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Motzkin 1967
Robinson 1973

?

Hn,2d

Forms of degree 2d in n variables

x = (x1, . . . , xn)

Pn,2d p(x) ≥ 0 ∀x ∈ RnPn,2d

∑
n,2d

p = q21 + . . .+ q2m
q1, . . . ,qm ∈ Hn,d

∑
n,2d

Cn,2dCn,2d ∇2p(x) ⪰ 0 ∀x ∈ Rn

∑
Cn,2d yT∇2p(x)y is sos

∑
Cn,2d

Today: Convex quaternary quartic forms are sos, i.e. C4,4 ⊆
∑

4,4

2

HHHHHHn
2d

2 4 ≥ 6

1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓
≥ 4 ✓

[Hilbert 1888]
Convex =⇒ Nonnegative?

Yes! Euler:
2d(2d− 1)p(x) = xT∇2p(x)x

ʼ07, Parrilo asked:
Are all convex forms sos?

ʼ09, Blekherman: No
For 2d ≥ 4, there are many more
convex forms than sos as n→∞

Open problems:

Find any element in Cn,2d \
∑

n,2d
What is the smallest (n, 2d) for
which Cn,2d ̸⊆

∑
n,2d?

((n, 2d) should be ≥ (3, 6), (4, 4))

HHHHHHn
2d

2 4 ≥ 6

1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓
≥ 4 ✓

Computationally attractive

HHHHHHn
2d

2 4 ≥ 6

1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 ✓ ✓
≥ 4 ✓

[Ahmadi, Parrilo], [Ahmadi, Blekherman, Parrilo]

Same as Hilbert!
But for different reasons.
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Outline

1. A curious generalization of the Cauchy-Schwarz
inequality

2. Proof that all convex quaternary quartics are sos.
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Generalized Cauchy-Schwarz Inequalities

Augustin-Louis Cauchy
(1789-1857)

Hermann Schwarz
(1843-1921)



Generalized Cauchy-Schwarz inequalities (1/3)

xTQx psd ←→ xTQy
deg 2 in x deg 1 in x

and 1 in y

xTQy ≤
√

xTQx
√

yTQy

p(x) convex ←→ B(x,y) bi-form

deg 2d in x deg d in x
and d in y

p(x) = B(x,x)

We want:

B(x,y) ≤ Kn,d
√
p(x)

√
p(y)

B(x,y) = 1

d!
∇dp(x) · (y, . . . ,y︸ ︷︷ ︸

d times

)

=

(
2d
d

)−1

× coefficient of αdβd in p(αx + βy)

For instance:
•2d = 2→ B(x,y) = xTQy •2d = 4→ B(x,y) = 1

12 yT∇2p(x)y
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Generalized Cauchy-Schwarz inequality (2/3)

Thm:
∃ a constant Kd s.t. every convex form p(x) of deg. 2d satisfies

B(x,y) ≤ Kd
√
p(x)

√
p(y) ∀x,y ∈ Rn

2d 2 4 6 8 10 12 14 . . . d odd d even ≥ 4

Kd 1 1 1 1.01 1 1.06 1 . . . 1 > 1

How was this table computed? Via SDPs!

Complex variant:
∃ a constant Ld s.t. every convex form p(x) of deg. 2d ≤ 16 satisfies√

p(z)p(z̄) ≤ Ld B(z, z̄) ∀z ∈ Cn

2d 2 4 6 8 10 12 14 16 . . . 2d

Ld 1 1 2 5 14 42 132 429 . . .

(
2d
d

)
/(d+ 1)

6

Catalan numbers describe the number of:

ways a polygon with n+ 2 sides can be cut into n
triangles.

ways to use n rectangles to tile a stairstep shape
(1, 2, . . . , n− 1, n).
ways in which parentheses can be placed in a
sequence of numbers to be multiplied, two at a time

planar binary trees with n+ 1 leaves

paths of length 2n through an n-by-n grid that do
not rise above the main diagonal
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Generalized Cauchy-Schwarz inequality (3/3)
Thm: For any convex form p(x) of degree 4 in n variables

1

12
yT∇2p(x)y ≤ K4

√
p(x)

√
p(y) with K4 = 1

It is enough to prove:

1

12
yT ∇2p(x) y ≤ 1 whenever p(x) = p(y) = 1

Why? For any x,y ∈ Rn, set x̃ :=
x

p(x) 1
4

, ỹ :=
y

p(y) 1
4

+ use homogeneity.

It is enough to prove:

max
q of deg 4
in 2 vars

1

12
e2T ∇2q(e1) e2 ≤ 1

s.t. q convex

= “sos-convex”

q(e1) = q(e2) = 1.

Why? Fix x,y ∈ Rn, set q(α, β) := p(αx + βy).

� �
d = 2 # 2d = 4
model = SOSModel(...)

# declare a convex polynomial
@polyvar x[1:2]
@variable model q Poly(monomials(x, 2d))
@constraint model q in SOSConvexCone()

# q(1, 0) = q(0, 1) = 1
@constraint model q(x => [1, 0]) == 1
@constraint model q(x => [0, 1]) == 1
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Convex Quaternary Quartics are SOS



Linear inequalities that Σ4,4 satisfies

P4,4

∑
4,4

C4,4

ℓ(p) < 0

ℓ(p) ≥ 0

ℓ(p) ≥ 0

ℓ(p) < 0

ℓ : p → p(x) for some x ∈ R4

ℓ : p →
∑8

i=1 αip(zi) [Blekherman ’12]∑8
i=1 ±zizi

T = 0 and other cond. on the αi

(Cayley-Bacharach)

All zi are real

(I)
√
p(zi) ≤

∑8
i ̸=j

√
p(zj) ∀i

Exactly two of
the zi are not real

zi = z̄j

(II)
√
2
√

|p(zi)|+ Re (p(zi)) ≤
∑

k̸=i,j

√
p(zk)
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Convex forms satisfy inequality (I)
Fix p ∈ C4,4. Let z1, . . . , z8 ∈ R4 such that

z1zT
1 =

8∑
i=2

±zizT
i .

Squaring both sides:

z1z1
T ⊗ z1z1

T =

8∑
i=2

±zizi
T ⊗ zjzj

T

Applying B(·, ·) to both sides:

B(z1, z1)

︸ ︷︷ ︸
=p(z1)

=
8∑

i,j=2

± B(zi, zj)

︸ ︷︷ ︸
≤
√

p(zi)
√

p(zj)

p(z1) ≤
8∑

i,j=2

√
p(zi)

√
p(zj)

WTS:
√
p(z1) ≤

8∑
i=2

√
p(zi).

10

B(x,y) = 1
12

yT∇2p(x)y

B(·, ·) is linear in xxT ⊗ yyT
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Convex forms satisfy inequality (II)

Let z1 = z̄2 ∈ C4, and z3, . . . , z8 ∈ R4 such that z1zT
1 + z1z2 =

∑8
i=3 ±zizT

i .

Squaring both sides and applying B(·, ·) leads to

B(z1, z1) + B(z2, z2)

︸ ︷︷ ︸
=2 Re (p(z1))

+ 2 B(z1, z2)

︸ ︷︷ ︸
≥|p(z1)|

=

8∑
i,j=3

± B(zi, zj)

︸ ︷︷ ︸
≤
√

p(zi)
√

p(zj)

All in all:
2Re (p(z1)) + 2|p(z1)| ≤

8∑
i,j=3

√
p(zi)

√
p(zj).

WTS:
√
2
√

|p(zi)|+ Re (p(zi)) ≤
8∑

k≥3

√
p(zk)

We have just proved that C4,4 ⊆
∑

4,4
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What about convex ternary sextics?



The case of ternary sextics, i.e. (n, 2d) = (3, 6)
Very similar to the case of quaternary quartics!

Good understanding of
the extreme rays of Σ∗

6,3

[Blekherman ’12]

Cauchy-Schwarz
1

6·5·4∇
3p(x) · (y,y,y) ≤

√
p(x)p(y)

✓
Complex Cauchy-Schwarz

|p(z)| ≤ 2
6·5·4∇

3p(z) · (z̄, z̄, z̄)

Type (I) Type (II)

Conjecture: Separating hyperplanes
of Type (II) are not needed

[Blekherman ’12]

In which case, C6,3 ⊆
∑

6,3!

13
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Conclusion

It is hard to find a convex form that is not sos.
Generalized Cauchy-Schwarz inequalities are one of the main
obstacles for small degree/number of variables.

bachirelkhadir.com

Thanks!
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