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Challenges in Modern Applications

In modern applications in business, science and engineering, statistical models
usually have a large number of parameters (high-dimensional models).
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Regularization
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Penalized Likelihood

Penalized Likelihood Framework

The penalized likelihood framework has the following form:

6 € argmin{—logp(Data |©)+ Qx\(O) }

it BEQ
stimate Loss function Penalty function
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Penalty Functions

o Lo penalty (aka subset selection) : ideal choice but hard to compute.
o L; penalty (aka Lasso)[Tibshirani, 1996]: easy to compute, but biased.
o SCAD [Fan and Li, 2001], MCP [Zhang, 2010]: unbiased, but non-convex.
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Issues with Non-convex Regularization

o Multiple local solutions = computational and theoretical challenges.
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A convex objective function A non-convex objective function

Image Source: www.frontiersin.org
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Research in Non-convex Regularization

o [Fan et al., 2014, Wang et al., 2014] studied estimation accuracy of
solutions returned by specific algorithms, such as local linear
approximation (LLA) algorithm [Zou and Li, 2008].

o [Loh and Wainwright, 2015, Loh and Wainwright, 2017] studied statistical
properties of all local solutions satisfying ||O|1 < R.
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The Bayesian Approach

In the Bayesian framework, we have a generative model for both data and
parameter:

Prior : m(©)
Likelihood : P(Data|®©)

where the prior 7(©) plays the role of a penalty function. In fact,

Penalty = — log Prior
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Connection between Bayesian and Penalized Likelihood

o The MAP estimate of O is the value that maximizes 7(© | Data). Recall
P(Data | ©) x 7(©)

| P(Data | ©) x (©)d©

x P(Data | ©) x 7(0)

m(© | Data) =

o So finding MAP is equivalent to minimizing

—log P(Data | ©) + [ — log 71'(@)],
—_——
Bayesian Penalty

that is, Prior = exp(—Qx(©)).
o Lasso — exp(—Alf|]) = MAP of Double Exponential Prior.
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Sparsity Inducing Priors

The priors used in the Bayesian approach can broadly be classified as':

o A single continuous shrinkage prior, such as the Double Exponential prior
[Park and Casella, 2008] and the Horseshoe prior [Carvalho et al., 2009];

o Two-group spike-and-slab prior, such as the spike-and-slab Normal prior
[George and McCulloch, 1993, Rockova and George, 2014] and
spike-and-slab Lasso prior [Rockova and George, 2016b].

There is a lack of unified framework studying the theoretical properties of the
aforementioned Bayesian regularization in a general setting.

'Here we focus on continuous priors so priors involving point masses
are not not discussed.
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Outline

o We consider a general class of prior distributions that are scale mixtures of
Laplace distributions which includes specific cases of both continuous
shrinkage priors and spike-and-slab priors.

o We study the maximum a posteriori (MAP) estimator to obtain insights
about the shrinkage corresponding to these priors.

o We show that the regularization induced by these priors is concave (and
non-convex) and yet under certain conditions, the MAP estimator is
unique and has an optimal rate of convergence in o, norm.

o Although the proposed Bayesian regularization induces a family of
non-convex penalty functions, the theoretical results from
[Loh and Wainwright, 2017] are not applicable to our study.

In addition, we do not require the beta-min condition which is required for
the estimation accuracy result in [Loh and Wainwright, 2017].
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Scale Mixture of Laplace Distributions

(0) = /O % exp { — |0]/v}dF (v)

{ 0|v~LP(-|v)
<
v~ F

where F is a general (discrete or continuous) distribution function on the
positive line.
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Examples

o Spike-and-slab Lasso [Rockova and George, 2016b,
Rockova and George, 2016a, Deshpande et al., 2017, Gan et al., 2018]

0 1-— 0
~tog 5L exp { - u}+7nexp{ _ u} ,
2v1 V1 2v9 Vo
when F'(v) is a discrete distribution with probability mass 1 on v1 and

(1 —mn) on vo.

o Double Pareto [Armagan et al., 2013]

log (1—1—@) =alog (1+ |€‘>7
o

o

when F' is an inverse Gamma distribution.
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Examples (cont.)

o Log-shift penalty (LSP) [Candes et al., 2008]

alog (1 + @)
o

The marginal prior distribution 7(6) is a double Pareto distribution used
by [Armagan et al., 2013].

o Smooth integration of counting and absolute deviation (SICA)
[Lv and Fan, 2009]

Lt Dlol _, 1o

= I(6#0
a+ |6 a+ |6] 670+

0
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Bayesian Regularization Function

The corresponding Bayesian regularization function is given by

p(0) = —logm(0) = —log (/ LP(@ | v)dF(v)> .

Bayesian-Induced Penalty Lasso Penalty
0 0
theta theta

Figure: Figure on the left is from the spike-and-slab Lasso prior.
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The Bayesian regularization function is folded concave

Proposition

Let 7 = 1/v. When 60 > 0, the derivatives of the Bayesian regularization
function p(0) satisfy

{ p'(0) =E(n | 6)
#'(8) = ~Var(y | 6)

provided that the mean and variance exist.

1 B

Figure: Gradient of the Bayesian regularization function on the positive real line.
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Proof of the Proposition

Throughout assume 6 > 0 and write n = 1/v.

n —nlélgp l
26 (7]

-/
(6) = /em%ﬁww§>
-/

)

"0) = [ g dr )
Then ,
0(6) = (= log(6))' = ~(3) = B(alo)
Similarly

p’(0) = r(e)} R —E(n*|0) + E(n]0)* =
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A motivating example: the one-dimensional normal mean model

Consider the classical one-dimensional normal mean problem:

Ziy...,Zn e N(B,1) with prior w(3) = exp{—p(8)}-

To find the MAP estimator of the mean parameter /3, we minimize

n

3 (=8 +p(B),

Uniqueness

If Var(n | B) < n, the objective function is strictly convex:
d2 n, _ 2 1

|| = — = >
PTE [Q(Z B) +p(ﬁ)} n+p(B) >0,
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Sparsity & Adaptive Shrinkage

If Var(n | B) < n, the unique MAP estimator is given by

>

0, when |z| < \/n,
[\zl - p/%[ﬂsign(i), when |z| > \/n,

where A = limg_,04 p'(8) = E(1/v|3 = 0).

It leads to desirable shrinkage and selection behavior.

P'B)
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Figure: Gradient of the Bayesian regularization function on the positive real.
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A caveat in high dimensions

@ One dimensional normal model: with some conditions on the penalty
function p(B), the objective L, (8) + p(8) becomes convex.

@ However, in high-dimensions, conditions on p(/3) alone do not lead to
convexity of the objective function.

o For example, for linear regression
A 1
B = argmin o[y — XB]* + p(B),
the Hessian of the loss function L, (3) is X*X. When p > n, the matrix

X*X is at most rank n, i.e., the Hessian matrix has a null space of
dimension p — n.
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Nonconvexity and Uniqueness

In order to study the theoretical properties of our MAP estimator, we adopt the
side constraint from [Loh and Wainwright, 2017]:

IBlli<R

arg min L(B)+ Y p(Bi). (1)

Note: the upper bound R is allowed to increase with n, and the L; norm can
be replaced by other norms.

Findings
In this constrained space, for a large class of statistical models, the MAP
estimator (3 is well-behaved.
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Theoretical Results

With the following assumptions:

o Assumptions on the likelihood function?:
Restricted strong convexity
Locally Bounded Gradient
Locally Bounded Second-order Gradient
Conditions on the sampling error VL,,(3°)

o Assumptions on the Bayesian regularization function p(-)®

satisfied by linear regression, generalized linear regression, and
graphical models
bsatisfied by the aforementioned priors.

we can show that the MAP estimator f is unique and

~ lo
18 = B°lce ~ 1| 22,
n
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Computation

o (Variational) EM algorithm treating the scale parameters v;'s as latent.
[Rockova and George, 2014, Rockova and George, 2016b, Gan et al., 2018]

o Composite gradient descent algorithm
[Nesterov, 2013, Loh and Wainwright, 2017].
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Conclusion

o We propose a novel class of Bayesian regularization induced from scale
mixtures of Laplace priors that include spike-and-slab Lasso priors and the
double Pareto priors considered in the Bayesian literature, as well as the
LSP and SICA regularization considered in the penalization literature as
special cases.

o Our theoretical results proved that the proposed Bayesian regularization
enjoys optimal theoretical properties in terms of /. -estimation accuracy
for a large class of statistical models.
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Conclusion

o We propose a novel class of Bayesian regularization induced from scale
mixtures of Laplace priors that include spike-and-slab Lasso priors and the
double Pareto priors considered in the Bayesian literature, as well as the
LSP and SICA regularization considered in the penalization literature as
special cases.

o Our theoretical results proved that the proposed Bayesian regularization
enjoys optimal theoretical properties in terms of /. -estimation accuracy

for a large class of statistical models.

o Personal recommendation for Bayesian regularization: spike-and-slab
Lasso.
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