Noncommutative Polynomials Describing Convex Sets

Igor Klep U Ljubljana

Geometry of Real Polynomials, Convexity and Optimization Banff, May 2019

Based on joint work with

Bill HeltonUC San DiegoScott McCulloughU FloridaJurij VolčičTexas A&M

### Outline

Noncommutative Polynomials Describing Convex Sets

- 1. Semialgebraic sets defined by noncommutative polynomials
- 2. Polynomials with convex semialgebraic sets
- 3. Examples and counterexamples
- 4. Algorithm for testing convexity and producing LMI representations

#### NC polynomials and linear pencils

Let  $x = (x_1, \ldots, x_g)$  and  $x^* = (x_1^*, \ldots, x_g^*)$  be freely noncommuting variables. Elements of the free algebra  $\mathbb{C} \langle x, x^* \rangle$  are noncommutative polynomials, e.g.

$$x_1x_2^*x_2 + 2x_2^*x_1x_1^* - 3.$$

Given  $X = (X_1, \ldots, X_g) \in M_n(\mathbb{C})^g$  and  $f \in M_d(\mathbb{C} < x, x^* >)$  we have  $f(X, X^*) \in M_{dn}(\mathbb{C})$ . If  $f^* = f$ , then f is hermitian.

#### NC polynomials and linear pencils

Let  $x = (x_1, \ldots, x_g)$  and  $x^* = (x_1^*, \ldots, x_g^*)$  be freely noncommuting variables. Elements of the free algebra  $\mathbb{C} \langle x, x^* \rangle$  are noncommutative polynomials, e.g.

$$x_1x_2^*x_2 + 2x_2^*x_1x_1^* - 3.$$

Given  $X = (X_1, \ldots, X_g) \in M_n(\mathbb{C})^g$  and  $f \in M_d(\mathbb{C} < x, x^* >)$  we have  $f(X, X^*) \in M_{dn}(\mathbb{C})$ . If  $f^* = f$ , then f is hermitian.

If  $A_1, \ldots, A_g, B_1, \ldots, B_g \in \mathsf{M}_d(\mathbb{C})$ , then

$$L = I + A_1 x_1 + \dots + A_g x_g + B_1 x_1^* + \dots + B_g x_g^*$$

is a (monic) linear pencil of size d. If  $B_j = A_j^*$ , then L is a hermitian linear pencil. Motivation

for noncommutative polynomial inequalities

Linear systems engineering Quantum information theory Relaxing LMI problems, e.g. LMI domination problem  $D_L \subseteq D_i$ 

#### WHY DO

Noncommutative Polynomial Inequalities Noncommutative Real Algebraic Geometry



ABCD

#### ENERGY DISSIPATION:

 $H := \mathbf{A}^{T}\mathbf{E} + \mathbf{E}\mathbf{A} + \mathbf{E}\mathbf{B}\mathbf{B}^{T}\mathbf{E} + \mathbf{C}^{T}\mathbf{C} \prec 0$  $\mathbf{E} = \begin{pmatrix} \mathbf{E}_{11} & \mathbf{E}_{12} \\ \mathbf{E}_{21} & \mathbf{E}_{22} \end{pmatrix}$  $E_{12} = E_{21}^{T}$  $H = \begin{pmatrix} H_{xx} & H_{xz} \\ H_{xy} & H_{yy} \end{pmatrix}$  $H_{xz} = H_{zx}^T$ 

| v G y<br>x-state                                                                                         | $\begin{aligned} \frac{dx(t)}{dt} &= Ax(t) + Bv(t) \\ y(t) &= Cx(t) + Dv(t) \\ A, B, C, D \text{ are matrices} \\ x, v, y \text{ are vectors} \end{aligned}$                      |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asymptotically stable                                                                                    | $ \begin{split} & \operatorname{Re}(\operatorname{eigvals}(A)) \prec 0 \iff \\ & A^T \mathbf{E} + \ \mathbf{E}A \ \prec 0  \mathbf{E} \succ 0 \end{split} $                       |
| Energy dissipating<br>$G: L^2 \rightarrow L^2$<br>$\int_0^T  v ^2 dt \ge \int_0^T  Gv ^2 dt$<br>x(0) = 0 | $\exists \mathbf{E} = \mathbf{E}^T \succeq 0$ $H := A^T \mathbf{E} + \mathbf{E}A + \mathbf{E}BB^T \mathbf{E} + C^T C \preceq 0$ $\mathbf{E} \text{ is called a storage function}$ |

 $H^{\infty}$  Control

Linear Systems Problems → Matrix Inequalities



Many such problems, e.g.  $H^{\infty}$  control

The problem is Dimension free: since it is given only by signal flow diagrams and L<sup>2</sup> signals.

> A Dimension Free System Problem is Equivalent to Noncommutative Polynomial Inequalities

Example:

#### More complicated systems give fancier nc polynomials



(PROB) A, B1, B2, C1, C2 are knowns. Solve the inequality  $\begin{pmatrix} H_{xx} & H_{xz} \\ H_{zy} & H_{zz} \end{pmatrix}$ ≺ 0 for unknowns - Franker F F F and F



# NC polynomials and linear pencils Why do?

Matrix multiplication is not commutative

- Thermal
- > The functions we study are typically noncommutative (nc) polynomials
- Engineering problems defined entirely by signal flow diagrams and L<sup>2</sup>
   performance specs are equivalent to Polynomial Matrix Inequalities
- A system connection law amounts to an algebraic operation on NC quantities, while  $L^2$  performance constraints, through use of quadratic "storage functions", convert to matrix inequalities M > 0



# NC polynomials and linear pencils Why do?

Matrix multiplication is not commutative

Thermal

- ▶ The functions we study are typically noncommutative (nc) polynomials
- Engineering problems defined entirely by signal flow diagrams and L<sup>2</sup>
   performance specs are equivalent to Polynomial Matrix Inequalities
- A system connection law amounts to an algebraic operation on NC quantities, while  $L^2$  performance constraints, through use of quadratic "storage functions", convert to matrix inequalities M > 0
- Convexity is needed for reliable designs and numerics. Often linear systems problems are solved by converting M via ad hoc changes of variables into convex problems or linear matrix inequalities (LMIs)

# NC polynomials and linear pencils Why do?

- Matrix multiplication is not commutative
- > The functions we study are typically noncommutative (nc) polynomials
- (Matrix) convexity and LMIs are good for you.
- Matrix convexity  $\leftrightarrow$  operator systems  $\leftrightarrow$  quantum information theory
- NC function theory boom (Agler, Ball, McCarthy, Pascoe, Popescu, Shamovich, Vinnikov, Helton-K-McCullough-Volčič, etc.)
   See also Jaka's talk on Thursday
- Convex optimization, polynomial optimization, moment problems (Blekherman, Brändén, Henrion, Infusino, Kummer, Kuhlmann, Lasserre, Naldi, Nie, Plaumann, Putinar, Renegar, Saunderson, Scheiderer, Sinn, Sturmfels, Tunçel, Vinzant, etc.)

## What this talk is not about

#### Change variables to get convexity





Are there many?

#### Free LMIs

If L is a hermitian linear pencil, then let

$$\mathcal{D}_L = \bigcup_{n \in \mathbb{N}} \mathcal{D}_L(n), \qquad \mathcal{D}_L(n) = \{ X \in \mathsf{M}_n(\mathbb{C})^g \colon L(X, X^*) \ge 0 \}$$

be its free spectrahedron or free LMI domain.

#### Free LMIs and semialgebraic sets

If L is a hermitian linear pencil, then let

$$\mathcal{D}_L = \bigcup_{n \in \mathbb{N}} \mathcal{D}_L(n), \qquad \mathcal{D}_L(n) = \{ X \in \mathsf{M}_n(\mathbb{C})^g \colon L(X, X^*) \ge 0 \}$$

be its free spectrahedron or free LMI domain.

More generally, if  $f \in M_d(\mathbb{C} < x, x^* >)$  is hermitian and f(0) > 0, then its free semialgebraic set is  $\mathcal{D}_f = \bigcup_n \mathcal{D}_f(n)$ , where  $\mathcal{D}_f(n)$  is the closure of the connected component of

$$\{X \in \mathsf{M}_n(\mathbb{C})^g \colon f(X, X^*) > 0\}$$

containing 0.

### Convex free semialgebraic sets are given by LMIs

Theorem (Helton–McCullough (Ann. Math. 2012); Kriel 2018) Every convex free semialgebraic set is a free spectrahedron.

That is, if for some hermitian  $f \in M_d(\mathbb{C} \langle x, x^* \rangle)$ ,  $\mathcal{D}_f(n)$  is convex for all n, then  $\mathcal{D}_f = \mathcal{D}_L$  for some hermitian linear pencil L.

### Convex free semialgebraic sets are given by LMIs

Theorem (Helton–McCullough (Ann. Math. 2012); Kriel 2018) Every convex free semialgebraic set is a free spectrahedron.

That is, if for some hermitian  $f \in M_d(\mathbb{C} \langle x, x^* \rangle)$ ,  $\mathcal{D}_f(n)$  is convex for all n, then  $\mathcal{D}_f = \mathcal{D}_L$  for some hermitian linear pencil L.

#### Outline for the rest of the talk

- (1) For what polynomials f is  $\mathcal{D}_f$  convex?
- (2) How to check if  $\mathcal{D}_f$  is convex?
- (3) If  $\mathcal{D}_f$  is convex, how to find a hermitian linear pencil L with

$$\mathcal{D}_f = \mathcal{D}_L$$
?

### Scalar NC polynomials describing convex sets

#### Theorem (Helton, K, McCullough, Volčič)

Let  $f \in \mathbb{C} < x, x^* >$  be hermitian and irreducible, with f(0) > 0. If  $\mathcal{D}_f$  is a free spectrahedron, then deg  $f \leq 2$  and f is concave:

$$f = \ell_0 - \sum_k \ell_k \ell_k^*$$

for some affine linear polynomials  $\ell_k \in \mathbb{C} \langle x, x^* \rangle$ .

### Scalar NC polynomials describing convex sets

#### Theorem (Helton, K, McCullough, Volčič)

Let  $f \in \mathbb{C} < x, x^* >$  be hermitian and irreducible, with f(0) > 0. If  $\mathcal{D}_f$  is a free spectrahedron, then deg  $f \leq 2$  and f is concave:

$$f = \ell_0 - \sum_k \ell_k \ell_k^*$$

for some affine linear polynomials  $\ell_k \in \mathbb{C} \langle x, x^* \rangle$ .

f is irreducible if it does not factor as a product of two non-constants.

### Scalar NC polynomials describing convex sets

#### Theorem (Helton, K, McCullough, Volčič)

Let  $f \in \mathbb{C} < x, x^* >$  be hermitian and irreducible, with f(0) > 0. If  $\mathcal{D}_f$  is a free spectrahedron, then deg  $f \leq 2$  and f is concave:

$$f = \ell_0 - \sum_k \ell_k \ell_k^*$$

for some affine linear polynomials  $\ell_k \in \mathbb{C} \langle x, x^* \rangle$ .

- f is irreducible if it does not factor as a product of two non-constants.
  - Theorem is not true for matrix-valued  $f \in M_d(\mathbb{C} < x, x^* >)$
  - Statement also fails for factorizable  $f \in \mathbb{C} < x, x^* >$

#### Linearization (realization) theory

NC rational functions r admit FM realizations

$$\mathbf{r} = d + c^* (A_0 + A_1 x_1 + \dots + A_g x_g + B_1 x_1^* + \dots + B_g x_g^*)^{-1} \mathbf{b}$$
  
=  $d + c^* L^{-1} \mathbf{b}$ ,

where  $A_j, B_j \in M_d(\mathbb{C})$ ,  $d \in \mathbb{C}$ ,  $\mathbf{b} := \sum_j b_j x_j + b_{g+j} x_j^*$ , and  $b_i, c \in \mathbb{C}^d$ .

#### Linearization (realization) theory

NC rational functions  $\mathbf{r}$  admit FM realizations  $\mathbf{r} = 1 + c^* L^{-1} \mathbf{b}$ , where L is a  $d \times d$  linear pencil,  $\mathbf{b} := \sum_j b_j x_j + b_{g+j} x_j^*$  and  $b_i, c \in \mathbb{C}^d$ .

#### Linearization (realization) theory

NC rational functions  $\mathbf{r}$  admit FM realizations  $\mathbf{r} = 1 + c^* L^{-1} \mathbf{b}$ , where L is a  $d \times d$  linear pencil,  $\mathbf{b} := \sum_j b_j x_j + b_{g+j} x_j^*$  and  $b_i, c \in \mathbb{C}^d$ .

- A realization has minimal size iff it is observable and controllable
- Minimal realizations are unique (up to basis change) (Ball-Groenewald-Malakorn)
- ▶  $dom(r) = dom(L^{-1})$  (Kaliuzhnyi-Verbovetskyi-Vinnikov, Volčič)
- dom(r) = all iff<sub>\*</sub> the coefficients of L are jointly nilpotent
   iff r is a polynomial (K-Volčič, K-Pascoe-Volčič)

• 
$$r^{-1} = 1 - c^* (L + bc^*)^{-1} b$$

(Ball-Groenewald-Malakorn)

#### Linearization theory and reciprocals of polynomials

NC rational functions  $\mathbf{r}$  admit FM realizations  $\mathbf{r} = 1 + c^* L^{-1} \mathbf{b}$ , where L is a  $d \times d$  linear pencil,  $\mathbf{b} := \sum_j b_j x_j + b_{g+j} x_j^*$  and  $b_i, c \in \mathbb{C}^d$ .

- A realization has minimal size iff it is observable and controllable
- Minimal realizations are unique (up to basis change) (Ball-Groenewald-Malakorn)
- ▶ dom(r) = dom(L<sup>-1</sup>) (Kaliuzhnyi-Verbovetskyi-Vinnikov, Volčič)
- dom(r) = all iff<sub>\*</sub> the coefficients of L are jointly nilpotent
   iff r is a polynomial (K-Volčič, K-Pascoe-Volčič)
- $r^{-1} = 1 c^* (L + \mathbf{b}c^*)^{-1} \mathbf{b}$  (Ball-Groenewald-Malakorn)

The key technique: apply FM realizations to  $f^{-1}$  for a polynomial f. A pencil of the form  $L + \mathbf{b}c^*$  for L with jointly nilpotent coefficients is called flip poly.

#### 

#### Proof.

Assume  $\mathcal{D}_f = \mathcal{D}_L$  for some (minimal)  $L = I + \sum_j A_j x_j + \sum_j A_j^* x_j^*$ .

- (1) Consider the minimal FM realization  $f^{-1} = 1 + c^* \tilde{L}^{-1} b$ .
- (2) f is irreducible iff  $\tilde{L}$  is indecomposable (coefficients generate the Helton-K-Volčič, Adv. Math. 2018 full matrix algebra).
- (3)  $\mathcal{D}_f = \mathcal{D}_L$  & irreducibility imply  $\mathcal{Z}_{\tilde{L}} = \mathcal{Z}_L$ , whence  $L, \tilde{L}$  are similar (K-Volčič, CMH 2017).

$$\mathcal{Z}_L := \bigcup_n \{ X \in \mathsf{M}_n(\mathbb{C})^g : \det L(X, X^*) = 0 \}.$$

#### Irreducible scalar NC polynomials describing convex sets are of degree ≤ 2. Note to self!! SKIP this??

#### Proof.

Assume  $\mathcal{D}_f = \mathcal{D}_L$  for some (minimal)  $L = I + \sum_j A_j x_j + \sum_j A_j^* x_j^*$ .

- (1) Consider the minimal FM realization  $f^{-1} = 1 + c^* \tilde{L}^{-1} b$ .
- (2) f is irreducible iff  $\tilde{L}$  is indecomposable (coefficients generate the Helton-K-Volčič, Adv. Math. 2018 full matrix algebra).
- (3)  $\mathcal{D}_f = \mathcal{D}_L$  & irreducibility imply  $\mathcal{Z}_{\tilde{L}} = \mathcal{Z}_L$ , whence  $L, \tilde{L}$  are similar (K-Volčič, CMH 2017).
- (4) L is hermitian and flip-poly  $(A_j = nilpotent + rank one)$

$$\implies \quad A_j = \begin{pmatrix} \alpha_j & v_j^* \\ u_j & 0 \end{pmatrix}.$$

#### Example

of a high degree NC polynomial describing a convex set

$$f = \underbrace{\left(1 + x + x^* - 2xx^* - (x + x^*)xx^*\right)}_{f_1} \underbrace{\left(1 + \frac{1}{2}(x + x^*)\right)}_{s_1}$$

$$L = \begin{pmatrix} 1 + x + x^* & 0 & x \\ 0 & 1 & x \\ x^* & x^* & 1 \end{pmatrix}.$$

- f is hermitian of degree 4;
- $\mathcal{D}_f = \mathcal{D}_L$  is a free spectrahedron.

#### Non-example

TV screen

Consider  $p(x, y) = 1 - x_1^4 - x_2^2$ .

The semialgebraic set  $\mathcal{D}_p$  is called the bent TV screen.



#### Non-example

TV screen

Consider  $p(x, y) = 1 - x_1^4 - x_2^2$ .

The semialgebraic set  $\mathcal{D}_p$  is called the bent TV screen.



A 3-dimensional slice of  $\mathcal{D}_{p}(2) = \{(X_{1}, X_{2}) \in M_{2}(\mathbb{R})^{2}_{sym} \mid I_{2} - X_{1}^{4} - X_{2}^{2} \geq 0\}.$ 

#### Non-example

TV screen

Consider  $p(x, y) = 1 - x_1^4 - x_2^2$ .

The semialgebraic set  $\mathcal{D}_p$  is called the bent TV screen.



A non-convex 2-dimensional slice of  $\mathcal{D}_p(2)$ .

#### Non-example (cont'd)

Convexifying the TV screen  $I - X_1^4 - X_2^2 \ge 0$ 

Define

 $L^1(\mathbf{x}, \mathbf{y}) = 1 - y_{1111} - y_{22}$ 

$$\mathcal{L}^{2}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} 1 & \mathbf{x}_{1} & \mathbf{x}_{2} & y_{11} \\ \mathbf{x}_{1} & y_{11} & y_{12} & y_{111} \\ \mathbf{x}_{2} & y_{21} & y_{22} & y_{211} \\ y_{11} & y_{111} & y_{112} & y_{1111} \end{pmatrix}$$

Set

$$\mathcal{C} := \big\{ (X,Y) \mid L^1(X,Y) \geq 0, \ L^2(X,Y) \geq 0 \big\}.$$

Its projection onto the x coordinates is the spectrahedrop:

$$\hat{\mathcal{C}} := \{ X : \exists Y \ (X, Y) \in \mathcal{C} \}.$$

#### Non-example (cont'd)

Convexifying the TV screen  $I - X_1^4 - X_2^2 \ge 0$ 

Define

 $L^{1}(\mathbf{x}, \mathbf{y}) = 1 - y_{1111} - y_{22}$ 

$$L^{2}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} 1 & x_{1} & x_{2} & y_{11} \\ x_{1} & y_{11} & y_{12} & y_{111} \\ x_{2} & y_{21} & y_{22} & y_{211} \\ y_{11} & y_{111} & y_{112} & y_{1111} \end{pmatrix}$$

Set

$$\mathcal{C} := \big\{ (X,Y) \mid L^1(X,Y) \geq 0, \ L^2(X,Y) \geq 0 \big\}.$$

Its projection onto the x coordinates is the spectrahedrop:

$$\hat{\mathcal{C}} := \{ X : \exists Y \ (X, Y) \in \mathcal{C} \} \supseteq \operatorname{co} \mathcal{D}_p.$$

Open problem:

Does the convex hull of the TV screen have an SDP representation?

### Invertibility sets of (non-hermitian) NC polynomials

For a general  $f \in M_d(\mathbb{C}{<}x, x^*{>})$  with det  $f(0) \neq 0$  let

 $\mathcal{K}_{f}(n) = \text{prime component of } \{X \in \mathsf{M}_{n}(\mathbb{C})^{g} : \det f(X, X^{*}) \neq 0\},$  $\mathcal{K}_{f} = \bigcup_{n} \mathcal{K}_{f}(n).$ 

### Invertibility sets of (non-hermitian) NC polynomials

For a general  $f \in M_d(\mathbb{C}{<}x, x^*{>})$  with det  $f(0) \neq 0$  let

$$\mathcal{K}_{f}(n) = \text{prime component of } \{X \in \mathsf{M}_{n}(\mathbb{C})^{g} : \det f(X, X^{*}) \neq 0\},\$$
$$\mathcal{K}_{f} = \bigcup_{n} \mathcal{K}_{f}(n).$$

For d = 1 there exist irreducible polynomials f ∈ C<x, x\*> of arbitrarily high degree with K<sub>f</sub> a free spectrahedron, e.g.

$$f = 1 + 4(x + x^{*}) + 2(x^{2} + (x^{*})^{2}) - xx^{*} - 7xx^{*}(x + x^{*}) - 4x^{*}x(x + x^{*})$$
$$- xx^{*}(x^{2} + (x^{*})^{2}) + 2xx^{*}(xx^{*} + x^{*}x)(x + x^{*}).$$

## Convexity of $\mathcal{K}_f$

# Theorem (Helton, K, McCullough, Volčič) Let $f \in M_d(\mathbb{C} < x, x^* >)$ with f(0) = I, and write its minimal FM realization $f^{-1} = I + c^*L^{-1}\mathbf{b}$ with

$$L = \begin{pmatrix} L^1 & \star & \star \\ & \ddots & \star \\ & & L^\ell \end{pmatrix},$$

where each L<sup>i</sup> is either indecomposable or I.

Let  $\hat{L}$  be the direct sum of those indecomposable blocks  $L^i$  that are similar to a hermitian pencil, and let  $\check{L}$  be the direct sum of the remaining  $L^j$ . The following are equivalent:

- (i)  $\mathcal{K}_f$  is a free spectrahedron;
- (ii)  $\mathcal{K}_f = \mathcal{K}_{\hat{L}};$
- (iii)  $\check{L}$  is invertible on int  $\mathcal{K}_{\hat{L}}$ .

# Convexity of $\bigcap \mathcal{K}_{f_i}$ for irreducible $f_i$

Corollary

Assume  $f_i$  are irreducible. Then  $\bigcap \mathcal{K}_{f_i}$  is convex iff each  $\mathcal{K}_{f_i}$  is convex.



# Convexity of $\bigcap \mathcal{K}_{f_i}$ for irreducible $f_i$

Corollary

Assume  $f_i$  are irreducible. Then  $\bigcap \mathcal{K}_{f_i}$  is convex iff each  $\mathcal{K}_{f_i}$  is convex.

#### Proof.

•  $(f_1 \cdots f_t)^{-1} = I + c^* L^{-1} \mathbf{b}$  is a minimal FM realization<sup>1</sup> with

$$L = \begin{pmatrix} L^1 & \star & \star \\ & \ddots & \star \\ & & L^\ell \end{pmatrix},$$

where each  $L^i$  is either indecomposable or I.

- For every *i* there exists  $j_i$  such that  $\mathcal{K}_{L^i} = \mathcal{K}_{f_{j_i}}$ .
- If one of the L<sup>i</sup> was not similar to a hermitian pencil, then it is redundant by convexity and the Theorem.

<sup>&</sup>lt;sup>1</sup>Coded in NCAlgebra, see notebook of Volčič.

### All polynomials f with convex $\mathcal{K}_f$

$$f = s_0 f_1 s_1 f_2 \cdots f_r s_r,$$

- *f<sub>i</sub>* irreducible;
- ▶ *K*<sub>f<sub>i</sub></sub> convex;
- $\mathcal{K}_{s_i}$  redundant.

An algorithm to determine if  $\mathcal{K}_f$  is convex Check if a rectangular  $\check{L}$  is of full rank on int  $\mathcal{D}_{\hat{l}}$ 

Let  $\hat{L}$  be  $d \times d$  hermitian and let  $\check{L}$  be a  $\delta \times \varepsilon$  affine linear pencil.

**Step 1.** Solve the following feasibility SDP for  $D \in \mathbb{C}^{\delta \times d}$ :

$$\operatorname{tr}(\operatorname{Re}(D\check{L})(0)) = 1$$
  
 
$$\operatorname{Re}(D\check{L}) = P_0 + \sum_k C_k^* \widehat{L} C_k \quad \text{ for some } C_k, P_0, \text{ with } P_0 \ge 0.$$

**Step 2.** If infeasible, then  $\check{L}(X, X^*)$  is not full rank for some  $X \in \operatorname{int} \mathcal{D}_{\hat{L}}$ .

**Step 3.** Otherwise we have a solution D with  $V := \ker P_0 \cap \bigcap_k \ker C_k$ . Step 3.1 If V = (0), then  $\check{L}$  is full rank on int  $\mathcal{D}_{\hat{L}}$ .

Step 3.2. If  $\varepsilon' = \dim V > 0$ , then let  $\check{L}'$  be the  $\delta \times \varepsilon'$  pencil whose coefficients are the restrictions of  $\check{L}$  to V. Then  $\check{L}$  is full rank on int  $\mathcal{D}_{\hat{L}}$  if and only if  $\check{L}'$  is full rank on int  $\mathcal{D}_{\hat{L}}$ . Now we apply Step 1 to  $\check{L}'$ .

#### An algorithm for finding an L with $\mathcal{K}_f = \mathcal{D}_L$

(a) Compute the minimal realization  $f^{-1} = I + c^* L^{-1} \mathbf{b}$ .

(b) Next find the Burnside decomposition of L into

$$L = \begin{pmatrix} L^1 & \star & \star \\ & \ddots & \\ & & L^\ell \end{pmatrix}$$

where each  $L^i$  is either indecomposable or I.

(c) Pick one pencil from each similarity class among the  $L^i$ .

(d) Find all those  $L^i$  that are similar to a hermitian pencil: SDP

$$Q \geq I, \qquad Q(L^i)^* = L^i Q$$

leads to a hermitian pencil  $\widetilde{L}^i = Q^{-\frac{1}{2}} L^i Q^{\frac{1}{2}}$ .

(e) The direct sum  $\widetilde{L}$  of the hermitian pencils  $\widetilde{L}^i$  obtained in (d) satisfies

$$\mathcal{D}_{\widetilde{L}} = \mathcal{K}_f.$$

### Conclusions

Take home messages

- Free convex semialgebraic sets are given by LMIs.
- An irreducible polynomial f with convex D<sub>f</sub> must be concave of degree ≤ 2, f is a Schur complement of a hermitian linear pencil.
- An intersection of free convex semialgebraic sets is convex iff all of them are.
- There is an effective algorithm for testing whether  $\mathcal{D}_f$  is convex.
- There is an effective algorithm for computing an LMI representation of a convex D<sub>f</sub>.