Bootstrapping Spectral Statistics in High Dimensions

Miles Lopes

UC Davis

joint work with Andrew Blandino and Alex Aue

Bootstrap for sample covariance matrices

- Suppose we have i.i.d. observations X₁,..., X_n ∈ ℝ^p, and let Σ̂ be the sample covariance matrix.
- Let $T = \varphi(\widehat{\Sigma})$ denote a statistic of interest.
- We would like to estimate $\sqrt{var(T)}$, or more generally, approximate the sampling distribution of T.
- The non-parametric bootstrap offers a general way to solve these problems.

Bootstrap for sample covariance matrices

- Suppose we have i.i.d. observations X₁,..., X_n ∈ ℝ^p, and let Σ̂ be the sample covariance matrix.
- Let $T = \varphi(\widehat{\Sigma})$ denote a statistic of interest.
- We would like to estimate $\sqrt{var(T)}$, or more generally, approximate the sampling distribution of T.
- The non-parametric bootstrap offers a general way to solve these problems.

Non-parametric bootstrap.

For: b = 1, ..., B:

- Sample *n* points X_1^*, \ldots, X_n^* with replacement from $\{X_1, \ldots, X_n\}$.
- Form the sample covariance matrix $\widehat{\Sigma}^*$ associated with X_1^*, \ldots, X_n^* .

• Compute
$$T_b^* := \varphi(\widehat{\Sigma}^*)$$
.

Return: the empirical distribution of T_1^*, \ldots, T_B^* .

In 1985, Beran and Srivastava showed that the standard bootstrap generally works for smooth functionals of $\hat{\Sigma}$ when $p \ll n$. (Exceptions arise for non-smooth functionals, or tied population eigenvalues.)

The paper Hall, Lee, Park, Paul (2009) develops a remedy for tied eigenvalues, as well as a generalization to functional data. (A good literature survey is also provided for many other papers in the $p \ll n$ setting.)

When $p \simeq n$, relatively little is known about bootstrap consistency.

Recently, El Karoui and Purdom (2016), have studied the non-parametric bootstrap, and have demonstrated some negative empirical results for $\lambda_1(\widehat{\Sigma})$. They also prove bootstrap consistency for a fixed number of the largest sample eigenvalues when Σ is effectively low-dimensional (e.g. when the true spectrum decays).

• Why do difficulties arise when p is large?

- Why do difficulties arise when p is large?
- If it were possible, we would prefer to draw an i.i.d. sample from the (unknown) distribution ℙ underlying D = {X₁,..., X_n}.

- Why do difficulties arise when p is large?
- If it were possible, we would prefer to draw an i.i.d. sample from the (unknown) distribution ℙ underlying D = {X₁,..., X_n}.
- Instead, the bootstrap uses an i.i.d. sample from the empirical distribution $\widehat{\mathbb{P}}$, which places mass 1/n at each point in \mathcal{D} .

- Why do difficulties arise when p is large?
- If it were possible, we would prefer to draw an i.i.d. sample from the (unknown) distribution ℙ underlying D = {X₁,..., X_n}.
- Instead, the bootstrap uses an i.i.d. sample from the empirical distribution $\widehat{\mathbb{P}}$, which places mass 1/n at each point in \mathcal{D} .

• Key issue: If p is large, then $\widehat{\mathbb{P}}$ is often a poor substitute for \mathbb{P} .

• The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .

- The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .
- We only need to approximate \mathbb{P} with respect to the parameters that are "relevant" for our statistic.

- The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .
- We only need to approximate \mathbb{P} with respect to the parameters that are "relevant" for our statistic.
- For certain classes of statistics *T*, we can rely on probability theory to determine the relevant parameters (i.e. invariance principles or universality results).

- The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .
- We only need to approximate \mathbb{P} with respect to the parameters that are "relevant" for our statistic.
- For certain classes of statistics *T*, we can rely on probability theory to determine the relevant parameters (i.e. invariance principles or universality results).
- Then, we can sample from a suitable parametric distribution $\mathbb{P}_{\hat{\theta}}$.

- The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .
- We only need to approximate \mathbb{P} with respect to the parameters that are "relevant" for our statistic.
- For certain classes of statistics *T*, we can rely on probability theory to determine the relevant parameters (i.e. invariance principles or universality results).
- Then, we can sample from a suitable parametric distribution $\mathbb{P}_{\widehat{\theta}}$.

(This is similar to the "parametric bootstrap", but not quite the same, since we are not trying to model all of \mathbb{P} .)

- The empirical distribution $\widehat{\mathbb{P}}$ can fail because it "tries too hard" to approximate the "entire" distribution \mathbb{P} .
- We only need to approximate \mathbb{P} with respect to the parameters that are "relevant" for our statistic.
- For certain classes of statistics *T*, we can rely on probability theory to determine the relevant parameters (i.e. invariance principles or universality results).
- Then, we can sample from a suitable parametric distribution $\mathbb{P}_{\hat{\theta}}$.

(This is similar to the "parametric bootstrap", but not quite the same, since we are not trying to model all of \mathbb{P} .)

Question: This viewpoint can be used to understand "spectral statistics" and "max statistics" in high dimensions. Perhaps there are more examples?

Let $\Sigma \in \mathbb{R}^{p \times p}$ be a population covariance matrix.

Suppose $X \in \mathbb{R}^{n \times p}$ is a data matrix with i.i.d. rows generated as

$$X_i = \Sigma^{1/2} Z_i \tag{1}$$

where the vectors $Z_1, \ldots, Z_n \in \mathbb{R}^p$ have i.i.d. entries with $\mathbb{E}[Z_{ij}] = 0$, $\mathbb{E}[Z_{ij}^2] = 1$ and $\mathbb{E}[Z_{ij}^4] = \kappa$.

Define the sample covariance matrix

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X.$$
⁽²⁾

Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are *linear spectral statstics*, which have the form

$$T = \frac{1}{\rho} \sum_{j=1}^{\rho} f(\lambda_j(\widehat{\Sigma})), \tag{3}$$

where f is a smooth function on $[0, \infty)$.

Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are *linear spectral statstics*, which have the form

$$T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma})), \tag{3}$$

where f is a smooth function on $[0, \infty)$.

Examples:

- The choice $f(x) = \log(x)$ leads to $\log(\det(\widehat{\Sigma}))$.
- The choice $f(x) = x^k$, leads to $tr(\widehat{\Sigma}^k)$ (cf. Schatten norms)
- The normal log-likelihood ratio statistic for testing sphericity is

$$p\log(\operatorname{tr}(\widehat{\Sigma})) - \log(\operatorname{det}(\widehat{\Sigma})).$$

- Raj Rao et al (2008) developed testing procedures based on tr(Σ^k).
- Various tests of sphericity are "asymptotically equivalent" to transformations of LSS (Dobriban 2016)

Background ideas for developing a new bootstrap

Bai and Silverstein established an important CLT for LSS in 2004. (See also Jonsson 1982.)

If $\mathbb{E}[Z_{ii}^4] = 3$, and $p/n \to c \in (0,\infty)$, then under "standard assumptions" we have

 $p(T - \mathbb{E}[T]) \xrightarrow{w} N(0, \sigma^2).$

Background ideas for developing a new bootstrap

Bai and Silverstein established an important CLT for LSS in 2004. (See also Jonsson 1982.)

If $\mathbb{E}[Z_{ij}^4] =$ 3, and $p/n \to c \in (0,\infty)$, then under "standard assumptions" we have

$$p(T - \mathbb{E}[T]) \xrightarrow{w} N(0, \sigma^2).$$

Note: The normalization is $\mathcal{O}(p)$ rather than $\mathcal{O}(\sqrt{n})$.

Bai and Silverstein established an important CLT for LSS in 2004. (See also Jonsson 1982.)

If $\mathbb{E}[Z_{ij}^4] = 3$, and $p/n \to c \in (0, \infty)$, then under "standard assumptions" we have $p(T - \mathbb{E}[T]) \xrightarrow{w} N(0, \sigma^2).$

Note: The normalization is $\mathcal{O}(p)$ rather than $\mathcal{O}(\sqrt{n})$.

$$\sigma^{2} = \frac{-1}{2\pi^{2}} \oiint \frac{f(z_{1})f(z_{2})}{(\underline{m}(z_{1}) - \underline{m}(z_{2}))^{2}} \frac{d}{dz_{1}} \underline{m}(z_{1}) \frac{d}{dz_{2}} \underline{m}(z_{2}) dz_{1} dz_{2}$$

Background ideas for developing a new bootstrap

$$p(T - \mathbb{E}[T]) \xrightarrow{w} N(0, \sigma^2).$$

Important property: Under the setup of Bai and Silverstein (2004), the parameter σ only depends on the limiting spectral distribution of Σ .

So, roughly speaking, this result says that under certain conditions, the laws of LSS are asymptotically governed by just the eigenvalues $\Lambda = \text{diag}(\lambda_1(\Sigma), \dots, \lambda_p(\Sigma))$, rather than the entire matrix Σ .

This is a major reduction in complexity.

A "parametric bootstrap" approach

More good news: The eigenvalues Λ can be estimated well in high dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf (2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday), among others.)

A "parametric bootstrap" approach

More good news: The eigenvalues Λ can be estimated well in high dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf (2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday), among others.)

Intuitive procedure: Generate a "new dataset" X^* that nearly matches the observed data X with respect to Λ .

Then, we just compute the statistic T^* arising from the "new data" X^* .

(This is akin to a parametric bootstrap.)

A "parametric bootstrap" approach

More good news: The eigenvalues Λ can be estimated well in high dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf (2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday), among others.)

Intuitive procedure: Generate a "new dataset" X^* that nearly matches the observed data X with respect to Λ .

Then, we just compute the statistic T^* arising from the "new data" X^* .

(This is akin to a parametric bootstrap.)

One extra detail: The kurtosis $\kappa = \mathbb{E}[Z_{ii}^4]$ matters too, but that's ok.

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Algorithm. (Spectral Bootstrap)

For b = 1, ..., B:

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Algorithm. (Spectral Bootstrap)

For b = 1, ..., B:

• Generate a random matrix $Z^* \in \mathbb{R}^{n \times p}$ whose entries Z_{ij}^* are drawn i.i.d. from Pearson $(0, 1, 0, \hat{\kappa})$. (Recall $X_i = \Sigma^{1/2} Z_i$)

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Algorithm. (Spectral Bootstrap)

For b = 1, ..., B:

• Generate a random matrix $Z^* \in \mathbb{R}^{n \times p}$ whose entries Z_{ij}^* are drawn i.i.d. from Pearson $(0, 1, 0, \hat{\kappa})$. (Recall $X_i = \Sigma^{1/2} Z_i$)

• Compute
$$\widehat{\Sigma}^* := \frac{1}{n} \widehat{\Lambda}^{1/2} (Z^{*\top} Z^*) \widehat{\Lambda}^{1/2}$$
. (Note $\widehat{\Sigma} = \frac{1}{n} \Sigma^{1/2} Z^{\top} Z \Sigma^{1/2}$)

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Algorithm. (Spectral Bootstrap)

For b = 1, ..., B:

• Generate a random matrix $Z^* \in \mathbb{R}^{n \times p}$ whose entries Z_{ij}^* are drawn i.i.d. from Pearson $(0, 1, 0, \hat{\kappa})$. (Recall $X_i = \Sigma^{1/2} Z_i$)

• Compute
$$\widehat{\Sigma}^* := \frac{1}{n} \widehat{\Lambda}^{1/2} (Z^{*\top} Z^*) \widehat{\Lambda}^{1/2}$$
. (Note $\widehat{\Sigma} = \frac{1}{n} \Sigma^{1/2} Z^{\top} Z \Sigma^{1/2}$)

• Compute the eigenvalues of $\widehat{\Sigma}^*$, and denote them by $(\lambda_1^*, \ldots, \lambda_p^*)$.

Goal. Approximate the distribution of $T = \frac{1}{p} \sum_{j=1}^{p} f(\lambda_j(\widehat{\Sigma}))$.

Before resampling, first compute estimates $\hat{\kappa}$ and $\hat{\Lambda}$.

Algorithm. (Spectral Bootstrap)

For b = 1, ..., B:

• Generate a random matrix $Z^* \in \mathbb{R}^{n \times p}$ whose entries Z_{ij}^* are drawn i.i.d. from Pearson $(0, 1, 0, \hat{\kappa})$. (Recall $X_i = \Sigma^{1/2} Z_i$)

• Compute
$$\widehat{\Sigma}^* := \frac{1}{n} \widehat{\Lambda}^{1/2} (Z^{*\top} Z^*) \widehat{\Lambda}^{1/2}$$
. (Note $\widehat{\Sigma} = \frac{1}{n} \Sigma^{1/2} Z^{\top} Z \Sigma^{1/2}$)

• Compute the eigenvalues of $\widehat{\Sigma}^*$, and denote them by $(\lambda_1^*, \ldots, \lambda_p^*)$.

• Compute the statistic,
$$T_b^* := \frac{1}{p} \sum_{j=1}^p f(\lambda_j^*)$$

Return: the empirical distribution of the values T_1^*, \ldots, T_B^* .

Generalizing to other spectral statistics

Let $\psi:\mathbb{R}^{p}\rightarrow\mathbb{R}$ be a generic (non-linear) function, and consider the statistic

$$T = \psi(\lambda_1(\widehat{\Sigma}), \ldots, \lambda_p(\widehat{\Sigma})).$$

Key point: To bootstrap T, we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

Generalizing to other spectral statistics

Let $\psi:\mathbb{R}^{p}\rightarrow\mathbb{R}$ be a generic (non-linear) function, and consider the statistic

$$T = \psi(\lambda_1(\widehat{\Sigma}), \ldots, \lambda_p(\widehat{\Sigma})).$$

Key point: To bootstrap T, we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

For b = 1, ..., B:

- . . .
- Compute the eigenvalues of $\widehat{\Sigma}^*$, and denote them by $(\lambda_1^*, \ldots, \lambda_p^*)$.
- Compute the statistic, $T_b^* := \psi(\lambda_1^*, \dots, \lambda_p^*)$

Return: the empirical distribution of the values T_1^*, \ldots, T_B^* .

Recall $\kappa = \mathbb{E}[Z_{ii}^4]$, and all row vectors satisfy $X_i = \Sigma^{1/2} Z_i$.

Our estimate of κ is based on a general formula for the variance of a quadratic form

$$\kappa = 3 + \frac{\operatorname{Var}(\|X_1\|_2^2) - 2\|\Sigma\|_F^2}{\sum_{j=1}^p \sigma_j^4}.$$

It turns out that all the quantities on the right side have ratio-consistent estimators when $p \simeq n$ under standard conditions.

Estimating kurtosis (cont.)

Recall the kurtosis formula

$$\kappa = 3 + \frac{\mathsf{Var}(\|X_1\|_2^2) - 2\|\Sigma\|_F^2}{\sum_{j=1}^p \sigma_j^4}.$$

Remarks.

• Estimating $\|\Sigma\|_F^2$ is somewhat tricky because the naive estimate is biased, and so the bias must be corrected. It is known from Bai and Saranadasa (1996) that as $(n, p) \to \infty$

$$rac{\|\widehat{\Sigma}\|_F^2-rac{1}{n}\mathsf{tr}(\widehat{\Sigma})^2}{\|\Sigma\|_F^2}=1+o_{\mathbb{P}}(1).$$

Estimating kurtosis (cont.)

Recall the kurtosis formula

$$\kappa = 3 + \frac{\mathsf{Var}(\|X_1\|_2^2) - 2\|\Sigma\|_F^2}{\sum_{j=1}^p \sigma_j^4}.$$

Remarks.

• Estimating $\|\Sigma\|_F^2$ is somewhat tricky because the naive estimate is biased, and so the bias must be corrected. It is known from Bai and Saranadasa (1996) that as $(n, p) \to \infty$

$$rac{\|\widehat{\Sigma}\|_F^2-rac{1}{n}\mathsf{tr}(\widehat{\Sigma})^2}{\|\Sigma\|_F^2}=1+o_{\mathbb{P}}(1).$$

Also, it can be shown that

$$\frac{\sum_{j=1}^{p}\left(\frac{1}{n}\sum_{i=1}^{n}X_{ij}^{2}\right)^{2}}{\sum_{j=1}^{p}\sigma_{j}^{4}}=1+o_{\mathbb{P}}(1).$$

Estimating eigenvalues

We use the QUEST method (Ledoit and Wolf, 2015).

Let H_p denote the spectral the distribution function associated with $\lambda_1(\Sigma), \ldots, \lambda_p(\Sigma)$,

$$H_p(t) := rac{1}{p} \sum_{j=1}^p \mathbb{1}\{\lambda_j(\Sigma) \leq t\}.$$

The QUEST method provides an estimate \widehat{H}_p of this distribution.

In turn, the quantiles of \widehat{H}_p can be used to estimate $\lambda_1(\Sigma), \ldots, \lambda_p(\Sigma)$.

Estimating eigenvalues

We use the $\rm QUEST$ method (Ledoit and Wolf, 2015).

Let H_p denote the spectral the distribution function associated with $\lambda_1(\Sigma), \ldots, \lambda_p(\Sigma)$,

$$H_p(t) := rac{1}{p} \sum_{j=1}^p \mathbb{1}\{\lambda_j(\Sigma) \leq t\}.$$

The QUEST method provides an estimate \widehat{H}_p of this distribution.

In turn, the quantiles of \widehat{H}_{ρ} can be used to estimate $\lambda_1(\Sigma), \ldots, \lambda_{\rho}(\Sigma)$.

Consistency. If there is a limiting population distribution H such that

$$H_p \xrightarrow{w} H,$$

then the QUEST estimator is consistent in the sense that (under standard assumptions)

$$\widehat{H}_p \xrightarrow{w} H$$
 almost surely.

Estimating eigenvalues

We use the $\rm QUEST$ method (Ledoit and Wolf, 2015).

Let H_p denote the spectral the distribution function associated with $\lambda_1(\Sigma), \ldots, \lambda_p(\Sigma)$,

$$H_p(t) := rac{1}{p} \sum_{j=1}^p \mathbb{1}\{\lambda_j(\Sigma) \leq t\}.$$

The QUEST method provides an estimate \widehat{H}_p of this distribution.

In turn, the quantiles of \widehat{H}_{ρ} can be used to estimate $\lambda_1(\Sigma), \ldots, \lambda_{\rho}(\Sigma)$.

Consistency. If there is a limiting population distribution H such that

$$H_{P} \xrightarrow{w} H,$$

then the QUEST estimator is consistent in the sense that (under standard assumptions)

$$\widehat{H}_p \xrightarrow{w} H$$
 almost surely.

The QUEST method also performs well in practice.

Main assumptions for bootstrap consistency.

•
$$p/n \rightarrow c \in (0,\infty)$$

- $\lambda_p(\Sigma)$ and $\lambda_1(\Sigma)$ bounded away from 0 and ∞
- Finite 8th moment: $\mathbb{E}[Z_{11}^8] < \infty$.
- $H_p \xrightarrow{w} H$
- Asymptotic "regularity" of population eigenvectors (more later)

Main result: consistency of spectral bootstrap

Let d_{LP} be the Lévy-Prohorov metric on distributions.

Note: Convergence in d_{LP} is equivalent to weak convergence.

Theorem 1 (LBA 2019, consistency of spectral bootstrap)

Under the stated assumptions, as $(n, p) \rightarrow \infty$,

$$d_{LP}\Big(\mathcal{L}\big(p(T^*-\mathbb{E}^*[T^*])|X\big),\,\mathcal{L}\big(p(T-\mathbb{E}[T])\big)\Big) o 0 \quad \text{in} \quad \mathbb{P}_X\text{-probability}.$$

Main result: consistency of spectral bootstrap

Let d_{LP} be the Lévy-Prohorov metric on distributions.

Note: Convergence in d_{LP} is equivalent to weak convergence.

Theorem 1 (LBA 2019, consistency of spectral bootstrap)

Under the stated assumptions, as $(n, p) \rightarrow \infty$,

$$d_{LP}\Big(\mathcal{L}\big(p(T^*-\mathbb{E}^*[T^*])|X\big),\,\mathcal{L}\big(p(T-\mathbb{E}[T])\big)\Big) o 0 \quad \text{in} \quad \mathbb{P}_X\text{-probability}.$$

Let U be the matrix of eigenvectors of Σ , and consider the non-random quantity

$$\Delta_{p}(z_{1},z_{2}) := \frac{1}{p} \sum_{j=1}^{p} \left[UD_{n}(z_{1})U^{\top} \right]_{jj} \left[UD_{n}(z_{2})U^{\top} \right]_{jj}$$

where $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, and $D_n(\cdot) \in \mathbb{C}^{p \times p}$ is a diagonal matrix that only depends on the spectrum of Σ .

Let U be the matrix of eigenvectors of Σ , and consider the non-random quantity

$$\Delta_{p}(z_{1},z_{2}) := \frac{1}{p} \sum_{j=1}^{p} \left[U D_{n}(z_{1}) U^{\top} \right]_{jj} \left[U D_{n}(z_{2}) U^{\top} \right]_{jj}$$

where $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, and $D_n(\cdot) \in \mathbb{C}^{p \times p}$ is a diagonal matrix that only depends on the spectrum of Σ .

Also define

$$\Delta'_{p}(z_{1}, z_{2}) := rac{1}{p} \sum_{j=1}^{p} \left[D_{n}(z_{1})
ight]_{jj} \left[D_{n}(z_{2})
ight]_{jj}.$$

Let U be the matrix of eigenvectors of Σ , and consider the non-random quantity

$$\Delta_{p}(z_{1},z_{2}) := \frac{1}{p} \sum_{j=1}^{p} \left[UD_{n}(z_{1})U^{\top} \right]_{jj} \left[UD_{n}(z_{2})U^{\top} \right]_{jj}$$

where $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, and $D_n(\cdot) \in \mathbb{C}^{p \times p}$ is a diagonal matrix that only depends on the spectrum of Σ .

Also define

$$\Delta'_{\rho}(z_1, z_2) := rac{1}{
ho} \sum_{j=1}^{
ho} \left[D_n(z_1) \right]_{jj} \left[D_n(z_2) \right]_{jj}.$$

Regularity of eigenvectors. We say that the eigenvectors of Σ are regular if for any $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, as $(n, p) \to \infty$

$$\Delta_{\rho}(z_1, z_2) = \Delta'_{\rho}(z_1, z_2) + o(1).$$

Let U be the matrix of eigenvectors of Σ , and consider the non-random quantity

$$\Delta_{p}(z_{1},z_{2}) := \frac{1}{p} \sum_{j=1}^{p} \left[U D_{n}(z_{1}) U^{\top} \right]_{jj} \left[U D_{n}(z_{2}) U^{\top} \right]_{jj}$$

where $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, and $D_n(\cdot) \in \mathbb{C}^{p \times p}$ is a diagonal matrix that only depends on the spectrum of Σ .

Also define

$$\Delta'_{p}(z_{1}, z_{2}) := rac{1}{p} \sum_{j=1}^{p} [D_{n}(z_{1})]_{jj} [D_{n}(z_{2})]_{jj}.$$

Regularity of eigenvectors. We say that the eigenvectors of Σ are regular if for any $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$, as $(n, p) \to \infty$

$$\Delta_{\rho}(z_1, z_2) = \Delta'_{\rho}(z_1, z_2) + o(1).$$

Note: This assumption is not needed when $\kappa = 3$. Empirical results suggest that this assumption is not too much of a concern.

Example 1. (Rank k perturbations, $k \to \infty$).

Suppose $\lambda_1(\Sigma)$ is bounded away from $\infty,$ and let Λ be otherwise unrestricted.

If U is of the form

$$U=I_{p\times p}-2\Pi,$$

where Π is any orthogonal projection matrix of rank k, and k = o(p), then the eigenvectors are regular.

This is a fairly substantial perturbation from the diagonal case.

Example 2. (Spiked covariance models).

Suppose Λ is of the form

$$\Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_k, 1, \ldots, 1)$$

where k = o(p), and $\lambda_1 = \lambda_1(\Sigma)$ is bounded away from infinity.

Then, any choice of U will be regular.

Comments on proof ideas

The proof builds on recent work by Najim and Yao (2016), which develops a CLT for LSS of the form

$$d_{\mathsf{LP}}\Big(\mathcal{L}(p(T-\mathbb{E}[T]) \ , \ \mathcal{L}(V_n)\Big) \to 0,$$

where V_n is a Gaussian rv with the appropriate mean and variance. The formulation of the CLT in terms of a metric (as opposed to a weak limit) is helpful in analyzing the bootstrap.

Comments on proof ideas

The proof builds on recent work by Najim and Yao (2016), which develops a CLT for LSS of the form

$$d_{\mathsf{LP}}\Big(\mathcal{L}(p(T-\mathbb{E}[T]) \ , \ \mathcal{L}(V_n)\Big) \to 0,$$

where V_n is a Gaussian rv with the appropriate mean and variance. The formulation of the CLT in terms of a metric (as opposed to a weak limit) is helpful in analyzing the bootstrap.

Another ingredient worth mentioning is the Helffer-Sjöstrand formula, which shows that LSS can be represented as a linear functional of the empirical Stieltjes transform. Namely, if

$$\widehat{m}_{p}(z) = \frac{1}{p} \operatorname{tr} \left((\widehat{\Sigma} - z I_{p \times p})^{-1} \right),$$

then

$$T=\phi_f(\widehat{m}_p),$$

where ϕ_f is a linear functional depending on f.

Simulations for LSS ($\kappa > 3$)

Recall $X_i = \Sigma^{1/2} Z_i$.

- Z_i generated with standardized i.i.d. t-dist (df=20)
- kurtosis $\kappa \approx 3.4$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev., 95th percentile, and 99th percentile of $p(T - \mathbb{E}[T])$.

Simulations for LSS ($\kappa > 3$)

- Z_i generated with standardized i.i.d. t-dist (df=20)
- kurtosis $\kappa \approx 3.4$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev.	, 95th percentile, and 99th	percentile of $p(T - \mathbb{E}[T])$.
---------------------------	-----------------------------	--

		f(x) = x		$f(x) = \log(x)$					
(n,p)	std. dev.	95th	99th	std. dev.	95th	99th			
(500,200)	0.16 0.17 (0.01)	0.27 0.28 (0.03)	0.36 0.39 (0.06)	1.07 1.08 (0.08)	1.82 1.76 (0.20)	2.41 2.51 (0.35)			
(500,400)	0.18 0.18 (0.02)		0.41	4.41 4.27 (0.33)	7.03 6.72 (0.70)	9.77 9.29 (1.18)			
(500,600)	0.17 0.18 (0.02)	0.29	0.40 0.43 (0.07)		-	-			

Simulations for LSS (κ < 3)

- Z_i generated with standardized i.i.d. Beta(6,6)
- kurtosis $\kappa = 2.6$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

		f(x) = x		$f(x) = \log(x)$					
(n,p)	std. dev.	95th	99th	std. dev.	99th				
(500,200)	0.14	0.23	0.33	0.93	1.51	1.92			
	0.14 (0.01)	0.23 (0.03)	0.32 (0.05)	0.93 (0.08)	1.52 (0.17)	2.15 (0.31)			
(500, 400)	0.15	0.25	0.34 0.34 (0.05)	1.65	2.64	3.64			
(000,100)	0.14 (0.01)	0.24 (0.03)	0.34 (0.05)	1.70 (0.13)	2.81 (0.31)	3.97 (0.56)			
(500,600)	0.16	0.26	0.34	_	-	_			
	0.15 (0.01)	0.25 (0.03)	0.35 (0.05)						

In principle, the proposed method can be applied to any other spectral statistic.

Below, we present some simulation results for some *non-linear* statistics:

•
$$T_{\max} := \lambda_1(\widehat{\Sigma}).$$

•
$$T_{gap} := \lambda_1(\widehat{\Sigma}) - \lambda_2(\widehat{\Sigma})$$

- Z_i generated with standardized i.i.d. Beta(6,6)
- kurtosis $\kappa = 2.6$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

- Z_i generated with standardized i.i.d. Beta(6,6)
- kurtosis $\kappa = 2.6$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

	$\underline{T_{max} - \mathbb{E}[T_{max}]}$							$\frac{[]}{[]} T_{\sf gap} - \mathbb{E}[[] T_{\sf gap}]]$					
(n,p)	std. dev. 95th 0.06 0.11 0.06 0.09 (0.01) 0.06 0.10				9	9th	std. dev.		95th		99th		
(500,200)	0.06		0.11		0.15		0.08		0.13		0.17		
(500,200)	0.06	(0.01)	0.09	(0.01)	0.13	(0.02)	0.07	(0.01)	0.11	(0.01)	0.16	(0.03)	
(500,400)	0.06		0.10		0.15		0.08		0.13		0.18	(0.03)	
(000,100)	0.06	(0.01)	0.09	(0.01)	0.13	(0.02)	0.07	(0.01)	0.11	(0.01)	0.16	(0.03)	
(500,600)	0.06		0.11		0.14		0.07		0.13		0.17		
	0.06	(0.01)	0.09	(0.01)	0.13	(0.02)	0.07	(0.01)	0.11	(0.02)	0.16	(0.03)	

Simulations for non-linear statistics ($\kappa > 3$)

- Z_i generated with standardized i.i.d. t-dist (df=20)
- kurtosis $\kappa \approx 3.4$
- decaying population spectrum is $\lambda_j = j^{-1/2}$
- population eigenvectors uniformly drawn from Haar measure

	$T_{\max} - \mathbb{E}[T_{\max}]$							$\underline{T_{gap} - \mathbb{E}[T_{gap}]}$					
(n,p)	std. dev. 95th				99th std. dev				9	5th	99th		
(500.200)	0.06		0.10		0.15		0.07		0.12		0.17		
(000,200)	0.07	(0.01)	0.11	(0.02)	0.17	(0.03)	0.08	(0.01)	0.13	(0.02)	0.19	(0.03)	
(E00 400)	0.06		0.10		0.14		0.07		0.13		0.17		
(300,400)	0.07	(0.01)	0.11	(0.02)	0.17	(0.03)	0.08	(0.01)	0.13	(0.02)	0.19	(0.03)	
(500,600)	0.06		0.11		0.16		0.08		0.13		0.18		
(500,200) (500,400) (500,600)	0.07	(0.01)	0.11	(0.02)	0.16	(0.03)	0.08	(0.01)	0.13	(0.02)	0.19	(0.03)	

Summary of bootstrap for spectral statistics

- We have identified LSS as a general class of statistics for which bootstrapping can succeed in high dimensions.
- This offers general-purpose way to approximate the laws of LSS without relying on asymptotic formulas.
- The method is akin to the parametric bootstrap using the fact that spectral statistics may depend on relatively few parameters of the full data-generating distribution.
- Numerical results are encouraging.
- The method appears to extend to some non-linear spectral statistics for which asymptotic formulas are often unavailable.
- Further work on non-linear statistics is underway

paper available at

- https://arxiv.org/abs/1709.08251
- to appear in Biometrika

Thanks to

- you for your attention
- NSF grant DMS-1613218