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Challenges in Modern Applications

In modern applications in business, science and engineering, statistical models
usually have a large number of parameters (high-dimensional models).

(a) Image source: Quora (b) Image source: www.john.ranola.org
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Regularization
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Penalized Likelihood

Penalized Likelihood Framework
The penalized likelihood framework has the following form:

Θ̂︸︷︷︸
Estimate

∈ arg min
β∈Ω

{
− log p(Data | Θ)︸ ︷︷ ︸

Loss function

+ Ωλ(Θ)︸ ︷︷ ︸
Penalty function

}
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Penalty Functions
L0 penalty (aka subset selection) : ideal choice but hard to compute.
L1 penalty (aka Lasso)[Tibshirani, 1996]: easy to compute, but biased.
SCAD [Fan and Li, 2001], MCP [Zhang, 2010]: unbiased, but non-convex.

Popular forms of penalty functions on θ

variable
LASO

SCAD

MCP

L0
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Issues with Non-convex Regularization

Multiple local solutions =⇒ computational and theoretical challenges.

Image Source: www.frontiersin.org
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Research in Non-convex Regularization

[Fan et al., 2014, Wang et al., 2014] studied estimation accuracy of
solutions returned by specific algorithms, such as local linear
approximation (LLA) algorithm [Zou and Li, 2008].

[Loh and Wainwright, 2015, Loh and Wainwright, 2017] studied statistical
properties of all local solutions satisfying ‖Θ‖1 ≤ R.
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The Bayesian Approach

In the Bayesian framework, we have a generative model for both data and
parameter:

Prior : π(Θ)
Likelihood : P (Data | Θ)

where the prior π(Θ) plays the role of a penalty function. In fact,

Penalty = − log Prior
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Connection between Bayesian and Penalized Likelihood

The MAP estimate of Θ is the value that maximizes π(Θ | Data). Recall

π(Θ | Data) = P (Data | Θ)× π(Θ)∫
P (Data | Θ)× π(Θ)dΘ

∝ P (Data | Θ)× π(Θ)

So finding MAP is equivalent to minimizing

− logP (Data | Θ) +
[
− log π(Θ)

]︸ ︷︷ ︸
Bayesian Penalty

,

that is, Prior = exp(−Ωλ(Θ)).
Lasso → exp(−λ|θ|)→ MAP of Double Exponential Prior.
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Sparsity Inducing Priors

The priors used in the Bayesian approach can broadly be classified as1:
A single continuous shrinkage prior, such as the Double Exponential prior
[Park and Casella, 2008] and the Horseshoe prior [Carvalho et al., 2009];

Two-group spike-and-slab prior, such as the spike-and-slab Normal prior
[George and McCulloch, 1993, Rocková and George, 2014] and
spike-and-slab Lasso prior [Rocková and George, 2016b].

There is a lack of unified framework studying the theoretical properties of the
aforementioned Bayesian regularization in a general setting.

1Here we focus on continuous priors so priors involving point masses
are not not discussed.
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Outline

We consider a general class of prior distributions that are scale mixtures of
Laplace distributions which includes specific cases of both continuous
shrinkage priors and spike-and-slab priors.

We study the maximum a posteriori (MAP) estimator to obtain insights
about the shrinkage corresponding to these priors.

We show that the regularization induced by these priors is concave (and
non-convex) and yet under certain conditions, the MAP estimator is
unique and has an optimal rate of convergence in `∞ norm.

Although the proposed Bayesian regularization induces a family of
non-convex penalty functions, the theoretical results from
[Loh and Wainwright, 2017] are not applicable to our study.

In addition, we do not require the beta-min condition which is required for
the estimation accuracy result in [Loh and Wainwright, 2017].
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Scale Mixture of Laplace Distributions

π(θ) =
∫ ∞

0

1
2v exp

{
− |θ|/v

}
dF (v)

⇐⇒
{

θ | v ∼ LP(· | v)
v ∼ F

where F is a general (discrete or continuous) distribution function on the
positive line.
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Examples

Spike-and-slab Lasso [Rocková and George, 2016b,
Rocková and George, 2016a, Deshpande et al., 2017, Gan et al., 2018]

− log
(

η

2v1
exp
{
− |θ|
v1

}
+ 1− η

2v0
exp
{
− |θ|
v0

})
,

when F (v) is a discrete distribution with probability mass η on v1 and
(1− η) on v0.

Double Pareto [Armagan et al., 2013]

log
(

1 + |θ|
σ

)a
= a log

(
1 + |θ|

σ

)
,

when F is an inverse Gamma distribution.
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Examples (cont.)

Log-shift penalty (LSP) [Candes et al., 2008]

a log
(

1 + |θ|
σ

)
The marginal prior distribution π(θ) is a double Pareto distribution used
by [Armagan et al., 2013].

Smooth integration of counting and absolute deviation (SICA)
[Lv and Fan, 2009]

b
(a+ 1)|θ|
a+ |θ| = b

|θ|
a+ |θ|I(θ 6= 0) + b

a

a+ |θ| |θ|
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Bayesian Regularization Function
The corresponding Bayesian regularization function is given by

ρ(θ) = − log π(θ) = − log
(∫

LP(θ | v)dF (v)
)
.

Figure: Figure on the left is from the spike-and-slab Lasso prior.
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The Bayesian regularization function is folded concave

Proposition
Let η = 1/v. When θ > 0, the derivatives of the Bayesian regularization
function ρ(θ) satisfy {

ρ′(θ) = E(η | θ)
ρ′′(θ) = −Var(η | θ)

provided that the mean and variance exist.

Figure: Gradient of the Bayesian regularization function on the positive real line.
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Proof of the Proposition

Throughout assume θ ≥ 0 and write η = 1/v.

π(θ) =
∫

η

2 e
−η|θ|dF ( 1

η
)

π′(θ) =
∫

(−η)η2 e
−η|θ|dF ( 1

η
)

π′′(θ) =
∫
η2 η

2 e
−η|θ|dF ( 1

η
)

Then
ρ′(θ) = (− log π(θ))′ = −π

′(θ)
π(θ) = E(η|θ).

Similarly

ρ′′(θ) =
[
π′(θ)
π(θ)

]2

− π′′(θ)
π(θ) = −E(η2|θ) + E(η|θ)2 = −Var(η|θ).
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A motivating example: the one-dimensional normal mean model

Consider the classical one-dimensional normal mean problem:

Z1, . . . , Zn
iid∼ N(β, 1) with prior π(β) = exp{−ρ(β)}.

To find the MAP estimator of the mean parameter β, we minimize
n

2 (z̄ − β)2 + ρ(β),

Uniqueness
If Var(η | β) < n, the objective function is strictly convex:

d2

dβ2

[
n

2 (z̄ − β)2 + ρ(β)
]

= n+ ρ′′(β) ≥ 0,
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Sparsity & Adaptive Shrinkage
If Var(η | β) < n, the unique MAP estimator is given by

β̂ =

{
0, when |z̄| ≤ λ/n,[
|z̄| − ρ′(β̂)

n

]
sign(z̄), when |z̄| > λ/n,

where λ = limβ→0+ ρ
′(β) = E(1/v|β = 0).

It leads to desirable shrinkage and selection behavior.

Figure: Gradient of the Bayesian regularization function on the positive real.
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A caveat in high dimensions

One dimensional normal model: with some conditions on the penalty
function ρ(β), the objective Ln(β) + ρ(β) becomes convex.

However, in high-dimensions, conditions on ρ(β) alone do not lead to
convexity of the objective function.

For example, for linear regression

β̂ = arg min 1
2‖Y −Xβ‖

2 + ρ(β),

the Hessian of the loss function Ln(β) is XtX. When p > n, the matrix
XtX is at most rank n, i.e., the Hessian matrix has a null space of
dimension p− n.
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Nonconvexity and Uniqueness

In order to study the theoretical properties of our MAP estimator, we adopt the
side constraint from [Loh and Wainwright, 2017]:

arg min
‖β‖1≤R

Ln(β) +
p∑
i=1

ρ(βi). (1)

Note: the upper bound R is allowed to increase with n, and the L1 norm can
be replaced by other norms.

Findings
In this constrained space, for a large class of statistical models, the MAP
estimator β̂ is well-behaved.
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Theoretical Results

With the following assumptions:

Assumptions on the likelihood functiona:
Restricted strong convexity
Locally Bounded Gradient
Locally Bounded Second-order Gradient
Conditions on the sampling error ∇Ln(β0)

Assumptions on the Bayesian regularization function ρ(·)b

asatisfied by linear regression, generalized linear regression, and
graphical models

bsatisfied by the aforementioned priors.

we can show that the MAP estimator β̂ is unique and

‖β̂ − β0‖∞ ∼

√
log p
n

,

and supp(β̂) ⊆ S.
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Computation

(Variational) EM algorithm treating the scale parameters vj ’s as latent.
[Rocková and George, 2014, Rocková and George, 2016b, Gan et al., 2018]

Composite gradient descent algorithm
[Nesterov, 2013, Loh and Wainwright, 2017].
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Conclusion

We propose a novel class of Bayesian regularization induced from scale
mixtures of Laplace priors that include spike-and-slab Lasso priors and the
double Pareto priors considered in the Bayesian literature, as well as the
LSP and SICA regularization considered in the penalization literature as
special cases.

Our theoretical results proved that the proposed Bayesian regularization
enjoys optimal theoretical properties in terms of `∞-estimation accuracy
for a large class of statistical models.

Personal recommendation for Bayesian regularization: spike-and-slab
Lasso.

Banff 04/09/19



24/27

Conclusion

We propose a novel class of Bayesian regularization induced from scale
mixtures of Laplace priors that include spike-and-slab Lasso priors and the
double Pareto priors considered in the Bayesian literature, as well as the
LSP and SICA regularization considered in the penalization literature as
special cases.

Our theoretical results proved that the proposed Bayesian regularization
enjoys optimal theoretical properties in terms of `∞-estimation accuracy
for a large class of statistical models.

Personal recommendation for Bayesian regularization: spike-and-slab
Lasso.

Banff 04/09/19



25/27

References I

Armagan, A., Dunson, D. B., and Lee, J. (2013).
Generalized double pareto shrinkage.
Statistica Sinica, 23(1):119.

Candes, E. J., Wakin, M. B., and Boyd, S. P. (2008).
Enhancing sparsity by reweighted `1 minimization.
Journal of Fourier analysis and applications, 14(5-6):877–905.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009).
Handling sparsity via the horseshoe.
In Artificial Intelligence and Statistics, pages 73–80.

Deshpande, S. K., Rockova, V., and George, E. I. (2017).
Simultaneous variable and covariance selection with the multivariate spike-and-slab lasso.
arXiv preprint arXiv:1708.08911.

Fan, J. and Li, R. (2001).
Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American statistical Association, 96(456):1348–1360.

Fan, J., Xue, L., and Zou, H. (2014).
Strong oracle optimality of folded concave penalized estimation.
Annals of statistics, 42(3):819.

Gan, L., Narisetty, N. N., and Liang, F. (2018).
Bayesian regularization for graphical models with unequal shrinkage.
Journal of the American Statistical Association, (just-accepted).

George, E. I. and McCulloch, R. E. (1993).
Variable selection via Gibbs sampling.
Journal of the American Statistical Association, 88:881–889.

Banff 04/09/19



26/27

References II

Loh, P.-L. and Wainwright, M. J. (2015).
Regularized m-estimators with nonconvexity: Statistical and algorithmic theory for local optima.
Journal of Machine Learning Research, 16:559–616.

Loh, P.-L. and Wainwright, M. J. (2017).
Support recovery without incoherence: A case for nonconvex regularization.
The Annals of Statistics, 45(6):2455–2482.

Lv, J. and Fan, Y. (2009).
A unified approach to model selection and sparse recovery using regularized least squares.
The Annals of Statistics, pages 3498–3528.

Nesterov, Y. (2013).
Gradient methods for minimizing composite functions.
Mathematical Programming, 140(1):125–161.

Park, T. and Casella, G. (2008).
The bayesian lasso.
Journal of the American Statistical Association, 103(482):681–686.
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