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Convex = Nonnegative?

Yes! Euler:

2d(2d — 1)p(x) = x"V?p(x)x
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07, Parrilo asked:
Are all convex forms sos?

‘09, Blekherman: No
For 2d > 4, there are many more
convex forms than sos as n — oo

Open problems:

Find any element in C,, 24 \ Zn,zd
What is the smallest (n, 2d) for
which Cp 24 € 57, 247

((n,2d) should be > (3,6), (4,4))

Today: Convex quaternary quartic forms are sos, i.e. C44 C >, ,
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Outline

1. A curious generalization of the Cauchy-Schwarz
inequality

2. Proof that all convex quaternary quartics are sos.



Generalized Cauchy-Schwarz Inequalities

Augustin-Louis Cauchy Hermann Schwarz
(1789-1857) (1843-1921)
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p(x) convex <+— B(x,y) biform

x'Qxpsd +— x'Qy i ) deg dinx
deg 2 in x deg 1in x ! deg 2d in x anddiny
and 1 iny |
3 p(x) = B(x, %)
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d times
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For instance:
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Generalized Cauchy-Schwarz inequality (2/3)

Thm:

3 a constant Ky s.t. every convex form p(x) of deg. 2d satisfies

B(x,y) <Ky Vp(x) vp(y) Vx,y €R"
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Complex variant:

3 a constant Ly s.t. every convex form p(x) of deg. 2d < 16 satisfies

p(2)p(z) < Ly B(z,z) Vz e C"
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Catalan numbers describe the number of:

ways a polygon with n + 2 sides can be cut into n
triangles.

ways to use n rectangles to tile a stairstep shape

(1,2,...,n—1,n).

ways in which parentheses can be placed in a
sequence of numbers to be multiplied, two at a time

planar binary trees with n + 1 leaves

paths of length 2n through an n-by-n grid that do
not rise above the main diagonal

R e

-

g

T-

p(2)p(z) < Ly B(z,z) Vz e C"

2] 4ls]slr0]2] 46| ]| 24 |2
[0

11251442 132 420 ... (2;')/(d+1) e
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Generalized Cauchy-S«
Thm: For any convex form p(x) of degre

5 Y Vi)Y < Ki v/

It is enough to prove:

1
— vy V?p(x)y <1 wh

12
Why? For any x,y € R", set x = 7x
p(x):

It is enough to prove:

1
ey’ Viq(er) ey <1

max  —
qofdeg 4 12
in 2 vars

s.t. g convex = “sos-convex”

q(e1) = q(ez) =1.

Why? Fix x,y € R", set q(a, 8) == p(ax + Sy).

7

d=2#2d =14
model SOSModel(...)

# declare a convex polynomial

@polyvar x[1:2]

@variable model g Poly(monomials(x, 2d))
@constraint model q in SO0SConvexCone()

#q9(l, 0) = qC0, 1) =1
@constraint model q(x => [1, 0]) == 1
@constraint model q(x => [0, 1]) == 1

# objective
@objective model Max coefficients(q)[d+1]

# solve
optimize!(model)

(a+p)*
(a—B)* |

l
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Convex forms satisfy inequality (l1)
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Convex forms satisfy inequality (l1)

letz; =73 € C*, and zs, ..., 2zs € R* such that z12] + 212z, = 258:3 +zz].
Squaring both sides and applying B(:, ) leads to
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We have just proved that C4 4 C >, ,



What about convex ternary sextics?
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Type (1) Type (1)
Cauchy-Schwarz D) Complex Cauchy-Schwarz
551V P(x) - (v,¥,¥) < VpP(x)p(y) p(2)| < 535 Vp(2) - (,2,2)

Conjecture: Separating hyperplanes

of Type (ll) are not needed In which case, Cg,3 C 3 g 5!

[Blekherman "12]
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obstacles for small degree/number of variables.
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Bachir El Khadir - iolJ| uix

About me

bachirelkhadir.com

Thanks!
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