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Scalar nonlinear hyperbolic conservation law

∂y(t, x)

∂t
+
∂f(y(t, x))

∂x
= 0 t ∈ T, x ∈ X

y(0, x) = y0(x) x ∈ X

given f polynomial, e.g. f(y) = y2 for Burgers’ equation

given y0, with y : T×X→ Y ⊂ R to be found

Nonlinear partial differential equation (PDE) modelling physical

phenomena such as fluid mechanics, traffic flow or acoustics

Even with regular initial data y0, for t large enough the graph

x 7→ y(t, x) may feature discontinuities = shocks

Need for a notion of weak solution...



A Young measure or parametrized probability measure is a map

µ : T×X → P(Y)
(t, x) 7→ µt,x

It is a measure-valued (mv) solution of the nonlinear PDE

∂y(t, x)

∂t
+
∂f(y(t, x))

∂x
= 0 t ∈ T, x ∈ X

y(0, x) = y0(x) x ∈ X

whenever the linear equation∫
T

∫
X

∫
Y

(
∂ψ(t, x)

∂t
y +

∂ψ(t, x)

∂x
f(y)

)
dµt,x(y)dx dt

+
∫
X

∫
Y
ψ(0, x)y dµ0,x(y)dx = 0

holds for all test functions ψ ∈ C 1
c (T×X)

Classical solutions y(t, x) are recovered when µt,x(dy) = δy(t,x)(dy)



An mv solution µ is an entropy mv solution if∫
T

∫
X

∫
Y

(
∂ψ(t, x)

∂t
p(y) +

∂ψ(t, x)

∂x
q(y)

)
dµt,x(y) dx dt

+
∫
X

∫
Y
ψ(0, x)p(y)dµ0,x(y) dx ≥ 0

for all p, q ∈ C 1(Y) such that p is strictly convex and q′ = f ′p′

and all non-negative test functions ψ ∈ C 1
c (T×X)

The entropy mv solution satisfies linear constraints

yet it is not a relaxation..



Theorem: Let C = Lip(f). For all T ≥ 0 and r ≥ 0, it holds∫
|x|≤r

∫
Y
|y−y(T, x)|dµt,x(y) dx ≤

∫
|x|≤r+CT

∫
Y
|y−y0(x)|dµt,x(y) dx

In particular, if µ0,x = δy0(x) then µ(t,x) = δy(t,x) for all t ∈ [0, T ]

and all x such that |x| ≤ r

In words, if the initial condition is concentrated, then the entropy

mv solution is concentrated for all time

Solving the linear equation and entropy inequalities is equivalent

to solving the nonlinear equation



If Ft denotes the flow, i.e. y(t, x) = Ft(y0(x)), then µt,x is the

image measure of the initial measure µ0,x through Ft

Young measure µt,x(dy) is conditional of occupation measure

dν(t, x, y) = dt dxµ(dy | t, x)

For every set A in the Borel sigma algebra of T × X × Y, the

value ν(A) is the time spent in A by solution y(t, x), averaged

wrt initial data µ0,x

www.chaos-math.org/en/chaos-viii-statistics



To summarize, the entropy mv solution µ satisfies the following
linear constraints∫ (

∂ψ

∂t
y +

∂ψ

∂x
f(y)

)
dµt,x(y) dx dt+

∫
ψ(0, x)y dµ0,x(y)dx = 0

and∫ (
∂ψ

∂t
p(y) +

∂ψ

∂x
q(y)

)
dµt,x(y) dx dt+

∫
ψ(0, x)p(y) dµ0,x(y)dx ≥ 0

for all smooth test functions ψ and entropy pairs p, q

In practice we solve this problem on (scaled) compact sets
T = X = Y := [0,1] so we can restrict ψ to polynomials

The map f is polynomial, and the entropy pairs p, q are algebraic
i.e. they satisfy polynomial inequalities

Therefore we have a Generalized Moment Problem (GMP)





Numerical example



For a numerical illustration, we consider the classical Riemann

problem for a Burgers equation. In particular, we choose the flux

f(y) =
1

4
y2

Cauchy problem with the following initial condition, piecewise

constant with one point of discontinuity:

y0(x) =

{
l if x < 0,
r if x > 0,

where l, r ∈ R



The solution to the Riemann problem depends strongly on the

values of l and r. In particular:

1. If l > r, the shock at the initial condition spreads along the

characteristics

2. If l < r, the solution is not necessarily unique. The entropy

condition allows to select the right solution, which is known

as a rarefaction wave



Shock

For l = 1 and r = 0 the solution is discontinuous, for all t > 0

The unique analytical solution is

y(t, x) =


1 x > t

4

0 x < t
4

Solving the moment problem up to degree 12 with our interface
GloptiPoly for Matlab and the semidefinite programming solver
MOSEK, we end up with the following moments:

(
∫
ykdµt,x(y)dx dt)k=0,1,... = (1.0000,0.6250,0.6250,0.6250, . . .)

which correspond (up to numerical accuracy) exactly with the
moments of the analytic solution dµt,x = δy(t,x)



From moments to graphs

How can we recover the graph of the solution from the

(approximate) moments of the Young measure ?

See next talk by Jean Bernard Lasserre !





Rarefaction wave

For l = 0 and r = 1 the discontinuity disappears for t > 0

The unique analytic solution is

y(t, x) =


0 x ≤ 0
2x
t 0 ≤ x ≤ t

2
1 x ≥ t

2

(1)

Solving the moment problem up to degree 12 with our interface
GloptiPoly for Matlab and the semidefinite programming solver
MOSEK, we end up with the following moments:

(
∫
ykdµt,x(y)dx dt)k=0,1,... = (1.0000,0.3750,0.3333,0.3125,

0.3000,0.2917,0.2857,0.2812, . . .)

which correspond (up to numerical accuracy) exactly with the
moments of the analytic solution dµt,x = δy(t,x)
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