, \ldots, \mathbf{z}_{8} \in \mathbb{R}^{4}$ such that $\mathbf{z}_{1} \mathbf{z}_{1}^{\top}+\mathbf{z}_{1} \mathbf{z}_{2}=\sum_{i=3}^{8} \pm \mathbf{z}_{i} \mathbf{z}_{i}^{\top}$.
Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$
\underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{1}\right)+\mathbf{B}\left(\mathbf{z}_{2}, \mathbf{z}_{2}\right)}_{=2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)}+2 \underbrace{B\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)}_{\geq\left|\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right|}=\sum_{i, j=3}^{8} \pm \underbrace{\boldsymbol{B}\left(\mathbf{z}_{i}, \mathbf{z}_{i}\right)}_{\leq \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)} \sqrt{\boldsymbol{p}\left(\mathbf{z}_{i}\right)}}
$$

All in all:

$$
\begin{aligned}
& 2 \operatorname{Re}\left(\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right)+2\left|\boldsymbol{p}\left(\mathbf{z}_{1}\right)\right| \leq \sum_{i, i=3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} \sqrt{\mathbf{p}\left(\mathbf{z}_{i}\right)} . \\
& \text { WTS: } \sqrt{2} \sqrt{\left|\mathbf{p}\left(\mathbf{z}_{i}\right)\right|+\operatorname{Re}\left(\mathbf{p}\left(\mathbf{z}_{i}\right)\right)} \leq \sum_{k \geq 3}^{8} \sqrt{\mathbf{p}\left(\mathbf{z}_{k}\right)}
\end{aligned}
$$

We have just proved that $\mathbf{C}_{4,4} \subseteq \sum_{4,4}$

What about convex ternary sextics?

The case of ternary sextics, i.e. $(\mathbf{n}, 2 \mathbf{d})=(3,6)$ Very similar to the case of quaternary quartics!

The case of ternary sextics, i.e. $(\mathbf{n}, 2 \mathbf{d})=(3,6)$ Very similar to the case of quaternary quartics!

Good understanding of the extreme rays of $\Sigma_{6,3}^{*}$
[Blekherman '12]

Cauchy-Schwarz
$\frac{1}{6 \cdot 5 \cdot 4} \nabla^{3} p(\mathbf{x}) \cdot(\mathbf{y}, \mathbf{y}, \mathbf{y}) \leq \sqrt{p(\mathbf{x}) \mathbf{p}(\mathbf{y})}$

The case of ternary sextics, i.e. $(\mathbf{n}, 2 \mathbf{d})=(3,6)$ Very similar to the case of quaternary quartics!

Good understanding of the extreme rays of $\Sigma_{6,3}^{*}$
[Blekherman '12]
$\ell(p)<0$

Cauchy-Schwarz
$\frac{1}{6 \cdot 5 \cdot 4} \nabla^{3} p(\mathbf{x}) \cdot(\mathbf{y}, \mathbf{y}, \mathbf{y}) \leq \sqrt{p(\mathbf{x}) \mathbf{p}(\mathbf{y})}$

Conjecture: Separating hyperplanes of Type (II) are not needed

The case of ternary sextics, i.e. $(\mathbf{n}, 2 \mathbf{d})=(3,6)$ Very similar to the case of quaternary quartics!

Good understanding of the extreme rays of $\Sigma_{6,3}^{*}$
[Blekherman '12]

Cauchy-Schwarz
$\frac{1}{6 \cdot 5 \cdot 4} \nabla^{3} p(\mathbf{x}) \cdot(\mathbf{y}, \mathbf{y}, \mathbf{y}) \leq \sqrt{p(\mathbf{x}) \mathbf{p}(\mathbf{y})}$

Conjecture: Separating hyperplanes of Type (II) are not needed

In which case, $\mathbf{C}_{6,3} \subseteq \sum_{6,3}$!

Conclusion

It is hard to find a convex form that is not sos.
Generalized Cauchy-Schwarz inequalities are one of the main obstacles for small degree/number of variables.

Conclusion

It is hard to find a convex form that is not sos.
Generalized Cauchy-Schwarz inequalities are one of the main obstacles for small degree/number of variables.

bachirelkhadir.com

Thanks!

