Sums of Squares and Quadratic Persistence

Gregory G. Smith

27 May 2019

MOTIVATION: A homogeneous polynomial $f \in S := \mathbb{R}[x_0, x_1, \dots, x_n]$ is a sum of squares if there exists a positive-semidefinite matrix A such that ch that $f = \begin{bmatrix} x_0^j & x_0^j x_1 & \dots & x_n^j \end{bmatrix} A \begin{bmatrix} x_0^j \\ x_0^j x_1 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}.$ To reduce the search space, replace A by

B B^T where B is a $\binom{n+j}{j} \times r$ -matrix and r is the minimal rank of a matrix representation.

PROBLEM: Need an *a priori* bound on r.

Let $X \subseteq \mathbb{P}^n$ be an irreducible real subvariety whose real points $X(\mathbb{R})$ are Zariski dense and let $R \coloneqq S/I$ be its \mathbb{Z} -graded coordinate ring.

A homogeneous element $f \in R_2$ is a **sum of squares** if $f = h_0^2 + h_1^2 + \dots + h_{r-1}^2$ for some $h_0, h_1, \dots, h_{r-1} \in R_1$. These elements form a convex cone Σ_2 .

For all $X \subseteq \mathbb{P}^n$, py(X) is the smallest $r \in \mathbb{N}$ such that each $f \in \Sigma_2$ is a sum of r squares.

QUESTION: Can we **effectively** bound py(X)?

Syzygetic Invariants

HILBERT (1890): There exists an exact sequence of \mathbb{Z} -graded S-modules $0 \leftarrow R \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \leftarrow 0$ where $F_i := \bigoplus_{i \in \mathbb{N}} S(-j)^{\beta_{i,j}}$ for all $0 \le i \le n$. The **Betti table** of X is the matrix whose (i, j)-entry is $\beta_{j, i+j}$. It has the form $i\sqrt{j}$ 0 1 2 \cdots a(X) a(X)+1 \cdots $\ell(X)$ $\ell(X)+1$ \cdots

0		0	0	•••	0	0	•••	0	0	•••
1	0	*	*		*	*		*	0	
2	0	0	0		0	*		*	*	

Upper Bounds

 $a(X) \coloneqq \max\{j \colon \operatorname{Tor}_{k}^{S}(R, \mathbb{R})_{2+k} = 0 \text{ for all } k \leq j\}.$

- **THEOREM** (Blekherman–Sinn–Smith–Velasco, 2019): For all $X \subseteq \mathbb{P}^n$, we have:
- $\binom{\operatorname{py}(X)+1}{2}$ < dim (R_2) .
- $py(X) \leq n+1-\min\{a(X), \operatorname{codim}(X)\}.$
- py(X) is at most one more than the dimension of any variety of minimal degree containing X.

Quadratic Persistence

For all $\Gamma \subset X$ with $s := |\Gamma|$, let $\pi_{\Gamma} : \mathbb{P}^{n} \to \mathbb{P}^{n-s}$ be the linear projection away from Span(Γ).

DEFINITION: For all $X \subset \mathbb{P}^n$, qp(X) is the smallest $s \in \mathbb{N}$ such that there exists $\Gamma \subset X$ with $s := |\Gamma|$ and the ideal of $\pi_{\Gamma}(X) \subseteq \mathbb{P}^{n-s}$ contains no quadratic polynomials.

THEOREM: We have $\ell(X) \leq \operatorname{qp}(X) \leq \operatorname{codim}(X)$ where $\ell(X) \coloneqq \max\{j : \operatorname{Tor}_j^S(R, \mathbb{R})_{1+j} \neq 0\}.$

Lower Bound

THEOREM: $py(X) \ge n+1-qp(X) \ge 1+dim(X)$.

COROLLARIES:

- $qp(X) = codim(X) \Leftrightarrow py(X) = 1 + dim(X)$ $\Leftrightarrow deg(X) = 1 + codim(X).$
- If X is arithmetically Cohen–Macaulay, then $qp(X) = codim(X) - 1 \Leftrightarrow py(X) = 2 + dim(X)$ $\Leftrightarrow deg(X) = 2 + codim(X)$ or X is a divisor in a variety of minimal degree.