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Abstract
Efron—Morris estimator (Efron and Morris, 1972)
Mem(X) = X (I, - (p— g - HXTX)™)

minimax estimator of a normal mean matrix
natural extension of the James—Stein estimator

8
Singular value shrinkage prior (M. and Komaki, 2015)

nsys(M) = det(M™ M)~ (P-a=D/2

superharmonic (Argys < 0), natural generalization of the Stein prior
works well for low-rank matrices — reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)
estimate unobserved entries of a matrix by exploting low-rankness
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Efron—Morris estimator
(Efron and Morris, 1972)
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Note: singular values of matrices

@ Singular value decomposition of p x g matrix M (p > q)
M =UAVT

U:pxgq, V:igxgqg, UU=V'V=I,
A = diag(oy (M), . .., o,(M))

@ oy(M)>--->0,M)>0: singular values of M
@ rank(M) = #{i | o:(M) > 0}
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Estimation of normal mean matrix
Xij~NWM;j,1) (i=1,-,p;j=1,--,q)

@ estimate M based on X under Frobenius loss ||M — M||§
@ Efron—Morris estimator (= James—Stein estimator when g = 1)

Men(X) = X (I, - (p— g - DX"X)™")

Theorem (Efron and Morris, 1972)
When p > ¢ + 2, Mgy is minimax and dominates My g(X) = X. J

@ Stein (1974) noticed that it shrinks the singular values of the
observation to zero.

Apr 11, 2019 @ Banff 5/33



Numerical results

@ Risk functions for p =5, ¢ =3, 0y =20, 03 = 0 (rank 2)
@ black: MMLE; blue: MJS, red: MEM
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@ Mgy works well when o, is small, even if oy is large.

> Mjs works well when [|M|[% = 3 + 03 + o5 is small.
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Numerical results

@ Risk functions for p =5,¢ =3, 0, =03 =0 (rank 1)
@ black: MMLE’ blue: MJS, red: MEM
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@ Mgy has constant risk reduction as longas o, =03 =0,
because it shrinks singular values for each.

@ Therefore, it works well when M has low rank.
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Singular value shrinkage prior
(Matsuda and Komaki, 2015)



Superharmonic prior for estimation

X~ Ny, 1,)

@ estimate u based on X under the quadratic loss
@ superharmonic prior

P 2

An(u) = Z zn(ﬂ) <0

i=1 l

@ the Stein prior (p > 3) is superharmonic:

() = N>

@ Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)

Bayes estimators with superharmonic priors dominate MLE.
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Superharmonic prior for prediction
X ~ NP(#? 2)7 Y ~ NP(M,E)

@ We predict ¥ from the observation X (Z, X: known)
@ Bayesian predictive density with prior (u)

Py 1 x) = f Py | wr(u | x)du

@ Kullback-Leibler loss

POy | u)d

Dy | 10, POy | ) = f P ) log
Py | x)

@ Bayesian predictive density with the uniform prior is minimax
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Superharmonic prior for prediction

X ~N,(w2), Y ~N,(uI)

Theorem (Komaki, 2001)

When X « I, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006)

When = « 3, superharmonic priors dominate the uniform prior.

Theorem (Kobayashi and Komaki, 2008; George and
Xu, 2008)

For general £ and 3, superharmonic priors dominate the uniform
prior.
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Motivation

James-Stein estimator Stein prior
vector . 2 )
fus = (1-£=2)x () = Nl
_ Efron—Morris estimator
matrix R ., ?
Mevi = X (I, - (p— g - DXTX)™)

@ note: JS and EM are not generalized Bayes.

Apr 11, 2019 @ Banff 12/33



Singular value shrinkage prior

q
nsvs(M) = det(M T M)~P=4=D/2 = l—[ o (M) P~
i=1

@ We assume p > g + 2.

@ mgys puts more weight on matrices with smaller singular
values, so it shrinks singular values for each.

@ When g = 1, nrgys coincides with the Stein prior.

Theorem (M. and Komaki, 2015)

Tsys IS superharmonic: Arrgys < 0.

@ Therefore, the Bayes estimator and Bayesian predictive density
with respect to mgys are minimax.
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Comparison to other superharmonic priors

@ Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

@ In contrast, our priors shrink to the set of low rank matrices,
which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
Angys(M) = 0 if M has full rank. J

@ Therefore, superharmonicity of mgys is strongly concentrated in
the same way as the Laplacian of the Stein prior becomes a
Dirac delta function.
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An observation

@ James-Stein estimator
Mis =1 — X
lIx]1?

w5 (1) = [l

@ the Stein prior

@ Efron—Morris estimator

@-._(1_p_—q_1)0-.
[ 2 1

0;

@ Singular value shrinkage prior

q
nsvs(M) = 1_[ o (M)~
i=1
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Numerical results
@ Risk functions of Bayes estimators
> p = 5, q = 3
» dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior
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@ msys works well when o, is small, even if oy is large.
> Stein’s prior works well when [[M|[7. = o} + 0 + o3 is small.
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Numerical results
@ Risk functions of Bayes estimators
»p=549g=3
» dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior

Frobenius risk
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@ msys has constant risk reduction as long as 0, = 03 = 0,
because it shrinks singular values for each.
@ Therefore, it works well when M has low rank.
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Additional shrinkage

@ Efron and Morris (1976) proposed an estimator that further
dominates Mgy by additional shrinkage to the origin

q2+q—2
T T vt ws 4

MMEM = X{Iq -(p—q- D(XTX)_] (X7 X)

@ Motivated from this estimator, we propose another shrinkage
prior )
—(g"+q-2
nvsvs(M) = mgys (M) M|+

Theorem (M. and Komaki, 2017)

The prior mysys asymptotically dominates ngys in both estimation
and prediction.
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Numerical results

@ p=10,g=3,0, =03 =0 (rank 1)
@ black: my, blue: &g, green: ngys, red: mvsys
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@ Additional shrinkage improves risk when ||M||g is small.
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Admissibility results

Theorem (M. and Strawderman)

The Bayes estimator with respect to nsys is inadmissible.
The Bayes estimator with respect to mysvs is admissible.

@ Proof: use Brown’s condition
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Addition of column-wise shrinkage

q
vsvs(M) = gys(M) 1—1 M.~
=1

@ M.;: j-th column vector of M

Theorem (M. and Komaki, 2017)

The prior mysys asymptotically dominates ngys in both estimation
and prediction.

@ This prior can be used for sparse reduced rank regression.

Y=XB+E, E~N,,/(01,®X)
- B=X"X)"'X"Y ~N,,(B,(X"X)"' ®%)
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Empirical Bayes matrix completion
(Matsuda and Komaki, 2019)
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Empirical Bayes viewpoint

@ Efron—Morris estimator was derived as an empirical Bayes
estimator.

M~N,,0,1,8%) & M, ~N,0,%)
Y|M~N, (MI,®l) & Y;~NM;jl)
@ Bayes estimator (posterior mean)
M (Y) =Y (I, - (I, +2)")
@ Since Y'Y ~ W,(I, + Z, p) marginally,
1
E[(YY)']= —U,+%)"
p—q-1
— Replace (I, + )™ in M*(Y) by (p —q— D)(YTY)™!

— Efron—Morris estimator
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Matrix completion

@ Netflix problem
» matrix of movie ratings by users

movie 1 movie 2 movie 3 movie 4

user 1 4 7 ? 2
user 2 6 ? 3 8
user 3 ? 1 9 ?
user 4 4 5 ? 3

@ We want to estimate unobserved entries for recommendation.
— matrix completion

@ Many studies investigated its theory and algorithm.
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Matrix completion

@ Low-rankness of the underlying matrix is crucial in matrix
completion.
@ Existing algorithms employ low rank property.
» SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...
@ e.g. SVT algorithm
> ||All+: nuclear norm (sum of singular values)

minimize || M|,
M

subjectto |Y;j — M| < Eij, (i, j) € Q
— sparse singular values (low rank)
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EB algorithm

@ We develop an empirical Bayes (EB) algorithm for matrix
completion.
@ EB is based on the following hierarchical model
» Same with the derivation of the Efron—Morris estimator
» C: scalar or diagonal matrix (unknown)

M ~N,,0,1,8%)
Y| M ~N,, (M,I,®C)

@ Goal: estimate M from observed entries of Y
» If Y is fully observed, it reduces to the previous problem.

— EM algorithm !!
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EB algorithm

EB algorithm

@ E step: estimate (=, C) from M and Y
@ M step: estimate M from ¥ and (2, )
@ lterate until convergence

Both steps can be solved analytically.

» Sherman-Morrison-Woodbery formula
We obtain two algorithms corresponding to C is scalar or
diagonal.

EB does not require heuristic parameter tuning other than
tolerance.
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Simulation setting

@ We compare EB to existing algorithms (SVT, SOFT-IMPUTE,
OPTSPACE, Manopt)

@ data generation
U~N,,0,I,81,), V~N,,0O0,I®I)

M=UV, Y=M+E, E~N,,0,I,®R)

@ Observed entries Q c {1,---, p} x{1,--- , g}: uniformly random

@ We evaluate the accuracy by the normalized error for the
unobserved entries.

(S peaMij — Mp)H'?
(Do M)

€Iror =
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Numerical results

@ Results on simulated data

» 1000 rows, 100 columns, rank = 30, 50 % entries observed

> observation noise: homogeneous (R = 1)

error | time

EB (scalar) 0.26 | 4.33
EB (diagonal) | 0.26 | 4.26
SVT 0.48 | 1.44
SOFT-IMPUTE | 0.50 | 3.58
OPTSPACE | 0.89 | 67.74
Manopt 0.89 | 0.17

@ EB has the best accuracy.
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Numerical results: heterogeneity

@ Results on simulated data with heterogeneity

» 1000 rows, 100 columns, rank = 30, 50 % entries observed

» observation noise: heterogeneous (R = diag(0.05,0.1,--- ,5))
error | time
EB (scalar) 0.27 | 3.94
EB (diagonal) | 0.24 | 3.12
SVT 0.43 | 1.59
SOFT-IMPUTE | 0.37 | 2.10
OPTSPACE | 0.28 | 7.46
Manopt 0.28 | 0.12

@ EB (diagonal) has the best accuracy.
» accounts for heterogeneity
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Numerical results: rank

@ Performance with respect to rank

» 1000 rows, 100 columns, 50 % entries observed
» observation noise: unit variance
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@ EB has the best accuracy when r > 20.
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Application to real data

@ Mice Protein Expression dataset

» expression levels of 77 proteins measured in the cerebral cortex

of 1080 mice

» from UCI Machine Learning Repository
error | time
EB (scalar) 0.12 | 2.90
EB (diagonal) | 0.11 | 3.35
SVT 0.84 | 0.17
SOFT-IMPUTE | 0.29 | 2.14
OPTSPACE | 0.33 | 12.39
Manopt 0.64 | 0.19

@ EB attains the best accuracy.
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Summary
Efron—Morris estimator (Efron and Morris, 1972)
Mem(X) = X (I, - (p— g - HXTX)™)

minimax estimator of a normal mean matrix
natural extension of the James—Stein estimator

8
Singular value shrinkage prior (M. and Komaki, 2015)

nsys(M) = det(M™ M)~ (P-a=D/2

superharmonic (Argys < 0), natural generalization of the Stein prior
works well for low-rank matrices — reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)
estimate unobserved entries of a matrix by exploting low-rankness
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