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Outline
Noncommutative Polynomials Describing Convex Sets

1. Semialgebraic sets defined by noncommutative polynomials

2. Polynomials with convex semialgebraic sets

3. Examples and counterexamples

4. Algorithm for testing convexity and producing LMI representations



NC polynomials and linear pencils

Let x “ px1, . . . , xg q and x˚ “ px˚1 , . . . , x
˚
g q be freely noncommuting

variables. Elements of the free algebra Căx , x˚ą are noncommutative

polynomials, e.g.

x1x
˚
2 x2 ` 2x˚2 x1x

˚
1 ´ 3.

Given X “ pX1, . . . ,Xg q P MnpCqg and f P MdpCăx , x˚ąq we have

f pX ,X ˚q P MdnpCq. If f ˚ “ f , then f is hermitian.

If A1, . . . ,Ag ,B1, . . . ,Bg P MdpCq, then

L “ I ` A1x1 ` ¨ ¨ ¨ ` Agxg ` B1x
˚
1 ` ¨ ¨ ¨ ` Bgx

˚
g

is a (monic) linear pencil of size d .

If Bj “ A˚j , then L is a hermitian linear pencil.
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Motivation
for noncommutative polynomial inequalities

Linear systems engineering

Quantum information theory

Relaxing LMI problems, e.g. LMI domination problem DL ✓ DL̃

WHY DO

Noncommutative Polynomial Inequalities
=

Noncommutative Real Algebraic Geometry
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dx(t)
dt = Ax(t) + Bv(t)

y(t) = Cx(t) + Dv(t)

A, B, C, D are matrices
x, v, y are vectors

Asymptotically stable k
k
Re(eigvals(A)) � 0 ()
ATE + EA � 0 E � 0

Energy dissipating

G : L2 ! L2

Z T

0

|v|2dt �
Z T

0

|Gv|2dt

x(0) = 0

k
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9 E = ET ⌫ 0

H := ATE + EA+

+EBBTE + CTC � 0

E is called a storage function

Two minimal systems

[A, B, C, D] and [a, b, c, d]

with the same input
to output map.

k
k
k
k
k
k

9 M invertible, so that

MAM�1 = a

MB = b

CM�1 = c

Every state is reachable

from x = 0

k
k
k

(B AB A2B · · ·) : `2 ! X
is onto

Linear Systems Problems ! Matrix Inequalities

-L2

- Given
- L2

-

�� Find

Many such problems, e.g. H1 control

The problem is Dimension free: since it is given only by signal flow
diagrams and L2 signals.

A Dimension Free System Problem
is Equivalent to

Noncommutative Polynomial Inequalities

Example:

Get Algebra --

-

Given
A,B1,C1,D
B2,C2

-

-

� �Find
a b c

D =


0 1
1 0

�

DYNAMICS of “closed loop” system: BLOCK matrices

A B C D

ENERGY DISSIPATION:

H := ATE + EA + EBBTE + CTC � 0

E =

✓
E11 E12

E21 E22

◆
E12 = E21

T

H =

✓
Hxx Hxz

Hzx Hzz

◆
Hxz = HT

zx

H1 Control

ALGEBRA PROBLEM:
Given the polynomials:
Hxx = E11 A + AT E11 + CT

1 C1 + E12
T bC2 + CT

2 bT E12
T +

E11 B1 bT E12
T + E11 B1 BT

1 E11 + E12 b bT E12
T + E12 bBT

1 E11

Hxz = E21 A + aT (E21+E12
T )

2 + cT C1 + E22 bC2 + cT BT
2 E11

T +
E21 B1 bT (E21+E12

T )
2 + E21 B1 BT

1 E11
T + E22 b bT (E21+E12

T )
2 + E22 bBT

1 E11
T

Hzx = AT E21
T + CT

1 c + (E12+E21
T ) a

2 + E11 B2 c + CT
2 bT E22

T +

E11 B1 bT E22
T + E11 B1 BT

1 E21
T + (E12+E21

T ) b bT E22
T

2 +
(E12+E21

T ) b BT
1 E21

T

2

Hzz = E22 a + aT E22
T + cT c + E21 B2 c + cT BT

2 E21
T + E21 B1 bT E22

T +

E21 B1 BT
1 E21

T + E22 b bT E22
T + E22 bBT

1 E21
T

(PROB) A, B1, B2, C1, C2 are knowns.

Solve the inequality

✓
Hxx Hxz

Hzx Hzz

◆
� 0 for unknowns

a, b, c and for E11, E12, E21 and E22

More complicated systems give fancier nc polynomials
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NC polynomials and linear pencils
Why do?

§ Matrix multiplication is not commutative

§ The functions we study are typically noncommutative (nc) polynomials

§ Engineering problems defined entirely by signal flow diagrams and L2

performance specs are equivalent to Polynomial Matrix Inequalities

§ A system connection law amounts to an algebraic operation on NC

quantities, while L2 performance constraints, through use of quadratic

“storage functions”, convert to matrix inequalities M ą 0

§ Convexity is needed for reliable designs and numerics. Often linear

systems problems are solved by converting M via ad hoc changes of

variables into convex problems or linear matrix inequalities (LMIs)
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NC polynomials and linear pencils
Why do?

§ Matrix multiplication is not commutative

§ The functions we study are typically noncommutative (nc) polynomials

§ (Matrix) convexity and LMIs are good for you.

§ Matrix convexity Ø operator systems Ø quantum information theory

§ NC function theory boom (Agler, Ball, McCarthy, Pascoe, Popescu,

Shamovich, Vinnikov, Helton-K-McCullough-Volčič, etc.)

See also Jaka’s talk on Thursday

§ Convex optimization, polynomial optimization, moment problems

(Blekherman, Brändén, Henrion, Infusino, Kummer, Kuhlmann,

Lasserre, Naldi, Nie, Plaumann, Putinar, Renegar, Saunderson,

Scheiderer, Sinn, Sturmfels, Tunçel, Vinzant, etc.)
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What this talk is not about
Change variables to get convexity

§ Which sets map bianalytically onto convex sets “ spectrahedra?

D D̃

f

§ If such a map exists parameterize them all.

Are there many?



Free LMIs

and semialgebraic sets

If L is a hermitian linear pencil, then let

DL “
ď

nPN
DLpnq, DLpnq “ tX P MnpCqg : LpX ,X ˚q ľ 0u

be its free spectrahedron or free LMI domain.

More generally, if f P MdpCăx , x˚ąq is hermitian and f p0q ą 0, then

its free semialgebraic set is Df “
Ť

n Df pnq, where Df pnq is the closure

of the connected component of

tX P MnpCqg : f pX ,X ˚q ą 0u

containing 0.
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Convex free semialgebraic sets are given by LMIs

Theorem (Helton–McCullough (Ann. Math. 2012); Kriel 2018)

Every convex free semialgebraic set is a free spectrahedron.

That is, if for some hermitian f P MdpCăx , x˚ąq, Df pnq is convex for

all n, then Df “ DL for some hermitian linear pencil L.

Outline for the rest of the talk

(1) For what polynomials f is Df convex?

(2) How to check if Df is convex?

(3) If Df is convex, how to find a hermitian linear pencil L with

Df “ DL?
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Scalar NC polynomials describing convex sets

Theorem (Helton, K, McCullough, Volčič)

Let f P Căx , x˚ą be hermitian and irreducible, with f p0q ą 0.

If Df is a free spectrahedron, then deg f ď 2 and f is concave:

f “ `0 ´
ÿ

k

`k`
˚
k

for some affine linear polynomials `k P Căx , x˚ą.

f is if it does not factor as a product of two non-constants.
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Scalar NC polynomials describing convex sets

Theorem (Helton, K, McCullough, Volčič)

Let f P Căx , x˚ą be hermitian and irreducible, with f p0q ą 0.

If Df is a free spectrahedron, then deg f ď 2 and f is concave:

f “ `0 ´
ÿ

k

`k`
˚
k

for some affine linear polynomials `k P Căx , x˚ą.

f is irreducible if it does not factor as a product of two non-constants.

§ Theorem is not true for matrix-valued f P MdpCăx , x˚ąq
§ Statement also fails for factorizable f P Căx , x˚ą



Linearization (realization) theory

NC rational functions r admit FM realizations

r “ d ` c˚
`

A0 ` A1x1 ` ¨ ¨ ¨ ` Agxg ` B1x
˚
1 ` ¨ ¨ ¨ ` Bgx

˚
g

˘´1
b

“ d ` c˚L´1b,

where Aj ,Bj P MdpCq, d P C, b :“
ÿ

j

bjxj ` bg`jx
˚
j , and bi , c P Cd .



Linearization (realization) theory

and reciprocals of

polynomials

NC rational functions r admit FM realizations r “ 1` c˚L´1b, where

L is a d ˆ d linear pencil, b :“
ř

j bjxj ` bg`jx
˚
j and bi , c P Cd .

§ A realization has minimal size iff it is observable and controllable

§ Minimal realizations are unique (up to basis change)

(Ball-Groenewald-Malakorn)

§ domprq “ dompL´1q (Kaliuzhnyi-Verbovetskyi-Vinnikov, Volčič)

§ domprq “ all if f˚ the coefficients of L are jointly nilpotent

iff r is a polynomial (K-Volčič, K-Pascoe-Volčič)

§ r
´1 “ 1´ c˚

`

L` bc˚
˘´1

b (Ball-Groenewald-Malakorn)

The key technique: apply FM realizations to f ´1 for a polynomial f .

A pencil of the form L` bc˚ for L with jointly nilpotent coefficients is

called flip poly.
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Linearization theory and reciprocals of polynomials

NC rational functions r admit FM realizations r “ 1` c˚L´1b, where
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Irreducible scalar NC polynomials describing convex sets
are of degree ď 2. Note to self!! SKIP this??

Proof.
Assume Df “ DL for some (minimal) L “ I `

ř

j Ajxj `
ř

j A
˚
j x
˚
j .

(1) Consider the minimal FM realization f ´1 “ 1` c˚rL´1b.

(2) f is irreducible iff rL is indecomposable (coefficients generate the

Helton-K-Volčič, Adv. Math. 2018 full matrix algebra).

(3) Df “ DL & irreducibility imply Z
rL
“ ZL, whence

L, rL are similar (K-Volčič, CMH 2017).

ZL :“
ď

n

tX P MnpCqg : det LpX ,X ˚q “ 0u.

(4) L is hermitian and flip-poly (Aj “ nilpotent + rank one)

ùñ Aj “

˜

αj v˚j
uj 0

¸

.
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Example
of a high degree NC polynomial describing a convex set

f “
´

1` x ` x˚ ´ 2xx˚ ´ px ` x˚qxx˚
¯

looooooooooooooooooooooomooooooooooooooooooooooon

f1

´

1`
1

2
px ` x˚q

¯

looooooooomooooooooon

s1

L “

¨

˚

˝

1` x ` x˚ 0 x

0 1 x

x˚ x˚ 1

˛

‹

‚

.

§ f is hermitian of degree 4;

§ Df “ DL is a free spectrahedron.



Non-example
TV screen

Consider ppx , yq “ 1´ x41 ´ x22 .

The semialgebraic set Dp is called the bent TV screen.

x1

x2

1

1

TV screen Dpp1q “
 

px1, x2q P R2 | 1´ x41 ´ x22 ě 0
(

.



Non-example
TV screen

Consider ppx , yq “ 1´ x41 ´ x22 .

The semialgebraic set Dp is called the bent TV screen.

A 3-dimensional slice of Dpp2q “
 

pX1,X2q P M2pRq2sym | I2 ´ X 4
1 ´ X 2

2 ľ 0
(

.



Non-example
TV screen

Consider ppx , yq “ 1´ x41 ´ x22 .

The semialgebraic set Dp is called the bent TV screen.

A non-convex 2-dimensional slice of Dpp2q.



Non-example (cont’d)
Convexifying the TV screen I ´ X 4

1 ´ X 2
2 ľ 0

Define L1px , yq “ 1´ y1111 ´ y22

L2px , yq “

¨

˚

˚

˚

˚

˝

1 x1 x2 y11

x1 y11 y12 y111

x2 y21 y22 y211

y11 y111 y112 y1111

˛

‹

‹

‹

‹

‚

Set

C :“
 

pX ,Y q | L1pX ,Y q ľ 0, L2pX ,Y q ľ 0
(

.

Its projection onto the x coordinates is the spectrahedrop:

Ĉ :“ tX : DY pX ,Y q P Cu.



Non-example (cont’d)
Convexifying the TV screen I ´ X 4

1 ´ X 2
2 ľ 0

Define L1px , yq “ 1´ y1111 ´ y22

L2px , yq “

¨

˚

˚

˚

˚

˝

1 x1 x2 y11

x1 y11 y12 y111

x2 y21 y22 y211

y11 y111 y112 y1111

˛

‹

‹

‹

‹

‚

Set

C :“
 

pX ,Y q | L1pX ,Y q ľ 0, L2pX ,Y q ľ 0
(

.

Its projection onto the x coordinates is the spectrahedrop:

Ĉ :“ tX : DY pX ,Y q P Cu Ľ coDp.

Open problem:

Does the convex hull of the TV screen have an SDP representation?



Invertibility sets of (non-hermitian) NC polynomials

For a general f P MdpCăx , x˚ąq with det f p0q ‰ 0 let

Kf pnq “ prime component of tX P MnpCqg : det f pX ,X ˚q ‰ 0u,

Kf “
ď

n

Kf pnq.

§ For d “ 1 there exist irreducible polynomials f P Căx , x˚ą of

arbitrarily high degree with Kf a free spectrahedron, e.g.

f “ 1`4px`x˚q`2px2`px˚q2q´xx˚´7xx˚px`x˚q´4x˚xpx`x˚q

´ xx˚px2 ` px˚q2q ` 2xx˚pxx˚ ` x˚xqpx ` x˚q.
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Convexity of Kf

Theorem (Helton, K, McCullough, Volčič)

Let f P MdpCăx , x˚ąq with f p0q “ I , and write its minimal FM realization

f ´1 “ I ` c˚L´1b with

L “

¨

˚

˝

L1 ‹ ‹

. . . ‹

L`

˛

‹

‚

,

where each Li is either indecomposable or I .

Let pL be the direct sum of those indecomposable blocks Li that are similar to

a hermitian pencil, and let qL be the direct sum of the remaining Lj . The

following are equivalent:

(i) Kf is a free spectrahedron;

(ii) Kf “ K
pL;

(iii) qL is invertible on intK
pL.



Convexity of
Ş

Kfi for irreducible fi
Corollary

Assume fi are irreducible. Then
Ş

Kfi is convex iff each Kfi is convex.



Convexity of
Ş

Kfi for irreducible fi
Corollary

Assume fi are irreducible. Then
Ş

Kfi is convex iff each Kfi is convex.

Proof.
§ pf1 ¨ ¨ ¨ ftq

´1 “ I ` c˚L´1b is a minimal FM realization1 with

L “

¨

˚

˝

L1 ‹ ‹

. . . ‹

L`

˛

‹

‚

,

where each Li is either indecomposable or I .

§ For every i there exists ji such that KLi “ Kfji
.

§ If one of the Li was not similar to a hermitian pencil, then it is

redundant by convexity and the Theorem.

1Coded in NCAlgebra, see notebook of Volčič.



All polynomials f with convex Kf

f “ s0 f1 s1 f2 ¨ ¨ ¨ fr sr ,

§ fi irreducible;

§ Kfi convex;

§ Ksi redundant.



An algorithm to determine if Kf is convex
Check if a rectangular qL is of full rank on intD

pL

Let pL be d ˆ d hermitian and let qL be a δ ˆ ε affine linear pencil.

Step 1. Solve the following feasibility SDP for D P Cδˆd :

trpRepDqLqp0qq “ 1

RepDqLq “ P0 `
ÿ

k

C˚k
pLCk for some Ck ,P0, with P0 ľ 0.

Step 2. If infeasible, then qLpX ,X˚q is not full rank for some X P intD
pL.

Step 3. Otherwise we have a solution D with V :“ kerP0 X
Ş

k kerCk .

Step 3.1 If V “ p0q, then qL is full rank on intD
pL.

Step 3.2. If ε1 “ dimV ą 0, then let qL1 be the δ ˆ ε1 pencil whose

coefficients are the restrictions of qL to V . Then qL is full rank on intD
pL if and

only if qL1 is full rank on intD
pL. Now we apply Step 1 to qL1.



An algorithm for finding an L with Kf “ DL

(a) Compute the minimal realization f ´1 “ I ` c˚L´1b.

(b) Next find the Burnside decomposition of L into

L “

˜

L1
‹ ‹

. . . ‹
L`

¸

,

where each Li is either indecomposable or I.

(c) Pick one pencil from each similarity class among the Li .

(d) Find all those Li that are similar to a hermitian pencil: SDP

Q ľ I , QpLi q˚ “ LiQ

leads to a hermitian pencil rLi “ Q´
1
2 LiQ

1
2 .

(e) The direct sum rL of the hermitian pencils rLi obtained in (d) satisfies

D
rL “ Kf .



Conclusions
Take home messages

§ Free convex semialgebraic sets are given by LMIs.

§ An irreducible polynomial f with convex Df must be concave of

degree ď 2, f is a Schur complement of a hermitian linear pencil.

§ An intersection of free convex semialgebraic sets is convex iff all

of them are.

§ There is an effective algorithm for testing whether Df is convex.

§ There is an effective algorithm for computing an

LMI representation of a convex Df .


