Noncommutative
 Polynomials Describing

 Convex Sets

 Convex Sets}

Igor Klep U Ljubljana

Geometry of Real Polynomials, Convexity and Optimization Banff, May 2019

Based on joint work with

Bill Helton	UC San Diego
Scott McCullough	U Florida
Jurij Volčič	Texas A\&M

Outline
 Noncommutative Polynomials Describing Convex Sets

1. Semialgebraic sets defined by noncommutative polynomials
2. Polynomials with convex semialgebraic sets
3. Examples and counterexamples
4. Algorithm for testing convexity and producing LMI representations

NC polynomials and linear pencils

Let $x=\left(x_{1}, \ldots, x_{g}\right)$ and $x^{*}=\left(x_{1}^{*}, \ldots, x_{g}^{*}\right)$ be freely noncommuting variables. Elements of the free algebra $\mathbb{C}<x, x^{*}>$ are noncommutative polynomials, e.g.

$$
x_{1} x_{2}^{*} x_{2}+2 x_{2}^{*} x_{1} x_{1}^{*}-3
$$

Given $X=\left(X_{1}, \ldots, X_{g}\right) \in \mathrm{M}_{n}(\mathbb{C})^{g}$ and $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ we have $f\left(X, X^{*}\right) \in \mathrm{M}_{d n}(\mathbb{C})$. If $f^{*}=f$, then f is hermitian.

NC polynomials and linear pencils

Let $x=\left(x_{1}, \ldots, x_{g}\right)$ and $x^{*}=\left(x_{1}^{*}, \ldots, x_{g}^{*}\right)$ be freely noncommuting variables. Elements of the free algebra $\mathbb{C}<x, x^{*}>$ are noncommutative polynomials, e.g.

$$
x_{1} x_{2}^{*} x_{2}+2 x_{2}^{*} x_{1} x_{1}^{*}-3 .
$$

Given $X=\left(X_{1}, \ldots, X_{g}\right) \in \mathrm{M}_{n}(\mathbb{C})^{g}$ and $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ we have $f\left(X, X^{*}\right) \in \mathrm{M}_{d n}(\mathbb{C})$. If $f^{*}=f$, then f is hermitian.

If $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g} \in \mathrm{M}_{d}(\mathbb{C})$, then

$$
L=I+A_{1} x_{1}+\cdots+A_{g} x_{g}+B_{1} x_{1}^{*}+\cdots+B_{g} x_{g}^{*}
$$

is a (monic) linear pencil of size d.
If $B_{j}=A_{j}^{*}$, then L is a hermitian linear pencil.

Motivation
for noncommutative polynomial inequalities

Linear systems engineering
Quantum information theory
Relaxing LMI problems, e.g. LMI domination problem $\mathcal{D}_{L} \subseteq \mathcal{D}_{\dot{L}}$

Get Algebra

DYNAMICS of "closed loop" system: BLOCK matrices

$$
A B C D
$$

ENERGY DISSIPATION:

$$
\begin{aligned}
& H:=\mathcal{A}^{\top} \mathbf{E}+\mathbf{E} A+E B B^{\top} \mathbf{E}+C^{\top} C \preceq 0 \\
& \mathbf{E}=\left(\begin{array}{ll}
E_{11} & \mathrm{E}_{12} \\
\mathbf{E}_{21} & E_{22}
\end{array}\right) \quad \mathrm{E}_{12}=\mathrm{E}_{21}^{\top} \\
& H=\left(\begin{array}{ll}
H_{x x} & H_{x z} \\
H_{z x} & H_{y y}
\end{array}\right) \quad H_{x z}=H_{z x}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x(t)}{d t}=A x(t)+B v(t) \\
& y(t)=C x(t)+D v(t) \\
& A, B, C, D \text { are matrices } \\
& x, v, y \text { are vectors }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Asymptotically stable } & \text { Re(eigralas(A)) }<0 \Leftrightarrow \\
& A^{T} \mathrm{E}+\mathrm{E} A \prec 0 \mathrm{E} \succ 0
\end{array}
$$

$$
\text { Energy dissipating } \quad \exists \mathrm{E}=\mathrm{E}^{T} \succeq 0
$$

$$
G: L^{2} \rightarrow L^{2} \quad H:=A^{T} \mathrm{E}+\mathrm{E} A+
$$

$$
\int_{0}^{T}|v|^{2} d t \geq \int_{0}^{T}|G|^{2} d t+E B B^{T} \mathrm{E}+C^{T} C \preceq 0
$$

$$
x(0)=0
$$

E is called a storage function

Linear Systems Problems \rightarrow Matrix Inequalities

Many such problems, e.g. H^{∞} control
The problem is Dimension free: since it is given only by signal flow diagrams and L^{2} signals.

A Dimension Free System Problem

is Equivalent to
Noncommutative Polynomial Inequalities

Example:

More complicated systems give fancier nc polynomials

NC polynomials and linear pencils

Why do?

- Matrix multiplication is not commutative
- The functions we study are typically noncommutative (nc) polynomials
- Engineering problems defined entirely by signal flow diagrams and L^{2} - performance specs are equivalent to Polynomial Matrix Inequalities
- A system connection law amounts to an algebraic operation on NC quantities, while L^{2} performance constraints, through use of quadratic "storage functions", convert to matrix inequalities $M>0$

NC polynomials and linear pencils

Why do?

- Matrix multiplication is not commutative
- The functions we study are typically noncommutative (nc) polynomials
- Engineering problems defined entirely by signal flow diagrams and L^{2} - performance specs are equivalent to Polynomial Matrix Inequalities
- A system connection law amounts to an algebraic operation on NC quantities, while L^{2} performance constraints, through use of quadratic "storage functions", convert to matrix inequalities $M>0$
- Convexity is needed for reliable designs and numerics. Often linear systems problems are solved by converting M via ad hoc changes of variables into convex problems or linear matrix inequalities (LMIs)

NC polynomials and linear pencils

Why do?

- Matrix multiplication is not commutative
- The functions we study are typically noncommutative (nc) polynomials
- (Matrix) convexity and LMIs are good for you.
\rightarrow Matrix convexity \leftrightarrow operator systems \leftrightarrow quantum information theory
- NC function theory boom (Agler, Ball, McCarthy, Pascoe, Popescu, Shamovich, Vinnikov, Helton-K-McCullough-Volčič, etc.)

See also Jaka's talk on Thursday

Camera

- Convex optimization, polynomial optimization, moment problems (Blekherman, Brändén, Henrion, Infusino, Kummer, Kuhlmann, Lasserre, Naldi, Nie, Plaumann, Putinar, Renegar, Saunderson, Scheiderer, Sinn, Sturmfels, Tunçel, Vinzant, etc.)

What this talk is not about

Change variables to get convexity

- Which sets map bianalytically onto convex sets = spectrahedra?

- If such a map exists parameterize them all. Are there many?

Free LMIs

If L is a hermitian linear pencil, then let

$$
\mathcal{D}_{L}=\bigcup_{n \in \mathbb{N}} \mathcal{D}_{L}(n), \quad \mathcal{D}_{L}(n)=\left\{X \in \mathrm{M}_{n}(\mathbb{C})^{g}: L\left(X, X^{*}\right) \geq 0\right\}
$$

be its free spectrahedron or free LMI domain.

Free LMIs and semialgebraic sets

If L is a hermitian linear pencil, then let

$$
\mathcal{D}_{L}=\bigcup_{n \in \mathbb{N}} \mathcal{D}_{L}(n), \quad \mathcal{D}_{L}(n)=\left\{X \in \mathrm{M}_{n}(\mathbb{C})^{g}: L\left(X, X^{*}\right) \geq 0\right\}
$$

be its free spectrahedron or free LMI domain.

More generally, if $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ is hermitian and $f(0)>0$, then its free semialgebraic set is $\mathcal{D}_{f}=\bigcup_{n} \mathcal{D}_{f}(n)$, where $\mathcal{D}_{f}(n)$ is the closure of the connected component of

$$
\left\{X \in \mathrm{M}_{n}(\mathbb{C})^{g}: f\left(X, X^{*}\right)>0\right\}
$$

containing 0 .

Convex free semialgebraic sets are given by LMIs

Theorem (Helton-McCullough (Ann. Math. 2012); Kriel 2018)
Every convex free semialgebraic set is a free spectrahedron.

That is, if for some hermitian $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right), \mathcal{D}_{f}(n)$ is convex for all n, then $\mathcal{D}_{f}=\mathcal{D}_{L}$ for some hermitian linear pencil L.

Convex free semialgebraic sets are given by LMIs

Theorem (Helton-McCullough (Ann. Math. 2012); Kriel 2018)
Every convex free semialgebraic set is a free spectrahedron.

That is, if for some hermitian $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right), \mathcal{D}_{f}(n)$ is convex for all n, then $\mathcal{D}_{f}=\mathcal{D}_{L}$ for some hermitian linear pencil L.

Outline for the rest of the talk
(1) For what polynomials f is \mathcal{D}_{f} convex?
(2) How to check if \mathcal{D}_{f} is convex?
(3) If \mathcal{D}_{f} is convex, how to find a hermitian linear pencil L with

$$
\mathcal{D}_{f}=\mathcal{D}_{L} ?
$$

Scalar NC polynomials describing convex sets

Theorem (Helton, K, McCullough, Voľ̌ič)
Let $f \in \mathbb{C}<x, x^{*}>$ be hermitian and irreducible, with $f(0)>0$. If \mathcal{D}_{f} is a free spectrahedron, then $\operatorname{deg} f \leqslant 2$ and f is concave:

$$
f=\ell_{0}-\sum_{k} \ell_{k} l_{k}^{*}
$$

for some affine linear polynomials $\ell_{k} \in \mathbb{C}\left\langle x, x^{*}\right\rangle$.

Scalar NC polynomials describing convex sets

Theorem (Helton, K, McCullough, Voľ̌ič)
Let $f \in \mathbb{C}<x, x^{*}>$ be hermitian and irreducible, with $f(0)>0$.
If \mathcal{D}_{f} is a free spectrahedron, then $\operatorname{deg} f \leqslant 2$ and f is concave:

$$
f=\ell_{0}-\sum_{k} \ell_{k} l_{k}^{*}
$$

for some affine linear polynomials $\ell_{k} \in \mathbb{C}\left\langle x, x^{*}\right\rangle$.
f is irreducible if it does not factor as a product of two non-constants.

Scalar NC polynomials describing convex sets

Theorem (Helton, K, McCullough, Voľ̌ič)
Let $f \in \mathbb{C}<x, x^{*}>$ be hermitian and irreducible, with $f(0)>0$.
If \mathcal{D}_{f} is a free spectrahedron, then $\operatorname{deg} f \leqslant 2$ and f is concave:

$$
f=\ell_{0}-\sum_{k} \ell_{k} l_{k}^{*}
$$

for some affine linear polynomials $\ell_{k} \in \mathbb{C}\left\langle x, x^{*}\right\rangle$.
f is irreducible if it does not factor as a product of two non-constants.

- Theorem is not true for matrix-valued $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$
- Statement also fails for factorizable $f \in \mathbb{C}\left\langle x, x^{*}\right\rangle$

Linearization (realization) theory

NC rational functions \mathbb{I} admit FM realizations

$$
\begin{aligned}
\mathbb{r} & =d+c^{*}\left(A_{0}+A_{1} x_{1}+\cdots+A_{g} x_{g}+B_{1} x_{1}^{*}+\cdots+B_{g} x_{g}^{*}\right)^{-1} \mathbf{b} \\
& =d+c^{*} L^{-1} \mathbf{b}
\end{aligned}
$$

where $A_{j}, B_{j} \in M_{d}(\mathbb{C}), d \in \mathbb{C}, \mathbf{b}:=\sum_{j} b_{j} x_{j}+b_{g+j} x_{j}^{*}$, and $b_{i}, c \in \mathbb{C}^{d}$.

Linearization (realization) theory

NC rational functions \mathbb{I} admit FM realizations $\mathbb{T}=1+c^{*} L^{-1} \mathbf{b}$, where L is a $d \times d$ linear pencil, $\mathbf{b}:=\sum_{j} b_{j} x_{j}+b_{g+j} x_{j}^{*}$ and $b_{i}, c \in \mathbb{C}^{d}$.

Linearization (realization) theory

NC rational functions \mathbb{I} admit FM realizations $\mathbb{T}=1+c^{*} L^{-1} \mathbf{b}$, where L is a $d \times d$ linear pencil, $\mathbf{b}:=\sum_{j} b_{j} x_{j}+b_{g+j} x_{j}^{*}$ and $b_{i}, c \in \mathbb{C}^{d}$.

- A realization has minimal size iff it is observable and controllable
- Minimal realizations are unique (up to basis change)
(Ball-Groenewald-Malakorn)
- $\operatorname{dom}(\mathbb{r})=\operatorname{dom}\left(L^{-1}\right) \quad$ (Kaliuzhnyi-Verbovetskyi-Vinnikov, Volčič)
- $\operatorname{dom}(\mathbb{r})=$ all iff f_{*} the coefficients of L are jointly nilpotent
iff \mathbb{I} is a polynomial
(K-Volčič, K-Pascoe-Volčič)
- $\mathbb{r}^{-1}=1-c^{*}\left(L+\mathbf{b} c^{*}\right)^{-1} \mathbf{b}$
(Ball-Groenewald-Malakorn)

Linearization theory and reciprocals of polynomials

NC rational functions \mathbb{r} admit FM realizations $\mathbb{r}=1+c^{*} L^{-1} \mathbf{b}$, where L is a $d \times d$ linear pencil, $\mathbf{b}:=\sum_{j} b_{j} x_{j}+b_{g+j} x_{j}^{*}$ and $b_{i}, c \in \mathbb{C}^{d}$.

- A realization has minimal size iff it is observable and controllable
- Minimal realizations are unique (up to basis change)
(Ball-Groenewald-Malakorn)
- $\operatorname{dom}(\mathrm{r})=\operatorname{dom}\left(L^{-1}\right) \quad$ (Kaliuzhnyi-Verbovetskyi-Vinnikov, Volčič)
- $\operatorname{dom}(\mathrm{r})=$ all iff f_{*} the coefficients of L are jointly nilpotent iff \mathfrak{r} is a polynomial
(K-Volčič, K-Pascoe-Volčič)
- $\mathrm{r}^{-1}=1-c^{*}\left(L+\mathbf{b} c^{*}\right)^{-1} \mathbf{b}$
(Ball-Groenewald-Malakorn)
The key technique: apply FM realizations to f^{-1} for a polynomial f.
A pencil of the form $L+\mathbf{b} c^{*}$ for L with jointly nilpotent coefficients is called flip poly.

Irreducible scalar NC polynomials describing convex sets are of degree $\leqslant 2$.

Note to self!! SKIP this??

Proof.

Assume $\mathcal{D}_{f}=\mathcal{D}_{L}$ for some (minimal) $L=I+\sum_{j} A_{j} x_{j}+\sum_{j} A_{j}^{*} x_{j}^{*}$.
(1) Consider the minimal FM realization $f^{-1}=1+c^{*} \tilde{L}^{-1} b$.
(2) f is irreducible iff \widetilde{L} is indecomposable (coefficients generate the Helton-K-Volčič, Adv. Math. 2018 full matrix algebra).
(3) $\mathcal{D}_{f}=\mathcal{D}_{L}$ \& irreducibility imply $\mathcal{Z}_{\tilde{L}}=\mathcal{Z}_{L}$, whence L, \tilde{L} are similar (K-Volčič, CMH 2017).

$$
\mathcal{Z}_{L}:=\bigcup_{n}\left\{X \in M_{n}(\mathbb{C})^{g}: \operatorname{det} L\left(X, X^{*}\right)=0\right\}
$$

Irreducible scalar NC polynomials describing convex sets

 are of degree $\leqslant 2$.
Note to self!! SKIP this??

Proof.

Assume $\mathcal{D}_{f}=\mathcal{D}_{L}$ for some (minimal) $L=I+\sum_{j} A_{j} x_{j}+\sum_{j} A_{j}^{*} x_{j}^{*}$.
(1) Consider the minimal FM realization $f^{-1}=1+c^{*} \tilde{L}^{-1} b$.
(2) f is irreducible iff \tilde{L} is indecomposable (coefficients generate the Helton-K-Volčič, Adv. Math. 2018 full matrix algebra).
(3) $\mathcal{D}_{f}=\mathcal{D}_{L}$ \& irreducibility imply $\mathcal{Z}_{\tilde{L}}=\mathcal{Z}_{L}$, whence L, \tilde{L} are similar (K-Volčič, CMH 2017).
(4) L is hermitian and flip-poly $\left(A_{j}=\right.$ nilpotent + rank one $)$

$$
\Longrightarrow \quad A_{j}=\left(\begin{array}{cc}
\alpha_{j} & v_{j}^{*} \\
u_{j} & 0
\end{array}\right) .
$$

Example

of a high degree NC polynomial describing a convex set

$$
\begin{gathered}
f=\underbrace{\left(1+x+x^{*}-2 x x^{*}-\left(x+x^{*}\right) x x^{*}\right)}_{f_{1}} \underbrace{\left(1+\frac{1}{2}\left(x+x^{*}\right)\right)}_{s_{1}} \\
L=\left(\begin{array}{ccc}
1+x+x^{*} & 0 & x \\
0 & 1 & x \\
x^{*} & x^{*} & 1
\end{array}\right) .
\end{gathered}
$$

- f is hermitian of degree 4;
- $\mathcal{D}_{f}=\mathcal{D}_{L}$ is a free spectrahedron.

Non-example

TV screen

Consider $p(x, y)=1-x_{1}^{4}-x_{2}^{2}$.
The semialgebraic set \mathcal{D}_{p} is called the bent TV screen.

TV screen $\mathcal{D}_{p}(1)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1-x_{1}^{4}-x_{2}^{2} \geqslant 0\right\}$.

Non-example

TV screen
Consider $p(x, y)=1-x_{1}^{4}-x_{2}^{2}$.
The semialgebraic set \mathcal{D}_{p} is called the bent TV screen.

A 3-dimensional slice of $\mathcal{D}_{p}(2)=\left\{\left(X_{1}, X_{2}\right) \in M_{2}(\mathbb{R})_{\text {sym }}^{2} \mid I_{2}-X_{1}^{4}-X_{2}^{2} \geq 0\right\}$.

Non-example

TV screen

Consider $p(x, y)=1-x_{1}^{4}-x_{2}^{2}$.
The semialgebraic set \mathcal{D}_{p} is called the bent TV screen.

A non-convex 2-dimensional slice of $\mathcal{D}_{p}(2)$.

Non-example (cont'd)

Convexifying the TV screen $I-X_{1}^{4}-X_{2}^{2} \geq 0$
Define

$$
\begin{aligned}
L^{1}(x, y) & =1-y_{1111}-y_{22} \\
L^{2}(x, y) & =\left(\begin{array}{cccc}
1 & x_{1} & x_{2} & y_{11} \\
x_{1} & y_{11} & y_{12} & y_{111} \\
x_{2} & y_{21} & y_{22} & y_{211} \\
y_{11} & y_{111} & y_{112} & y_{1111}
\end{array}\right)
\end{aligned}
$$

Set

$$
\mathcal{C}:=\left\{(X, Y) \mid L^{1}(X, Y) \geq 0, L^{2}(X, Y) \geq 0\right\} .
$$

Its projection onto the x coordinates is the spectrahedrop:

$$
\hat{\mathcal{C}}:=\{X: \exists Y \quad(X, Y) \in \mathcal{C}\} .
$$

Non-example (cont'd)

Convexifying the TV screen $I-X_{1}^{4}-X_{2}^{2} \geq 0$
Define

$$
\begin{aligned}
L^{1}(x, y) & =1-y_{1111}-y_{22} \\
L^{2}(x, y) & =\left(\begin{array}{cccc}
1 & x_{1} & x_{2} & y_{11} \\
x_{1} & y_{11} & y_{12} & y_{111} \\
x_{2} & y_{21} & y_{22} & y_{211} \\
y_{11} & y_{111} & y_{112} & y_{1111}
\end{array}\right)
\end{aligned}
$$

Set

$$
\mathcal{C}:=\left\{(X, Y) \mid L^{1}(X, Y) \geq 0, L^{2}(X, Y) \geq 0\right\} .
$$

Its projection onto the x coordinates is the spectrahedrop:

$$
\hat{\mathcal{C}}:=\{X: \exists Y \quad(X, Y) \in \mathcal{C}\} \supsetneq \operatorname{co} \mathcal{D}_{p}
$$

Open problem:
Does the convex hull of the TV screen have an SDP representation?

Invertibility sets of (non-hermitian) NC polynomials

For a general $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ with $\operatorname{det} f(0) \neq 0$ let
$\mathcal{K}_{f}(n)=$ prime component of $\left\{X \in \mathrm{M}_{n}(\mathbb{C})^{g}: \operatorname{det} f\left(X, X^{*}\right) \neq 0\right\}$,

$$
\mathcal{K}_{f}=\bigcup_{n} \mathcal{K}_{f}(n) .
$$

Invertibility sets of (non-hermitian) NC polynomials

For a general $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ with $\operatorname{det} f(0) \neq 0$ let

$$
\begin{aligned}
\mathcal{K}_{f}(n) & =\text { prime component of }\left\{X \in \mathrm{M}_{n}(\mathbb{C})^{g}: \operatorname{det} f\left(X, X^{*}\right) \neq 0\right\} \\
\mathcal{K}_{f} & =\bigcup_{n} \mathcal{K}_{f}(n)
\end{aligned}
$$

- For $d=1$ there exist irreducible polynomials $f \in \mathbb{C}<x, x^{*}>$ of arbitrarily high degree with \mathcal{K}_{f} a free spectrahedron, e.g.

$$
\begin{gathered}
f=1+4\left(x+x^{*}\right)+2\left(x^{2}+\left(x^{*}\right)^{2}\right)-x x^{*}-7 x x^{*}\left(x+x^{*}\right)-4 x^{*} x\left(x+x^{*}\right) \\
-x x^{*}\left(x^{2}+\left(x^{*}\right)^{2}\right)+2 x x^{*}\left(x x^{*}+x^{*} x\right)\left(x+x^{*}\right)
\end{gathered}
$$

Convexity of \mathcal{K}_{f}

Theorem (Helton, K, McCullough, Voľ̌ič)
Let $f \in \mathrm{M}_{d}\left(\mathbb{C}<x, x^{*}>\right)$ with $f(0)=I$, and write its minimal FM realization $f^{-1}=I+c^{*} L^{-1} \mathbf{b}$ with

$$
L=\left(\begin{array}{ccc}
L^{1} & \star & \star \\
& \ddots & \star \\
& & L^{\ell}
\end{array}\right)
$$

where each L^{i} is either indecomposable or I.
Let \hat{L} be the direct sum of those indecomposable blocks L^{i} that are similar to a hermitian pencil, and let \check{L} be the direct sum of the remaining L^{j}. The following are equivalent:
(i) \mathcal{K}_{f} is a free spectrahedron;
(ii) $\mathcal{K}_{f}=\mathcal{K}_{\hat{L}}$;
(iii) \check{L} is invertible on $\operatorname{int} \mathcal{K}_{\hat{L}}$.

Convexity of $\bigcap \mathcal{K}_{f_{i}}$ for irreducible f_{i}

Corollary

Assume f_{i} are irreducible. Then $\bigcap \mathcal{K}_{f_{i}}$ is convex iff each $\mathcal{K}_{f_{i}}$ is convex.

Convexity of $\bigcap \mathcal{K}_{f_{i}}$ for irreducible f_{i}

Corollary

Assume f_{i} are irreducible. Then $\bigcap \mathcal{K}_{f_{i}}$ is convex iff each $\mathcal{K}_{f_{i}}$ is convex.

Proof.

- $\left(f_{1} \cdots f_{t}\right)^{-1}=I+c^{*} L^{-1} \mathbf{b}$ is a minimal $F M$ realization ${ }^{1}$ with

$$
L=\left(\begin{array}{ccc}
L^{1} & \star & \star \\
& \ddots & \star \\
& & L^{\ell}
\end{array}\right)
$$

where each L^{i} is either indecomposable or I.

- For every i there exists j_{i} such that $\mathcal{K}_{L^{i}}=\mathcal{K}_{f_{j_{i}}}$.
- If one of the L^{i} was not similar to a hermitian pencil, then it is redundant by convexity and the Theorem.

[^0]
All polynomials f with convex \mathcal{K}_{f}

$$
f=s_{0} f_{1} s_{1} f_{2} \cdots f_{r} s_{r},
$$

- f_{i} irreducible;
- $\mathcal{K}_{f_{i}}$ convex;
- $\mathcal{K}_{s_{i}}$ redundant.

An algorithm to determine if \mathcal{K}_{f} is convex

Check if a rectangular \check{L} is of full rank on int $\mathcal{D}_{\hat{L}}$
Let \hat{L} be $d \times d$ hermitian and let \check{L} be a $\delta \times \varepsilon$ affine linear pencil.
Step 1. Solve the following feasibility SDP for $D \in \mathbb{C}^{\delta \times d}$:

$$
\begin{aligned}
\operatorname{tr}(\operatorname{Re}(D \check{L})(0)) & =1 \\
\operatorname{Re}(D \check{L}) & =P_{0}+\sum_{k} C_{k}^{*} \widehat{L} C_{k} \quad \text { for some } C_{k}, P_{0}, \text { with } P_{0} \geq 0 .
\end{aligned}
$$

Step 2. If infeasible, then $\check{L}\left(X, X^{*}\right)$ is not full rank for some $X \in \operatorname{int} \mathcal{D}_{\hat{L}}$.
Step 3. Otherwise we have a solution D with $V:=\operatorname{ker} P_{0} \cap \bigcap_{k} \operatorname{ker} C_{k}$.
Step 3.1 If $V=(0)$, then \check{L} is full rank on $\operatorname{int} \mathcal{D}_{\hat{L}}$.
Step 3.2. If $\varepsilon^{\prime}=\operatorname{dim} V>0$, then let \check{L}^{\prime} be the $\delta \times \varepsilon^{\prime}$ pencil whose coefficients are the restrictions of \check{L} to V. Then \check{L} is full rank on $\operatorname{int} \mathcal{D}_{\hat{L}}$ if and only if \breve{L}^{\prime} is full rank on $\operatorname{int} \mathcal{D}_{\hat{L}}$. Now we apply Step 1 to \breve{L}^{\prime}.

An algorithm for finding an L with $\mathcal{K}_{f}=\mathcal{D}_{L}$

(a) Compute the minimal realization $f^{-1}=I+c^{*} L^{-1} \mathbf{b}$.
(b) Next find the Burnside decomposition of L into

$$
L=\left(\begin{array}{ccc}
L^{1} & \star & \\
& & \\
& \ddots & \\
& & L^{\ell}
\end{array}\right),
$$

where each L^{i} is either indecomposable or I.
(c) Pick one pencil from each similarity class among the L^{i}.
(d) Find all those L^{i} that are similar to a hermitian pencil: SDP

$$
Q \geq I, \quad Q\left(L^{i}\right)^{*}=L^{i} Q
$$

leads to a hermitian pencil $\tilde{L}^{i}=Q^{-\frac{1}{2}} L^{i} Q^{\frac{1}{2}}$.
(e) The direct sum \tilde{L} of the hermitian pencils \tilde{L}^{i} obtained in (d) satisfies

$$
\mathcal{D}_{\tilde{L}}=\mathcal{K}_{f} .
$$

Conclusions

Take home messages

- Free convex semialgebraic sets are given by LMIs.
- An irreducible polynomial f with convex \mathcal{D}_{f} must be concave of degree $\leqslant 2, f$ is a Schur complement of a hermitian linear pencil.
- An intersection of free convex semialgebraic sets is convex iff all of them are.
- There is an effective algorithm for testing whether \mathcal{D}_{f} is convex.
- There is an effective algorithm for computing an LMI representation of a convex \mathcal{D}_{f}.

[^0]: ${ }^{1}$ Coded in NCAlgebra, see notebook of Voľ̌ič.

