On Sum of Squares Representation of Convex Forms and Generalized Cauchy-Schwarz Inequalities

Bachir El Khadir

"Geometry of Real Polynomials, Convexity and Optimization" workshop in Banff, May 28, 2019

$$\mathbf{P}_{\mathbf{n},\mathbf{2d}} = \sum_{\mathbf{n},\mathbf{2d}}?$$

[Hilbert 1888]

[Hilbert 1888]

[Hilbert 1888]

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

Find any element in $C_{n,2d} \setminus \sum_{n,2d}$

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

Find any element in $C_{n,2d} \setminus \sum_{n,2d}$ What is the smallest (n, 2d) for which $C_{n,2d} \not\subseteq \sum_{n,2d}$?

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

Find any element in C_{n,2d} \ ∑_{n,2d}
What is the smallest (n, 2d) for which C_{n,2d} ⊈ ∑_{n,2d}?
((n, 2d) should be ≥ (3,6), (4,4))

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

Find any element in C_{n,2d} \ ∑_{n,2d}
What is the smallest (n, 2d) for which C_{n,2d} ⊈ ∑_{n,2d}?
((n, 2d) should be ≥ (3,6), (4,4))

'09, Blekherman: No For $2d \ge 4$, there are many more convex forms than sos as $n \to \infty$

Open problems:

Find any element in C_{n,2d} \ ∑_{n,2d}
What is the smallest (n, 2d) for which C_{n,2d} ⊈ ∑_{n,2d}?
((n, 2d) should be ≥ (3,6), (4,4))

Today: Convex quaternary quartic forms are sos, i.e. $\mathbf{C}_{4,4} \subseteq \sum_{4,4}$

Outline

1. A curious generalization of the Cauchy-Schwarz inequality

2. Proof that all convex quaternary quartics are sos.

Augustin-Louis Cauchy (1789-1857)

Hermann Schwarz (1843-1921)

 $\begin{array}{rccc} \mathbf{x}^\mathsf{T}\mathsf{Q}\mathbf{x}\;\mathsf{psd}&\longleftrightarrow&\mathbf{x}^\mathsf{T}\mathsf{Q}\mathbf{y}\\ \mathsf{deg}\;2\;\mathsf{in}\;\mathbf{x}&\mathsf{deg}\;1\;\mathsf{in}\;\mathbf{x}\\ && \mathsf{and}\;1\;\mathsf{in}\;\mathbf{y} \end{array}$

 $\begin{array}{rccc} \mathbf{x}^\mathsf{T}\mathsf{Q}\mathbf{x}\;\mathsf{psd}&\longleftrightarrow&\mathbf{x}^\mathsf{T}\mathsf{Q}\mathbf{y}\\ \mathsf{deg}\;2\;\mathsf{in}\;\mathbf{x}&\mathsf{deg}\;1\;\mathsf{in}\;\mathbf{x}\\ && \mathsf{and}\;1\;\mathsf{in}\;\mathbf{y} \end{array}$

$$\begin{array}{rccc} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} \; \mathsf{psd} & \longleftrightarrow & \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{y} \\ \mathsf{deg} \; 2 \; \mathsf{in} \; \mathbf{x} & \mathsf{deg} \; 1 \; \mathsf{in} \; \mathbf{x} \\ & \mathsf{and} \; 1 \; \mathsf{in} \; \mathbf{y} \end{array}$$

$$\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}} \sqrt{\mathbf{y}^{\mathsf{T}} \mathbf{Q} \mathbf{y}}$$

 $\begin{array}{cccc} \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x} \ \mathsf{psd} & \longleftrightarrow & \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \\ \mathsf{deg} \ 2 \ \mathsf{in} \ \mathbf{x} & \mathsf{deg} \ 1 \ \mathsf{in} \ \mathbf{x} \\ & \mathsf{and} \ 1 \ \mathsf{in} \ \mathbf{y} \end{array}$

 $\begin{array}{ccc} \mathsf{p}(\mathbf{x}) \text{ convex } & \longleftrightarrow & \mathsf{B}(\mathbf{x},\mathbf{y}) \text{ bi-form} \\ \deg 2\mathsf{d} \text{ in } \mathbf{x} & & \deg \mathsf{d} \text{ in } \mathbf{x} \\ & & & \mathsf{and } \mathsf{d} \text{ in } \mathbf{y} \end{array}$

 $\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x}} \; \sqrt{\mathbf{y}^{\mathsf{T}} \mathsf{Q} \mathbf{y}}$

 $\begin{array}{cccc} \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x} \ \mathsf{psd} & \longleftrightarrow & \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \\ \mathsf{deg} \ 2 \ \mathsf{in} \ \mathbf{x} & \mathsf{deg} \ 1 \ \mathsf{in} \ \mathbf{x} \\ & \mathsf{and} \ 1 \ \mathsf{in} \ \mathbf{y} \end{array}$

 $\begin{array}{ccc} \mathsf{p}(\mathbf{x}) \text{ convex } & \longleftrightarrow & \mathsf{B}(\mathbf{x},\mathbf{y}) \text{ bi-form} \\ \deg 2\mathsf{d} \text{ in } \mathbf{x} & & \deg \mathsf{d} \text{ in } \mathbf{x} \\ & & & \mathsf{and } \mathsf{d} \text{ in } \mathbf{y} \end{array}$

 $\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x}} \; \sqrt{\mathbf{y}^{\mathsf{T}} \mathsf{Q} \mathbf{y}}$

 $\begin{array}{cccc} \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x} \ \mathsf{psd} & \longleftrightarrow & \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \\ \mathsf{deg} \ 2 \ \mathsf{in} \ \mathbf{x} & \mathsf{deg} \ 1 \ \mathsf{in} \ \mathbf{x} \\ & \mathsf{and} \ 1 \ \mathsf{in} \ \mathbf{y} \end{array}$

 $\begin{array}{ccc} \mathsf{p}(\mathbf{x}) \text{ convex } & \longleftrightarrow & \mathsf{B}(\mathbf{x},\mathbf{y}) \text{ bi-form} \\ \deg 2\mathsf{d} \text{ in } \mathbf{x} & & \deg \mathsf{d} \text{ in } \mathbf{x} \\ & & & \operatorname{and} \mathsf{d} \text{ in } \mathbf{y} \end{array}$

$$\mathbf{p}(\mathbf{x}) = \mathbf{B}(\mathbf{x}, \mathbf{x})$$

 $\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x}} \; \sqrt{\mathbf{y}^{\mathsf{T}} \mathsf{Q} \mathbf{y}}$

 $\begin{array}{cccc} \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{x} \; \mathsf{psd} & \longleftrightarrow & \mathbf{x}^{\mathsf{T}} \mathsf{Q} \mathbf{y} \\ \mathsf{deg} \; 2 \; \mathsf{in} \; \mathbf{x} & \mathsf{deg} \; 1 \; \mathsf{in} \; \mathbf{x} \\ & \mathsf{and} \; 1 \; \mathsf{in} \; \mathbf{y} \end{array}$

 $\begin{array}{rcl} \mathsf{p}(\mathbf{x}) \text{ convex} & \longleftrightarrow & \mathsf{B}(\mathbf{x},\mathbf{y}) \text{ bi-form} \\ \mathsf{deg} \ 2\mathsf{d} \text{ in } \mathbf{x} & \mathsf{deg} \ \mathsf{d} \text{ in } \mathbf{x} \\ & \mathsf{and} \ \mathsf{d} \text{ in } \mathbf{y} \end{array}$

$$\mathbf{p}(\mathbf{x}) = \mathbf{B}(\mathbf{x}, \mathbf{x})$$

We want:

$$\mathbf{B}(\mathbf{x}, \mathbf{y}) \leq \mathbf{K}_{\mathsf{n}, \mathsf{d}} \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})}$$

 $\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}} \sqrt{\mathbf{y}^{\mathsf{T}} \mathbf{Q} \mathbf{y}}$

$$\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} \operatorname{psd} \longleftrightarrow \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{y}$$

$$\operatorname{deg 2 in } \mathbf{x} \qquad \operatorname{deg 1 in } \mathbf{x}$$

$$\operatorname{and 1 in } \mathbf{y}$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{y} \leq \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x}} \sqrt{\mathbf{y}^{\mathsf{T}}\mathbf{Q}\mathbf{y}}$$

$$\mathbf{y} = \mathbf{g}(\mathbf{x}, \mathbf{x})$$

$$\mathbf{w} = \mathbf{g}(\mathbf{x}, \mathbf{x})$$

$$\mathbf{g}(\mathbf{x}, \mathbf{y}) \leq \mathbf{g}(\mathbf{x}, \mathbf{y}) \leq \mathbf{g}(\mathbf{x}, \mathbf{y}) \leq \mathbf{g}(\mathbf{x}, \mathbf{y})$$

$$\mathbf{g}(\mathbf{x}, \mathbf{y}) = \frac{1}{\mathsf{d}!} \nabla^{\mathsf{d}}\mathbf{p}(\mathbf{x}) \cdot (\mathbf{y}, \dots, \mathbf{y})$$

$$\mathbf{g}(\mathbf{x}, \mathbf{y}) = \frac{1}{\mathsf{d}!} \nabla^{\mathsf{d}}\mathbf{p}(\mathbf{x}) \cdot (\mathbf{y}, \dots, \mathbf{y})$$

$$\mathbf{g}(\mathbf{x}, \mathbf{y}) = \frac{1}{\mathsf{d}!} \nabla^{\mathsf{d}}\mathbf{p}(\mathbf{x}) \cdot (\mathbf{y}, \dots, \mathbf{y})$$

$$\mathbf{g}(\mathbf{x}) = \frac{1}{\mathsf{d}!} \nabla^{\mathsf{d}}\mathbf{p}(\mathbf{x}) \cdot (\mathbf{y}, \dots, \mathbf{y})$$

For instance:

•
$$2\mathbf{d} = 2 \rightarrow \mathbf{B}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{y}$$
 • $2\mathbf{d} = 4 \rightarrow \mathbf{B}(\mathbf{x}, \mathbf{y}) = \frac{1}{12} \mathbf{y}^{\mathsf{T}}\nabla^{2}\mathbf{p}(\mathbf{x})\mathbf{y}$

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$\textbf{B}(\mathbf{x},\mathbf{y}) \leq \textbf{K}_{d} \; \sqrt{\textbf{p}(\mathbf{x})} \; \sqrt{\textbf{p}(\mathbf{y})} \; \; \forall \mathbf{x},\mathbf{y} \in \mathbb{R}^{n}$$

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$B(\mathbf{x},\mathbf{y}) \leq K_{\mathsf{d}} \; \sqrt{\boldsymbol{\rho}(\mathbf{x})} \; \sqrt{\boldsymbol{\rho}(\mathbf{y})} \; \; \forall \mathbf{x},\mathbf{y} \in \mathbb{R}^{\mathsf{n}}$$

						12		
K _d	1	1	1	1.01	1	1.06	1	

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$B(\mathbf{x},\mathbf{y}) \leq K_{\mathsf{d}} \; \sqrt{\boldsymbol{\rho}(\mathbf{x})} \; \sqrt{\boldsymbol{\rho}(\mathbf{y})} \; \; \forall \mathbf{x},\mathbf{y} \in \mathbb{R}^{\mathsf{n}}$$

						12		
K _d	1	1	1	1.01	1	1.06	1	

How was this table computed? Via SDPs!

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$\textbf{B}(\textbf{x},\textbf{y}) \leq \textbf{K}_{d} \; \sqrt{\textbf{p}(\textbf{x})} \; \sqrt{\textbf{p}(\textbf{y})} \; \; \forall \textbf{x},\textbf{y} \in \mathbb{R}^{n}$$

									d even ≥ 4
K _d	1	1	1	1.01	1	1.06	1	 1	> 1

How was this table computed? Via SDPs!

(conjecture)

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$\textbf{B}(\textbf{x},\textbf{y}) \leq \textbf{K}_{d} \; \sqrt{\textbf{p}(\textbf{x})} \; \sqrt{\textbf{p}(\textbf{y})} \; \; \forall \textbf{x},\textbf{y} \in \mathbb{R}^{n}$$

$2\mathbf{d}$	2	4	6	8	10	12	14		d odd	d even ≥ 4
K _d	1	1	1	1.01	1	1.06	1		1	> 1

How was this table computed? Via SDPs!

(conjecture)

Complex variant:

 \exists a constant L_d s.t. every convex form $p(\mathbf{x})$ of deg. $2d \leq 16$ satisfies

 $\sqrt{\boldsymbol{p}(\mathbf{z})\boldsymbol{p}(\mathbf{\bar{z}})} \leq \boldsymbol{L}_{d} \; \boldsymbol{B}(\mathbf{z},\mathbf{\bar{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}$

$2\mathbf{d}$	2	4	6	8	10	12	14	16	
L _d	1	1	2	5	14	42	132 6	429	

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$\textbf{B}(\textbf{x},\textbf{y}) \leq \textbf{K}_{d} \; \sqrt{\textbf{p}(\textbf{x})} \; \sqrt{\textbf{p}(\textbf{y})} \; \; \forall \textbf{x},\textbf{y} \in \mathbb{R}^{n}$$

$2\mathbf{d}$	2	4	6	8	10	12	14		d odd	d even ≥ 4
K _d	1	1	1	1.01	1	1.06	1		1	> 1

How was this table computed? Via SDPs!

(conjecture)

Complex variant:

 \exists a constant L_d s.t. every convex form $p(\mathbf{x})$ of deg. $2d \leq 16$ satisfies

 $\sqrt{\boldsymbol{p}(\mathbf{z})\boldsymbol{p}(\mathbf{\bar{z}})} \leq \boldsymbol{L}_{d} \; \boldsymbol{B}(\mathbf{z},\mathbf{\bar{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}$

$2\mathbf{d}$	2	4	6	8	10	12	14	16	
L _d	1	1	2	5	14	42	132 6	429	

Thm:

 \exists a constant K_d s.t. every convex form $p(\mathbf{x})$ of deg. 2d satisfies

$$\textbf{B}(\textbf{x},\textbf{y}) \leq \textbf{K}_{d} \; \sqrt{\textbf{p}(\textbf{x})} \; \sqrt{\textbf{p}(\textbf{y})} \; \; \forall \textbf{x},\textbf{y} \in \mathbb{R}^{n}$$

									d even ≥ 4
K _d	1	1	1	1.01	1	1.06	1	 1	> 1

How was this table computed? Via SDPs!

(conjecture)

Complex variant:

 \exists a constant L_d s.t. every convex form $p(\mathbf{x})$ of deg. $2d \leq 16$ satisfies

 $\sqrt{\boldsymbol{p}(\mathbf{z})\boldsymbol{p}(\mathbf{\bar{z}})} \leq \boldsymbol{L}_{d} \; \boldsymbol{B}(\mathbf{z},\mathbf{\bar{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}$

								16		Coni
L _d	1	1	2	5	14	42	132 6	429	 $\binom{2d}{d}/(d+1)$	ecture)

Catalan numbers describe the number of:

ways a polygon with n + 2 sides can be cut into n triangles.

ways to use n rectangles to tile a stairstep shape $(1, 2, \dots, n-1, n)$.

ways in which parentheses can be placed in a sequence of numbers to be multiplied, two at a time planar binary trees with n + 1 leaves paths of length 2n through an *n*-by-*n* grid that do not rise above the main diagonal

 $\sqrt{\boldsymbol{\rho}(\mathbf{z})\boldsymbol{\rho}(\bar{\mathbf{z}})} \leq \boldsymbol{L}_{d} \; \boldsymbol{B}(\mathbf{z},\bar{\mathbf{z}}) \quad \forall \mathbf{z} \in \mathbb{C}^{n}$

2 d	2	4	6	8	10	12	14	16	 2 d	Con
L _d	1	1	2	5	14	42	132 6	429	 $\binom{2d}{d}/(d+1)$	ecture)

Thm: For any convex form p(x) of degree 4 in *n* variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \boldsymbol{\rho}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\boldsymbol{\rho}(\mathbf{x})} \sqrt{\boldsymbol{\rho}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

Thm: For any convex form p(x) of degree 4 in *n* variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

It is enough to prove:

$$rac{1}{12} \ \mathbf{y}^{\mathsf{T}} \,
abla^2 oldsymbol{
ho}(\mathbf{x}) \ \mathbf{y} \ \leq 1 \ \ \text{whenever} \ \ oldsymbol{
ho}(\mathbf{x}) \ = \ oldsymbol{
ho}(\mathbf{y}) \ = 1$$

Thm: For any convex form p(x) of degree 4 in *n* variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

It is enough to prove:

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq 1 \text{ whenever } \mathbf{p}(\mathbf{x}) = \mathbf{p}(\mathbf{y}) = 1$$
Why? For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\tilde{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{\mathbf{p}(\mathbf{x})^{\frac{1}{4}}}, \tilde{\mathbf{y}} \coloneqq \frac{\mathbf{y}}{\mathbf{p}(\mathbf{y})^{\frac{1}{4}}}$ + use homogeneity.

Thm: For any convex form $p(\mathbf{x})$ of degree 4 in *n* variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

It is enough to prove:

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \boldsymbol{\rho}(\mathbf{x}) \mathbf{y} \leq 1 \text{ whenever } \boldsymbol{\rho}(\mathbf{x}) = \boldsymbol{\rho}(\mathbf{y}) = 1$$

Why? For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\tilde{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{p(\mathbf{x})^{\frac{1}{4}}}, \tilde{\mathbf{y}} \coloneqq \frac{\mathbf{y}}{p(\mathbf{y})^{\frac{1}{4}}}$ + use homogeneity. It is enough to prove:

$$\max_{\substack{\mathsf{q} \text{ of deg } 4\\ \text{in } 2 \text{ vars}}} \quad \frac{1}{12} \, \mathbf{e_2}^\mathsf{T} \, \nabla^2 \mathbf{q}(\mathbf{e}_1) \, \mathbf{e}_2 \ \leq 1$$

s.t. q convex

$$\mathbf{q}(\mathbf{e}_1) = \mathbf{q}(\mathbf{e}_2) = 1.$$

Thm: For any convex form $p(\mathbf{x})$ of degree 4 in *n* variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

It is enough to prove:

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \boldsymbol{\rho}(\mathbf{x}) \mathbf{y} \leq 1 \text{ whenever } \boldsymbol{\rho}(\mathbf{x}) = \boldsymbol{\rho}(\mathbf{y}) = 1$$

Why? For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\tilde{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{p(\mathbf{x})^{\frac{1}{4}}}, \tilde{\mathbf{y}} \coloneqq \frac{\mathbf{y}}{p(\mathbf{y})^{\frac{1}{4}}}$ + use homogeneity. It is enough to prove:

$$\max_{\substack{\mathsf{q} \text{ of deg } 4\\ \text{in } 2 \text{ vars}}} \quad \frac{1}{12} \, \mathbf{e_2}^{\mathsf{T}} \, \nabla^2 \mathbf{q}(\mathbf{e}_1) \, \mathbf{e}_2 \, \leq 1$$

s.t. q convex

$$\mathbf{q}(\mathbf{e}_1) = \mathbf{q}(\mathbf{e}_2) = 1.$$

Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $q(\alpha, \beta) \coloneqq p(\alpha \mathbf{x} + \beta \mathbf{y})$.

Thm: For any convex form p(x) of degree 4 in n variables

$$\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathsf{K}_4 \sqrt{\mathbf{p}(\mathbf{x})} \sqrt{\mathbf{p}(\mathbf{y})} \text{ with } \mathsf{K}_4 = 1$$

It is enough to prove:

 $\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \boldsymbol{p}(\mathbf{x}) \mathbf{y} \leq 1 \text{ whenever } \boldsymbol{p}(\mathbf{x}) = \boldsymbol{p}(\mathbf{y}) = 1$ Why? For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\tilde{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{p(\mathbf{x})^{\frac{1}{4}}}$, $\tilde{\mathbf{y}} \coloneqq \frac{\mathbf{y}}{p(\mathbf{y})^{\frac{1}{4}}}$ + use homogeneity. It is enough to prove: $\max_{\substack{\mathsf{q} \text{ of deg 4}\\ \mathsf{in } 2 \text{ vars}}} \quad \frac{1}{12} \, \mathbf{e_2}^\mathsf{T} \, \nabla^2 \mathsf{q}(\mathbf{e_1}) \, \mathbf{e_2} \, \leq 1$ s.t. q convex $q(e_1) = q(e_2) = 1.$

Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $q(\alpha, \beta) \coloneqq p(\alpha \mathbf{x} + \beta \mathbf{y})$.

Generalized Cauchy-Se d = 2 # 2d = 4 model = SOSModel(...) **Thm:** For any convex form p(x) of degre # declare a convex polynomial @polyvar x[1:2] $\frac{1}{10} \mathbf{y}^{\mathrm{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq \mathbf{K}_4 \sqrt{\frac{\text{epolydr x[1:2]}}{\text{evariable model q Poly(monomials(x, 2d))}}$ @constraint model q in SOSConvexCone() It is enough to prove: # a(1, 0) = a(0, 1) = 1@constraint model $q(x \Rightarrow [1, 0]) == 1$ $\frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \leq 1 \quad \mathsf{wh} \quad \text{@constraint model } q(\mathbf{x} \Rightarrow [0, 1]) = 1$ Why? For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\tilde{\mathbf{x}} \coloneqq \frac{\mathbf{x}}{p(\mathbf{x})}$ # objective model Max coefficients(q)[d+1] It is enough to prove: # solve optimize!(model) $\max_{\mathbf{e} \in \mathsf{deg}} \frac{1}{4} \frac{\mathbf{e}_2}{12} \nabla^2 \mathbf{q}(\mathbf{e}_1) \mathbf{e}_2 \leq 1$ $(\alpha + \beta)^4$ q of deg 4 $(\alpha - \beta)^4$ in 2 vars s.t. g convex = "sos-convex" $q(e_1) = q(e_2) = 1.$ Why? Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, set $\mathbf{q}(\alpha, \beta) \coloneqq \mathbf{p}(\alpha \mathbf{x} + \beta \mathbf{y})$.

Convex Quaternary Quartics are SOS

Linear inequalities that $\boldsymbol{\Sigma}_{4,4}$ satisfies

Linear inequalities that $\boldsymbol{\Sigma}_{4,4}$ satisfies

Linear inequalities that $\boldsymbol{\Sigma}_{4,4}$ satisfies

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}.$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$$

Squaring both sides:

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} \otimes \mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}} \otimes \mathbf{z}_j \mathbf{z}_j^{\mathsf{T}}$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}.$$

$$\begin{split} \mathbf{B}(\mathbf{x}, \mathbf{y}) &= \frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \\ \mathbf{B}(\cdot, \cdot) \text{ is linear in } \mathbf{x} \mathbf{x}^{\mathsf{T}} \otimes \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{split}$$

Squaring both sides:

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} \otimes \mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}} \otimes \mathbf{z}_j \mathbf{z}_j^{\mathsf{T}}$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}.$$

$$\begin{split} \mathbf{B}(\mathbf{x}, \mathbf{y}) &= \frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \\ \mathbf{B}(\cdot, \cdot) \text{ is linear in } \mathbf{x} \mathbf{x}^{\mathsf{T}} \otimes \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{split}$$

Squaring both sides:

$$\mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} \otimes \mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} = \sum_{i=2}^{8} \pm \mathbf{z}_{i}\mathbf{z}_{i}^{\mathsf{T}} \otimes \mathbf{z}_{j}\mathbf{z}_{i}^{\mathsf{T}}$$

Applying $\textbf{B}(\cdot, \cdot)$ to both sides:

$$\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) = \sum_{i,j=2}^{8} \pm \mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}.$$

$$\begin{split} \mathbf{B}(\mathbf{x}, \mathbf{y}) &= \frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \\ \mathbf{B}(\cdot, \cdot) \text{ is linear in } \mathbf{x} \mathbf{x}^{\mathsf{T}} \otimes \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{split}$$

Squaring both sides:

$$\mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} \otimes \mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} = \sum_{i=2}^{8} \pm \mathbf{z}_{i}\mathbf{z}_{i}^{\mathsf{T}} \otimes \mathbf{z}_{j}\mathbf{z}_{j}^{\mathsf{T}}$$

Applying $\textbf{B}(\cdot, \cdot)$ to both sides:

$$\underbrace{\mathbf{B}(\mathbf{z}_1,\mathbf{z}_1)}_{=\mathbf{p}(\mathbf{z}_1)} = \sum_{i,j=2}^8 \pm \mathbf{B}(\mathbf{z}_i,\mathbf{z}_j)$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}.$$

$$\begin{split} \mathbf{B}(\mathbf{x}, \mathbf{y}) &= \frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \\ \mathbf{B}(\cdot, \cdot) \text{ is linear in } \mathbf{x} \mathbf{x}^{\mathsf{T}} \otimes \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{split}$$

Squaring both sides:

$$\mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} \otimes \mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} = \sum_{i=2}^{8} \pm \mathbf{z}_{i}\mathbf{z}_{i}^{\mathsf{T}} \otimes \mathbf{z}_{j}\mathbf{z}_{j}^{\mathsf{T}}$$

Applying $\textbf{B}(\cdot, \cdot)$ to both sides:

$$\underbrace{\mathtt{B}(\mathtt{z}_1, \mathtt{z}_1)}_{=\mathtt{p}(\mathtt{z}_1)} = \sum_{i,j=2}^{8} \underbrace{\pm \mathtt{B}(\mathtt{z}_i, \mathtt{z}_j)}_{\leq \sqrt{\mathtt{p}(\mathtt{z}_i)}\sqrt{\mathtt{p}(\mathtt{z}_j)}}$$

WTS:
$$\sqrt{\mathbf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)}.$$

Fix $p \in C_{4,4}$. Let $z_1, \ldots, z_8 \in \mathbb{R}^4$ such that

$$\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} = \sum_{i=2}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}.$$

$$\begin{split} \mathbf{B}(\mathbf{x}, \mathbf{y}) &= \frac{1}{12} \mathbf{y}^{\mathsf{T}} \nabla^2 \mathbf{p}(\mathbf{x}) \mathbf{y} \\ \mathbf{B}(\cdot, \cdot) \text{ is linear in } \mathbf{x} \mathbf{x}^{\mathsf{T}} \otimes \mathbf{y} \mathbf{y}^{\mathsf{T}} \end{split}$$

Squaring both sides:

$$\mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} \otimes \mathbf{z}_{1}\mathbf{z}_{1}^{\mathsf{T}} = \sum_{i=2}^{8} \pm \mathbf{z}_{i}\mathbf{z}_{i}^{\mathsf{T}} \otimes \mathbf{z}_{j}\mathbf{z}_{j}^{\mathsf{T}}$$

Applying $\textbf{B}(\cdot, \cdot)$ to both sides:

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1)}_{=\mathbf{p}(\mathbf{z}_1)} = \sum_{i,j=2}^{8} \underbrace{\pm \mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)}_{\leq \sqrt{\mathbf{p}(\mathbf{z}_i)}\sqrt{\mathbf{p}(\mathbf{z}_j)}}$$

$$\mathbf{p}(\mathbf{z}_1) \leq \sum_{i,j=2}^8 \sqrt{\mathbf{p}(\mathbf{z}_i)} \sqrt{\mathbf{p}(\mathbf{z}_j)}$$

WTS:
$$\sqrt{\mathsf{p}(\mathbf{z}_1)} \leq \sum_{i=2}^8 \sqrt{\mathsf{p}(\mathbf{z}_i)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}$.

$$\textbf{WTS:} \sqrt{2} \sqrt{|\textbf{p}(\mathbf{z}_i)| + \operatorname{Re}\left(\textbf{p}(\mathbf{z}_i)\right)} \leq \sum_{k \geq 3}^8 \sqrt{\textbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$. Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2) + 2 \mathbf{B}(\mathbf{z}_1, \mathbf{z}_2) = \sum_{i,j=3}^8 \pm \mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)$$

WTS:
$$\sqrt{2}\sqrt{|\mathbf{p}(\mathbf{z}_i)| + \operatorname{Re}\left(\mathbf{p}(\mathbf{z}_i)\right)} \le \sum_{k\geq 3}^8 \sqrt{\mathbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^{\mathsf{T}} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}$.

Squaring both sides and applying $\mathbf{B}(\cdot,\cdot)$ leads to

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2)}_{=2 \operatorname{Re}(\mathbf{p}(\mathbf{z}_1))} + 2 \, \mathbf{B}(\mathbf{z}_1, \mathbf{z}_2) = \sum_{i,j=3}^{8} \pm \mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)$$

WTS:
$$\sqrt{2}\sqrt{|\mathbf{p}(\mathbf{z}_i)| + \operatorname{Re}\left(\mathbf{p}(\mathbf{z}_i)\right)} \le \sum_{k\geq 3}^8 \sqrt{\mathbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$. Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2)}_{=2 \operatorname{Re}(\mathbf{p}(\mathbf{z}_1))} + 2 \mathbf{B}(\mathbf{z}_1, \mathbf{z}_2) = \sum_{i,j=3}^{8} \pm \underbrace{\mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)}_{\leq \sqrt{\mathbf{p}(\mathbf{z}_i)}\sqrt{\mathbf{p}(\mathbf{z}_j)}}$$

WTS:
$$\sqrt{2}\sqrt{|\mathbf{p}(\mathbf{z}_i)| + \operatorname{Re}(\mathbf{p}(\mathbf{z}_i))} \le \sum_{k\geq 3}^8 \sqrt{\mathbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$. Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2)}_{=2\operatorname{Re}(\mathbf{p}(\mathbf{z}_1))} + 2\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_2)}_{\geq |\mathbf{p}(\mathbf{z}_1)|} = \sum_{i,j=3}^8 \pm \underbrace{\mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)}_{\leq \sqrt{\mathbf{p}(\mathbf{z}_i)}\sqrt{\mathbf{p}(\mathbf{z}_j)}}$$

WTS:
$$\sqrt{2}\sqrt{|\mathbf{p}(\mathbf{z}_i)| + \operatorname{Re}\left(\mathbf{p}(\mathbf{z}_i)\right)} \le \sum_{k\geq 3}^8 \sqrt{\mathbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$. Squaring both sides and applying $B(\cdot, \cdot)$ leads to

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2)}_{=2\operatorname{Re}(\mathbf{p}(\mathbf{z}_1))} + 2\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_2)}_{\geq |\mathbf{p}(\mathbf{z}_1)|} = \sum_{i,j=3}^8 \pm \underbrace{\mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)}_{\leq \sqrt{\mathbf{p}(\mathbf{z}_i)}\sqrt{\mathbf{p}(\mathbf{z}_j)}}$$

All in all:

$$2\operatorname{Re}\left(\boldsymbol{\mathsf{p}}(\mathbf{z}_{1})\right)+2|\boldsymbol{\mathsf{p}}(\mathbf{z}_{1})|\leq \sum_{i,j=3}^{8}\sqrt{\boldsymbol{\mathsf{p}}(\mathbf{z}_{i})}\sqrt{\boldsymbol{\mathsf{p}}(\mathbf{z}_{j})}.$$

$$\textbf{WTS:} \sqrt{2} \sqrt{|\textbf{p}(\mathbf{z}_i)| + \operatorname{Re}\left(\textbf{p}(\mathbf{z}_i)\right)} \leq \sum_{k \geq 3}^8 \sqrt{\textbf{p}(\mathbf{z}_k)}$$

Let $\mathbf{z}_1 = \bar{\mathbf{z}_2} \in \mathbb{C}^4$, and $\mathbf{z}_3, \dots, \mathbf{z}_8 \in \mathbb{R}^4$ such that $\mathbf{z}_1 \mathbf{z}_1^\mathsf{T} + \mathbf{z}_1 \mathbf{z}_2 = \sum_{i=3}^8 \pm \mathbf{z}_i \mathbf{z}_i^\mathsf{T}$. Squaring both sides and applying $\mathcal{B}(\cdot, \cdot)$ leads to

$$\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_1) + \mathbf{B}(\mathbf{z}_2, \mathbf{z}_2)}_{=2\operatorname{Re}(\mathbf{p}(\mathbf{z}_1))} + 2\underbrace{\mathbf{B}(\mathbf{z}_1, \mathbf{z}_2)}_{\geq |\mathbf{p}(\mathbf{z}_1)|} = \sum_{i,j=3}^8 \pm \underbrace{\mathbf{B}(\mathbf{z}_i, \mathbf{z}_j)}_{\leq \sqrt{\mathbf{p}(\mathbf{z}_i)}\sqrt{\mathbf{p}(\mathbf{z}_j)}}$$

All in all:

$$2\operatorname{Re}\left(\boldsymbol{\mathsf{p}}(\mathbf{z}_{1})\right)+2|\boldsymbol{\mathsf{p}}(\mathbf{z}_{1})|\leq \sum_{i,j=3}^{8}\sqrt{\boldsymbol{\mathsf{p}}(\mathbf{z}_{i})}\sqrt{\boldsymbol{\mathsf{p}}(\mathbf{z}_{j})}.$$

WTS:
$$\sqrt{2}\sqrt{|\mathbf{p}(\mathbf{z}_i)|} + \operatorname{Re}\left(\mathbf{p}(\mathbf{z}_i)\right) \le \sum_{k\geq 3}^8 \sqrt{\mathbf{p}(\mathbf{z}_k)}$$

We have just proved that $\mathbf{C_{4,4}} \subseteq \sum_{\mathbf{4,4}}$

What about convex ternary sextics?

Conclusion

It is hard to find a convex form that is not sos.

Generalized Cauchy-Schwarz inequalities are one of the main obstacles for small degree/number of variables.

Conclusion

It is hard to find a convex form that is not sos.

Generalized Cauchy-Schwarz inequalities are one of the main obstacles for small degree/number of variables.

bachirelkhadir.com

Thanks!