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Initial motivation

Analysis of a certain class of non-linear PDEs (e.g. Burgers
equation)

∂y(x , t)
∂t

+ y(x , t)
∂y(x , t)

∂x
= 0, (x , t) ∈ Ω,

+ boundary conditions,

• One may apply the moment-SOS approach, i.e., one solves
an appropriate hierarchy of semidefinite relaxations of
increasing size.

� Previous talk by D. Henrion
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At an optimal solution z of the “step-d" semidefinite relaxation
one obtains an approximation of the moments

zi,j,k =

∫
Ω

y i x j tk dµ(y , x , t) =

∫
Ω

x j tk y(x , t)i dx dt

up to order 2d of the measure µ supported on the graph
{(y(x , t), x , t) : (x , t) ∈ Ω} of the solution y(x , t) of the PDE.

� Problem: How to retrieve:
the function (x , t) 7→ y(x , t), (x , t) ∈ Ω, from the sole
knowledge of zi,j,k , for all (i , j , k) such that i + j + k ≤ 2d .
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Generic univariate problem for scalar PDE

Let (x , t) 7→ f (x , t), (x , t) ∈ [0,1]× [0,1],

be an UNKNOWN bounded measurable function on
Ω = [0,M]× [0,1], and suppose that one knows

zi,j,k :=

∫
Ω

x i t j f (x , t)k dx dt , i + j + k ≤ 2d .

� Approximate f as closely as desired when d increases and
if possible with no Gibbs’ phenomenon.
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The motivation came from retrieving solutions of non-linear
PDE’s via the Moment-SOS hierarchy, BUT

we are concerned with the following generic situation:

Let f : S → R be a bounded measurable function. Our sole
knowledge on f is from the scalars

mα,k =

∫
S

xα f (x)k dx, α ∈ Nn, k ∈ N.

and we address the generic inverse problem:

• Given mα,k , α, k ∈ Nn+1
2d

� COMPUTE an APPROXIMATION fd of f , with
CONVERGENCE GUARANTEES as d increases.

� ... and if possible ... with no GIBBS’ phenomenon
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The Gibbs phenomenon

� Typical when one approximates a discontinuous function
(in blue) by a polynomial (in red).
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A little detour: The Christoffel function

Given a measure µ on a compact Ω ⊂ Rn, and d ∈ N, one may
construct a sum-of-squares (SOS) polynomial Qd ∈ R[x]2d
such that the levels sets

Sγ := {x : Qd(x) ≤ γ }, γ ∈ R+

capture the shape of the support Ω of µ better and better as d ↑.
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� Surprisingly, low degree d is often enough to get a pretty
good idea of the shape of Ω (at least in dimension n = 2,3)

d = 3 , n = 500
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The Christoffel function Cd : Rn → R+ is the reciprocal of the
SOS polynomial Qd and has a rich history in Approximation
theory and Orthogonal Polynomials.

Theorem
Let the support Ω of µ be compact with nonempty interior and
let (Pα)α∈Nn be a family of orthonormal polynomials w.r.t. µ.
Then for every ξ ∈ Rn:

Qd(ξ) =
∑
|α|≤d

Pα(ξ)
2

1
Qd(ξ)

= Cd(ξ) = min
P∈R[x]d

{
∫
Ω

P2 dµ : P(ξ) = 1 }
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Theorem
Let the support Ω of µ be compact with nonempty interior.
Then:

For all x ∈ int(Ω): Qd(x) = O(dn).
For all x ∈ int(Rn \Ω): Qd(x) = Ω(exp(τd)) for some τ > 0.

In particular as d → ∞, dn Cd(x) → 0 very fast whenever
x 6∈ Ω
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dp

exp(αd)

dp+1

dp+2

exp(α
√
d)
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The Christoffel function can be used in several important
applications of Machine Learning (e.g. outlier detection, density
estimation). In this case the measure µ is the empirical
probability measure associated with a cloud of points C ⊂ Rn

(the data of interest).

For instance one may decide that points ξ ∈ C such that
Qd(ξ) >

(n+d
d

)
can be classified as outliers. Such a strategy

(even with relatively low degree d) is as efficient as more
elaborated techniques, and with no optimization involved.

� Lass & Pauwels Sorting out typicality via the inverse
moment matrix SOS polynomial, NIPS 2016.
Lass & Pauwels The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 2019
Pauwels, Putinar & Lass Data analysis from empirical moments
and the Christoffel function, arXiv:1810.08480
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Back to our recovery problem

Take home message

In our problem, the support Ω of µ on Rn+1 IS the graph
{(x, f (x)) : x ∈ S ⊂ Rn} of an unknown function f : S → R.

� Hence the Christoffel function is an appropriate tool for
getting information on f from moments of µ.
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An illustrative example: Let f : [0,1] → [0,1] be the step
function:

f (t) :=
{

0 t ∈ [0,1/2]
1 t ∈ (1/2,1]

and let µ be a measure on [0,1]2 supported on the graph
Ω = {(t , f (t)) : t ∈ [0,1]} of f .

� The support Ω ⊂ R2 of µ has an empty interior as dµ(x , t)
is singular w.r.t. Lebesgue measure on R2.

Therefore we instead use µ+ ελ where λ is the Lebesgue
measure on [0,1]2 and ε > 0 is very small.
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Suppose that we only know the moments (zi,j)i,j≤2d , up to order
2d , of µ.

From the moments:
- z = (zi,j)i+j≤2d , up to order 2d , and
- λ = (λi,j)i+j≤2d up to order 2d of the Lebesgue measure on
[0,1]2, and for ε > 0 small (and fixed),

� form the moment matrix Md(z + ελ).
� Compute the Christoffel polynomial Qd(x , t).

For arbitrary t ∈ [0,1], let:

hd(t) := x∗ = arg min
x∈[0,1]

Qd(x , t).

� As x 7→ Qd(x , t) is a UNIVARIATE polynomial, x∗ can be
obtained efficiently.
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In black (left) the approximation with moments of order 2 and in
black (right) the approximation with moments of order 4.

� Observe the absence of any Gibbs phenomenon ...
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For the Burgers equation

Let µ be our unknown measure supported on the graph
Ω = {(f (x , t), x , t) : (x , t) ∈ S } of the entropy solution of the
Burgers equation. Suppose that we only know the moments
(zi,j,k )i,j,k≤2d , up to order 2d , of µ.

� Recall that in practice, (zi,j,k ) is an optimal solution of the
step-d semidefinite relaxation associated with the Burgers
equation.
� Ω ⊂ R3 has an empty interior as dµ(y , x , t) is singular w.r.t.
Lebesgue measure on R3.

Therefore we instead use µ+ ελ where λ is the Lebesgue
measure on [0,R]× [0,M]× [0,1]︸ ︷︷ ︸

S

and ε > 0 is very small. (For

the Burgers equation, R and M are determined from bounds on
the boundary condition y0(x ,0).)
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Recovery strategy

From the moments:
- z = (zi,j,k )i+j+k≤2d , up to order 2d , and
- λ = (λi,j,k )i+j+k≤2d up to order 2d of the Lebesgue measure
on [0,R]× [0,M]× [0,1],

and for ε > 0 small (and fixed),

� form the moment matrix Md(z + ελ).
� Compute the Christoffel polynomial Qd(y , x , t).

For arbitrary (x , t) ∈ [0,M]× [0,1], let:

hd(x , t) := y∗ = arg min
y∈[0,R]

Qd(y , x , t).

� As y 7→ Qd(y , x , t) is a UNIVARIATE polynomial, y∗ is
obtained exactly by solving a single SDP.
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Convergence guarantees

Under some relatively weak conditions on (x , t) 7→ f (x , t):

� hd → f in L1([0,M]× [0,1]).

� hd(x , t) → f (x , t) for almost all (x , t) ∈ [0,M]× [0,1].

Importantly:

� the APPROXIMANT fd belongs to the class of
semi-algebraic functions, as opposed to standard
approximation schemes where fd is a polynomial.

� provides a RATIONALE why the GIBBS’ phenomenon
disappears in our numerical experiments.
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Ex: The Burgers equation

We consider two initial conditions: One yields a solution f (x , t)
with a discontinuity (shock) and the other yields a continuous
solution (rarefaction).

� With moments up to order 2d = 12, the moments z match
those of the measure µ supported on the graph of f (with at
least 4 digits of precision). Then after discretizing [0,M]× [0,1]
and computing hd(x , t) on this grid, one obtains the two
approximations (with almost no Gibbs phenomenon):
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Examples from Eckhoff
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Examples from Eckhoff continued
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More details in :
S. Marx, T. Weisser, D. Henrion and J.B. Lass (2018). A
moment approach for entropy solutions to nonlinear hyperbolic
PDEs. Math. Control & Related Fields, 2019

S. Marx, E. Pauwels, T. Weisser, D. Henrion and J.B. Lass
(2018). Tractable semi-algebraic approximation using
Christoffel-Darboux kernel. arXiv:1807.02306
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