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Scalar nonlinear hyperbolic conservation law

oy(t,x) | Of(y(t,z)) _
ot T ox o

y(0,z) = yo(x) reX

given f polynomial, e.g. f(y) = y2 for Burgers’ equation
given yg, with y : T x X — Y C R to be found

0 teT, zeX

Nonlinear partial differential equation (PDE) modelling physical
phenomena such as fluid mechanics, traffic flow or acoustics

Even with regular initial data yg, for t large enough the graph
x — y(t,z) may feature discontinuities = shocks

Need for a notion of weak solution...



A Young measure or parametrized probability measure is a map

pw: TxX — 22(Y)
(t,CE) = Utz
It is @ measure-valued (mv) solution of the nonlinear PDE

y(O T) = yo(w) reX
whenever the linear equation

fo b Jo (P25 20+ 2582 1)) ey

0,2)yd dz = 0
+/X /Yw )y NO,x(y) T
holds for all test functions ¢ € €1 (T x X)

Classical solutions y(t, x) are recovered when p; . (dy) = 5y(t,x)(dy)



An mv solution p is an entropy mv solution if

// / (aw(t ,T) o (y )+8¢(ix)q(y)> Tt (o) di it
+/X /Y%D(O,w)p(y)duo,x(y) de >0

for all p,q € €1(Y) such that p is strictly convex and ¢ = f'p/
and all non-negative test functions ¢ &€ ‘Kcl(T X X)

The entropy mv solution satisfies linear constraints
yet it is not a relaxation..



Theorem: Let C = Lip(f). For all T > 0 and » > 0, it holds

/|:1;|<7~ /Y ly—y(T', @) |dpt 2 (y) do <

In particular, if po . = 6y,(z) then pe g,y = 0y 4) for all t € [0,T]
and all z such that |z| <r

|lz|<r+CT /Y ly—yo(@)|dut,z(y) dx

In words, if the initial condition is concentrated, then the entropy
mv solution is concentrated for all time

Solving the linear equation and entropy inequalities is equivalent
to solving the nonlinear equation



If F} denotes the flow, i.e. y(t,z) = Fi(yo(x)), then p;, is the
image measure of the initial measure pug , through F;

Young measure pu; .(dy) is conditional of occupation measure

dv(t,z,y) = dt de u(dy | t, )

For every set A in the Borel sigma algebra of T x X x Y, the
value v(A) is the time spent in A by solution y(¢,x), averaged
wrt initial data pg 4

www.chaos-math.org/en/chaos-viii-statistics



To summarize, the entropy mv solution p satisfies the following
linear constraints

/ (8—% + a—wf(y)) dp z(y) da dt + /w(o )y dpg »(y)dz = 0

and

/ (%f (y) + —q(y)) dpt,z(y) dz dt + /w(o 2)p(y) dpg o (y)dz > 0

for all smooth test functions ¢ and entropy pairs p,q

In practice we solve this problem on (scaled) compact sets
T=X=Y :=[0,1] so we can restrict @) to polynomials

The map f is polynomial, and the entropy pairs p, g are algebraic
i.e. they satisfy polynomial inequalities

Therefore we have a Generalized Moment Problem (GMP)
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Numerical example



For a numerical illustration, we consider the classical Riemann
problem for a Burgers equation. In particular, we choose the flux

1
fly) = Zyz

Cauchy problem with the following initial condition, piecewise
constant with one point of discontinuity:

() = [ ifx <O,
Y0 ] r ifz>0,

where [,r € R



The solution to the Riemann problem depends strongly on the
values of [ and r. In particular:

1. If [l > r, the shock at the initial condition spreads along the
characteristics

2. If | < r, the solution is not necessarily unique. The entropy
condition allows to select the right solution, which is known
as a rarefaction wave



Shock
Forl =1 and r = 0 the solution is discontinuous, for all ¢t > 0

The unique analytical solution is

1 = >

INEN

y(t,r) =
0 =<

INEN

Solving the moment problem up to degree 12 with our interface
GloptiPoly for Matlab and the semidefinite programming solver
MOSEK, we end up with the following moments:

(/ yFdy o (y)de dt)—o 1. = (1.0000,0.6250,0.6250, 0.6250, . ..)

which correspond (up to numerical accuracy) exactly with the
moments of the analytic solution du s = 9, )



From moments to graphs

How can we recover the graph of the solution from the
(approximate) moments of the Young measure 7

See next talk by Jean Bernard Lasserre !



A uonn|os

0.2

Time t



Rarefaction wave
For [l =0 and r = 1 the discontinuity disappears for ¢t > O

The unique analytic solution is

y(t,x) =

l—lw"g)C)
8 O 8
AVAVANRVAN

0]
fé% (1)
2

Solving the moment problem up to degree 12 with our interface
GloptiPoly for Matlab and the semidefinite programming solver
MOSEK, we end up with the following moments:

(f y*dps o(y)dz dt)g—p.1... = (1.0000,0.3750,0.3333,0.3125,
0.3000,0.2917,0.2857,0.2812,...)

which correspond (up to numerical accuracy) exactly with the
moments of the analytic solution dui . = 0, )



Solution y
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