Tractable semi-algebraic approximation using Christoffel-Darboux kernel

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France

Joint work with D. Henrion, T. Weisser, S. Marx, E. Pauwels and M. Putinar

BIRS at BANFF, May 2019

* Research funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement 666981 TAMING)

Analysis of a certain class of non-linear PDEs (e.g. Burgers equation)

$$
\begin{aligned}
& \frac{\partial y(x, t)}{\partial t}+y(x, t) \frac{\partial y(x, t)}{\partial x}=0, \quad(x, t) \in \Omega \\
& \quad \text { + boundary conditions }
\end{aligned}
$$

- One may apply the moment-SOS approach, i.e., one solves an appropriate hierarchy of semidefinite relaxations of increasing size.
Previous talk by D. Henrion

At an optimal solution z of the "step-d" semidefinite relaxation one obtains an approximation of the moments

$$
z_{i, j, k}=\int_{\Omega} y^{i} x^{j} t^{k} d \mu(y, x, t)=\int_{\Omega} x^{j} t^{k} y(x, t)^{i} d x d t
$$

up to order $2 d$ of the measure μ supported on the graph $\{(y(x, t), x, t):(x, t) \in \Omega\}$ of the solution $y(x, t)$ of the PDE.

傕 Problem: How to retrieve:

the function $(x, t) \mapsto y(x, t), \quad(x, t) \in \Omega$, from the sole knowledge of $z_{i, j, k}$, for all (i, j, k) such that $i+j+k \leq 2 d$.

Generic univariate problem for scalar PDE

Let $(x, t) \mapsto f(x, t),(x, t) \in[0,1] \times[0,1]$,

be an UNKNOWN bounded measurable function on $\Omega=[0, M] \times[0,1]$, and suppose that one knows

$$
z_{i, j, k}:=\int_{\Omega} x^{i} t^{j} f(x, t)^{k} d x d t, \quad i+j+k \leq 2 d
$$

잡 Approximate f as closely as desired when d increases and if possible with no Gibbs' phenomenon.

The motivation came from retrieving solutions of non-linear PDE's via the Moment-SOS hierarchy, BUT
we are concerned with the following generic situation:
Let $f: S \rightarrow \mathbb{R}$ be a bounded measurable function. Our sole knowledge on f is from the scalars

$$
m_{\alpha, k}=\int_{S} \mathbf{x}^{\alpha} f(\mathbf{x})^{k} d \mathbf{x}, \quad \alpha \in \mathbb{N}^{n}, k \in \mathbb{N}
$$

and we address the generic inverse problem:
\square
CIS COMPUTE an

as d increases.
蹄
and if possible
with no GIRRS'

The motivation came from retrieving solutions of non-linear PDE's via the Moment-SOS hierarchy, BUT
we are concerned with the following generic situation:
Let $f: S \rightarrow \mathbb{R}$ be a bounded measurable function. Our sole knowledge on f is from the scalars

$$
m_{\alpha, k}=\int_{S} \mathbf{x}^{\alpha} f(\mathbf{x})^{k} d \mathbf{x}, \quad \alpha \in \mathbb{N}^{n}, k \in \mathbb{N}
$$

and we address the generic inverse problem:

- Given $m_{\alpha, k}, \alpha, k \in \mathbb{N}_{2 d}^{n+1}$
[स्थx CoMPUTE an APPROXIMATION f_{d} of f, with CONVERGENCE GUARANTEES as d increases.

문 ... and if possible ... with no GIBBS' phenomenon

The Gibbs phenomenon

Typical when one approximates a discontinuous function (in blue) by a polynomial (in red).

A little detour: The Christoffel function

Given a measure μ on a compact $\Omega \subset \mathbb{R}^{n}$, and $d \in \mathbb{N}$, one may construct a sum-of-squares (SOS) polynomial $Q_{d} \in \mathbb{R}[\mathbf{x}]_{2 d}$ such that the levels sets

$$
S_{\gamma}:=\left\{\mathbf{x}: Q_{d}(\mathbf{x}) \leq \gamma\right\}, \quad \gamma \in \mathbb{R}_{+}
$$

capture the shape of the support Ω of μ better and better as $d \uparrow$.

A little detour: The Christoffel function

Given a measure μ on a compact $\Omega \subset \mathbb{R}^{n}$, and $d \in \mathbb{N}$, one may construct a sum-of-squares (SOS) polynomial $Q_{d} \in \mathbb{R}[\mathbf{x}]_{2 d}$ such that the levels sets

$$
S_{\gamma}:=\left\{\mathbf{x}: Q_{d}(\mathbf{x}) \leq \gamma\right\}, \quad \gamma \in \mathbb{R}_{+}
$$

capture the shape of the support Ω of μ better and better as $d \uparrow$.

㖪 Surprisingly, low degree d is often enough to get a pretty good idea of the shape of Ω (at least in dimension $n=2,3$)

The Christoffel function $C_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is the reciprocal of the SOS polynomial Q_{d} and has a rich history in Approximation theory and Orthogonal Polynomials.

Theorem

Let the support Ω of μ be compact with nonempty interior and let $\left(P_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ be a family of orthonormal polynomials w.r.t. μ. Then for every $\xi \in \mathbb{R}^{n}$:

$$
\begin{aligned}
Q_{d}(\xi) & =\sum_{|\alpha| \leq d} P_{\alpha}(\xi)^{2} \\
\frac{1}{Q_{d}(\xi)}=C_{d}(\xi) & =\min _{P \in \mathbb{R}[\mathbf{x}]_{d}}\left\{\int_{\Omega} P^{2} d \mu: P(\xi)=1\right\}
\end{aligned}
$$

Theorem

Let the support Ω of μ be compact with nonempty interior. Then:

- For all $\mathbf{x} \in \operatorname{int}(\Omega): Q_{d}(\mathbf{x})=O\left(d^{n}\right)$.
- For all $\mathbf{x} \in \operatorname{int}\left(\mathbb{R}^{n} \backslash \Omega\right): Q_{d}(\mathbf{x})=\Omega(\exp (\tau d))$ for some $\tau>0$. In particular as $d \rightarrow \infty, d^{n} C_{d}(\mathbf{x}) \rightarrow 0$ very fast whenever $\mathbf{x} \notin \Omega$

The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density estimation). In this case the measure μ is the empirical probability measure associated with a cloud of points $\mathcal{C} \subset \mathbb{R}^{n}$ (the data of interest).

The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density estimation). In this case the measure μ is the empirical probability measure associated with a cloud of points $\mathcal{C} \subset \mathbb{R}^{n}$ (the data of interest).

For instance one may decide that points $\xi \in \mathcal{C}$ such that $Q_{d}(\xi)>\binom{n+d}{d}$ can be classified as outliers. Such a strategy (even with relatively low degree d) is as efficient as more elaborated techniques, and with no optimization involved.

> 㛀 Lass \& Pauwels Sorting out typicality via the inverse moment matrix SOS polynomial, Lass \& Pauwels The empirical Christoffel function with applications in data analysis, Pauwels, Putinar \& Lass Data analysis from empirical moments and the Christoffel function,

The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density estimation). In this case the measure μ is the empirical probability measure associated with a cloud of points $\mathcal{C} \subset \mathbb{R}^{n}$ (the data of interest).

For instance one may decide that points $\xi \in \mathcal{C}$ such that $Q_{d}(\xi)>\binom{n+d}{d}$ can be classified as outliers. Such a strategy (even with relatively low degree d) is as efficient as more elaborated techniques, and with no optimization involved.
脆 Lass \& Pauwels Sorting out typicality via the inverse moment matrix SOS polynomial, NIPS 2016.
Lass \& Pauwels The empirical Christoffel function with applications in data analysis, Adv. Comp. Math. 2019 Pauwels, Putinar \& Lass Data analysis from empirical moments and the Christoffel function, arXiv:1810.08480

Back to our recovery problem

Take home message

In our problem, the support Ω of μ on \mathbb{R}^{n+1} IS the graph $\left\{(\mathbf{x}, f(\mathbf{x})): \mathbf{x} \in S \subset \mathbb{R}^{n}\right\}$ of an unknown function $f: S \rightarrow \mathbb{R}$.

중 Hence the Christoffel function is an appropriate tool for getting information on f from moments of μ.

An illustrative example: Let $f:[0,1] \rightarrow[0,1]$ be the step function:

$$
f(t):= \begin{cases}0 & t \in[0,1 / 2] \\ 1 & t \in(1 / 2,1]\end{cases}
$$

and let μ be a measure on $[0,1]^{2}$ supported on the graph $\Omega=\{(t, f(t)): t \in[0,1]\}$ of f.

检 The support $\Omega \subset \mathbb{R}^{2}$ of μ has an empty interior as $d \mu(x, t)$
is singular w.r.t. Lebesgue measure on \mathbb{R}^{2}.
Therefore we instead use $\mu+\varepsilon \lambda$ where λ is the Lebesgue measure on $[0,1]^{2}$ and $\varepsilon>0$ is very small.

An illustrative example: Let $f:[0,1] \rightarrow[0,1]$ be the step function:

$$
f(t):= \begin{cases}0 & t \in[0,1 / 2] \\ 1 & t \in(1 / 2,1]\end{cases}
$$

and let μ be a measure on $[0,1]^{2}$ supported on the graph $\Omega=\{(t, f(t)): t \in[0,1]\}$ of f.

The support $\Omega \subset \mathbb{R}^{2}$ of μ has an empty interior as $d \mu(x, t)$ is singular w.r.t. Lebesgue measure on \mathbb{R}^{2}.

Therefore we instead use $\mu+\varepsilon \lambda$ where λ is the Lebesgue measure on $[0,1]^{2}$ and $\varepsilon>0$ is very small.

Suppose that we only know the moments $\left(z_{i, j}\right)_{i, j \leq 2 d}$, up to order $2 d$, of μ.

From the moments:

$-7=\left(7_{i}\right)_{i, i-2 d}$, un to order $2 d$, and

- $\boldsymbol{\lambda}=\left(\lambda_{i, j}\right)_{i+j \leq 2 d}$ up to order $2 d$ of the Lebesgue measure on $[0,1]^{2}$, and for $\varepsilon>0$ small (and fixed),
[1ㅏㅜㅇ form the moment matrix $\mathbf{M}_{d}(z+\varepsilon \boldsymbol{\lambda})$.
맚ㅇ Compute the Christoffel polynomial $Q_{d}(x, t)$.

For arbitrary $t \in[0,1]$, let:

A웁 As $x \mapsto Q_{d}(x, t)$ is a UNIVARIATE polynomial, x^{*} can be obtained efficiently.

Suppose that we only know the moments $\left(z_{i, j}\right)_{i, j \leq 2 d}$, up to order $2 d$, of μ.

From the moments:

- $z=\left(z_{i, j}\right)_{i+j \leq 2 d}$, up to order 2d, and
- $\boldsymbol{\lambda}=\left(\lambda_{i, j}\right)_{i+j \leq 2 d}$ up to order $2 d$ of the Lebesgue measure on
$[0,1]^{2}$, and for $\varepsilon>0$ small (and fixed),

맚ㅇ form the moment matrix $\mathbf{M}_{d}(z+\varepsilon \boldsymbol{\lambda})$.
Compute the Christoffel polynomial $Q_{d}(x, t)$.

Suppose that we only know the moments $\left(z_{i, j}\right)_{i, j \leq 2 d}$, up to order $2 d$, of μ.

From the moments:

$-z=\left(z_{i, j}\right)_{i+j \leq 2 d}$, up to order 2d, and

- $\boldsymbol{\lambda}=\left(\lambda_{i, j}\right)_{i+j \leq 2 d}$ up to order $2 d$ of the Lebesgue measure on
$[0,1]^{2}$, and for $\varepsilon>0$ small (and fixed),
form the moment matrix $\mathbf{M}_{d}(z+\varepsilon \boldsymbol{\lambda})$.
嗄 Compute the Christoffel polynomial $Q_{d}(x, t)$.
For arbitrary $t \in[0,1]$, let:
$h_{d}(t):=x^{*}=\arg \min _{x \in[0,1]} Q_{d}(x, t)$.
낭 As $x \mapsto Q_{d}(x, t)$ is a UNIVARIATE polynomial, x^{*} can be obtained efficiently.

In black (left) the approximation with moments of order 2 and in black (right) the approximation with moments of order 4.
ㅁㅏㅜㄹ Observe the absence of any Gibbs phenomenon ...

For the Burgers equation

Let μ be our unknown measure supported on the graph $\Omega=\{(f(x, t), x, t):(x, t) \in S\}$ of the entropy solution of the Burgers equation. Suppose that we only know the moments $\left(z_{i, j, k}\right)_{i, j, k \leq 2 d}$, up to order $2 d$, of μ.

For the Burgers equation

Let μ be our unknown measure supported on the graph $\Omega=\{(f(x, t), x, t):(x, t) \in S\}$ of the entropy solution of the Burgers equation. Suppose that we only know the moments $\left(z_{i, j, k}\right)_{i, j, k \leq 2 d}$, up to order $2 d$, of μ.

R중 Recall that in practice, $\left(z_{i, j, k}\right)$ is an optimal solution of the step- d semidefinite relaxation associated with the Burgers equation.

For the Burgers equation

Let μ be our unknown measure supported on the graph $\Omega=\{(f(x, t), x, t):(x, t) \in S\}$ of the entropy solution of the Burgers equation. Suppose that we only know the moments $\left(z_{i, j, k}\right)_{i, j, k \leq 2 d}$, up to order $2 d$, of μ.

중 Recall that in practice, $\left(z_{i, j, k}\right)$ is an optimal solution of the step-d semidefinite relaxation associated with the Burgers equation.
잡 $\Omega \subset \mathbb{R}^{3}$ has an empty interior as $d \mu(y, x, t)$ is singular w.r.t. Lebesgue measure on \mathbb{R}^{3}.

Therefore we instead use $\mu+\varepsilon \lambda$ where λ is the Lebesgue measure on $[0, R] \times \underbrace{[0, M] \times[0,1]}$ and $\varepsilon>0$ is very small. (For the Burgers equation, R and M are determined from bounds on the boundary condition $y_{0}(x, 0)$.)

Recovery strategy

From the moments:

- $z=\left(z_{i, j, k}\right)_{i+j+k \leq 2 d}$, up to order 2d, and
- $\boldsymbol{\lambda}=\left(\lambda_{i, j, k}\right)_{i+j+k \leq 2 d}$ up to order $2 d$ of the Lebesgue measure
on $[0, R] \times[0, M] \times[0,1]$,
and for $\varepsilon>0$ small (and fixed),
咹 form the moment matrix $\mathbf{M}_{d}(z+\varepsilon \boldsymbol{\lambda})$.
Compute the Christoffel polynomial $Q_{d}(y, x, t)$.
For arbitrary $(x, t) \in[0, M] \times[0,1]$, let:
$h_{d}(x, t):=y^{*}=\arg \min _{y \in[0, R]} Q_{d}(y, x, t)$.
맙 As $y \mapsto Q_{d}(y, x, t)$ is a UNIVARIATE polynomial, y^{*} is
obtained exactly by solving a single SDP.

Recovery strategy

From the moments:

- $z=\left(z_{i, j, k}\right)_{i+j+k \leq 2 d}$, up to order 2d, and
- $\boldsymbol{\lambda}=\left(\lambda_{i, j, k}\right)_{i+j+k \leq 2 d}$ up to order $2 d$ of the Lebesgue measure
on $[0, R] \times[0, M] \times[0,1]$,
and for $\varepsilon>0$ small (and fixed),
form the moment matrix $\mathbf{M}_{d}(z+\varepsilon \boldsymbol{\lambda})$.
Compute the Christoffel polynomial $Q_{d}(y, x, t)$.
For arbitrary $(x, t) \in[0, M] \times[0,1]$, let:
$h_{d}(x, t):=y^{*}=\arg \min _{y \in[0, R]} Q_{d}(y, x, t)$.
As $y \mapsto Q_{d}(y, x, t)$ is a UNIVARIATE polynomial, y^{*} is obtained exactly by solving a single SDP.

Convergence guarantees

Under some relatively weak conditions on $(x, t) \mapsto f(x, t)$: (1) $h_{d} \rightarrow f$ in $L_{1}([0, M] \times[0,1])$.

㖪 $h_{d}(x, t) \rightarrow f(x, t)$ for almost all $(x, t) \in[0, M] \times[0,1]$.
Importantly:
the APPROXIMANT f_{d} belongs to the class of
semi-algebraic functions, as opposed to standard
approximation schemes where f_{d} is a polynomial.

겁 provides a RATIONALE why the GIBBS' phenomenon disappears in our numerical experiments.

Convergence guarantees

Under some relatively weak conditions on $(x, t) \mapsto f(x, t)$:
$h_{d} \rightarrow f$ in $L_{1}([0, M] \times[0,1])$.
공 $h_{d}(x, t) \rightarrow f(x, t)$ for almost all $(x, t) \in[0, M] \times[0,1]$.

Importantly:

哊 the APPROXIMANT f_{d} belongs to the class of semi-algebraic functions, as opposed to standard approximation schemes where f_{d} is a polynomial.

> 망
> provides a RATIONALE why the GIBBS' phenomenon disappears in our numerical experiments.

Convergence guarantees

Under some relatively weak conditions on $(x, t) \mapsto f(x, t)$:
줍 $h_{d} \rightarrow f$ in $L_{1}([0, M] \times[0,1])$.
공 $h_{d}(x, t) \rightarrow f(x, t)$ for almost all $(x, t) \in[0, M] \times[0,1]$.

Importantly:

咹 the APPROXIMANT f_{d} belongs to the class of semi-algebraic functions, as opposed to standard approximation schemes where f_{d} is a polynomial.

叫
provides a RATIONALE why the GIBBS' phenomenon disappears in our numerical experiments.

Ex: The Burgers equation

We consider two initial conditions: One yields a solution $f(x, t)$ with a discontinuity (shock) and the other yields a continuous solution (rarefaction).

咦 With moments up to order $2 d=12$, the moments z match those of the measure μ supported on the graph of f (with at least 4 digits of precision). Then after discretizing $[0, M]$
and computing $h_{d}(x, t)$ on this grid, one obtains the two approximations (with almost no Gibbs phenomenon):

Ex: The Burgers equation

We consider two initial conditions: One yields a solution $f(x, t)$ with a discontinuity (shock) and the other yields a continuous solution (rarefaction).
(1) With moments up to order $2 d=12$, the moments z match those of the measure μ supported on the graph of f (with at least 4 digits of precision). Then after discretizing $[0, M] \times[0,1]$ and computing $h_{d}(x, t)$ on this grid, one obtains the two approximations (with almost no Gibbs phenomenon):

Ex: The Burgers equation

We consider two initial conditions: One yields a solution $f(x, t)$ with a discontinuity (shock) and the other yields a continuous solution (rarefaction).
(1) With moments up to order $2 d=12$, the moments z match those of the measure μ supported on the graph of f (with at least 4 digits of precision). Then after discretizing $[0, M] \times[0,1]$ and computing $h_{d}(x, t)$ on this grid, one obtains the two approximations (with almost no Gibbs phenomenon):

Examples from Eckhoff

Examples from Eckhoff continued

More details in :
S. Marx, T. Weisser, D. Henrion and J.B. Lass (2018). A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Math. Control \& Related Fields, 2019
S. Marx, E. Pauwels, T. Weisser, D. Henrion and J.B. Lass
(2018). Tractable semi-algebraic approximation using Christoffel-Darboux kernel. arXiv:1807.02306

THANK YOU!

