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Abstract
Efron–Morris estimator (Efron and Morris, 1972)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
minimax estimator of a normal mean matrix
natural extension of the James–Stein estimator

↓

Singular value shrinkage prior (M. and Komaki, 2015)

πSVS(M) = det(M>M)−(p−q−1)/2

superharmonic (∆πSVS ≤ 0), natural generalization of the Stein prior
works well for low-rank matrices→ reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness
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Efron–Morris estimator
(Efron and Morris, 1972)
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Note: singular values of matrices

Singular value decomposition of p × q matrix M (p ≥ q)

M = UΛV>

U : p × q, V : q × q, U>U = V>V = Iq

Λ = diag(σ1(M), . . . , σq(M))

σ1(M) ≥ · · · ≥ σq(M) ≥ 0 : singular values of M
rank(M) = #{i | σi(M) > 0}
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Estimation of normal mean matrix

Xi j ∼ N(Mi j, 1) (i = 1, · · · , p; j = 1, · · · , q)

estimate M based on X under Frobenius loss ‖M̂ − M‖2F
Efron–Morris estimator (= James–Stein estimator when q = 1)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
Theorem (Efron and Morris, 1972)
When p ≥ q + 2, M̂EM is minimax and dominates M̂MLE(X) = X.

Stein (1974) noticed that it shrinks the singular values of the
observation to zero.

σi(M̂EM) =

(
1 −

p − q − 1
σi(X)2

)
σi(X)
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Numerical results
Risk functions for p = 5, q = 3, σ1 = 20, σ3 = 0 (rank 2)
black: M̂MLE, blue: M̂JS, red: M̂EM

M̂EM works well when σ2 is small, even if σ1 is large.
I M̂JS works well when ‖M‖2F = σ2

1 + σ2
2 + σ2

3 is small.
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Numerical results
Risk functions for p = 5, q = 3, σ2 = σ3 = 0 (rank 1)
black: M̂MLE, blue: M̂JS, red: M̂EM

M̂EM has constant risk reduction as long as σ2 = σ3 = 0,
because it shrinks singular values for each.
Therefore, it works well when M has low rank.
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Singular value shrinkage prior

(Matsuda and Komaki, 2015)
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Superharmonic prior for estimation

X ∼ Np(µ, Ip)

estimate µ based on X under the quadratic loss
superharmonic prior

∆π(µ) =

p∑
i=1

∂2

∂µ2
i

π(µ) ≤ 0

the Stein prior (p ≥ 3) is superharmonic:

π(µ) = ‖µ‖2−p

Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)
Bayes estimators with superharmonic priors dominate MLE.
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Superharmonic prior for prediction

X ∼ Np(µ,Σ), Y ∼ Np(µ, Σ̃)

We predict Y from the observation X (Σ, Σ̃: known)
Bayesian predictive density with prior π(µ)

p̂π(y | x) =

∫
p(y | µ)π(µ | x)dµ

Kullback-Leibler loss

D(p(y | µ), p̂(y | x)) =

∫
p(y | µ) log

p(y | µ)
p̂(y | x)

dy

Bayesian predictive density with the uniform prior is minimax
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Superharmonic prior for prediction

X ∼ Np(µ,Σ), Y ∼ Np(µ, Σ̃)

Theorem (Komaki, 2001)
When Σ ∝ Σ̃, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006)
When Σ ∝ Σ̃, superharmonic priors dominate the uniform prior.

Theorem (Kobayashi and Komaki, 2008; George and
Xu, 2008)
For general Σ and Σ̃, superharmonic priors dominate the uniform
prior.
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Motivation

vector
James-Stein estimator

µ̂JS =
(
1 − p−2

‖x‖2

)
x

Stein prior

πS(µ) = ‖µ‖−(p−2)

matrix
Efron–Morris estimator

M̂EM = X
(
Iq − (p − q − 1)(X>X)−1

) ?

note: JS and EM are not generalized Bayes.
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Singular value shrinkage prior

πSVS(M) = det(M>M)−(p−q−1)/2 =

q∏
i=1

σi(M)−(p−q−1)

We assume p ≥ q + 2.
πSVS puts more weight on matrices with smaller singular
values, so it shrinks singular values for each.
When q = 1, πSVS coincides with the Stein prior.

Theorem (M. and Komaki, 2015)
πSVS is superharmonic: ∆πSVS ≤ 0.

Therefore, the Bayes estimator and Bayesian predictive density
with respect to πSVS are minimax.
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Comparison to other superharmonic priors

Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

In contrast, our priors shrink to the set of low rank matrices,
which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
∆πSVS(M) = 0 if M has full rank.

Therefore, superharmonicity of πSVS is strongly concentrated in
the same way as the Laplacian of the Stein prior becomes a
Dirac delta function.
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An observation
James-Stein estimator

µ̂JS =

(
1 −

p − 2
‖x‖2

)
x

the Stein prior
πS(µ) = ‖µ‖−(p−2)

Efron–Morris estimator

σ̂i =

(
1 −

p − q − 1
σ2

i

)
σi

Singular value shrinkage prior

πSVS(M) =

q∏
i=1

σi(M)−(p−q−1)
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Numerical results
Risk functions of Bayes estimators

I p = 5, q = 3
I dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior
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πSVS works well when σ2 is small, even if σ1 is large.
I Stein’s prior works well when ‖M‖2F = σ2

1 + σ2
2 + σ2

3 is small.
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Numerical results
Risk functions of Bayes estimators

I p = 5, q = 3
I dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior
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πSVS has constant risk reduction as long as σ2 = σ3 = 0,
because it shrinks singular values for each.
Therefore, it works well when M has low rank.
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Additional shrinkage

Efron and Morris (1976) proposed an estimator that further
dominates M̂EM by additional shrinkage to the origin

M̂MEM = X
{

Iq − (p − q − 1)(X>X)−1 −
q2 + q − 2
tr(X>X)

Iq

}
Motivated from this estimator, we propose another shrinkage

prior

πMSVS(M) = πSVS(M)‖M‖−(q2+q−2)
F

Theorem (M. and Komaki, 2017)
The prior πMSVS asymptotically dominates πSVS in both estimation
and prediction.
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Numerical results

p = 10, q = 3, σ2 = σ3 = 0 (rank 1)
black: πI, blue: πS, green: πSVS, red: πMSVS

Additional shrinkage improves risk when ‖M‖F is small.
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Admissibility results

Theorem (M. and Strawderman)
The Bayes estimator with respect to πSVS is inadmissible.
The Bayes estimator with respect to πMSVS is admissible.

Proof: use Brown’s condition
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Addition of column-wise shrinkage

πMSVS(M) = πSVS(M)
q∏

j=1

‖M· j‖−q+1

M· j: j-th column vector of M

Theorem (M. and Komaki, 2017)
The prior πMSVS asymptotically dominates πSVS in both estimation
and prediction.

This prior can be used for sparse reduced rank regression.

Y = XB + E, E ∼ Nn,q(0, In ⊗ Σ)

→ B̂ = (X>X)−1X>Y ∼ Np,q(B, (X>X)−1 ⊗ Σ)
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Empirical Bayes matrix completion

(Matsuda and Komaki, 2019)
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Empirical Bayes viewpoint
Efron–Morris estimator was derived as an empirical Bayes
estimator.

M ∼ Np,q(0, Ip ⊗ Σ) ⇔ Mi· ∼ Nq(0,Σ)

Y | M ∼ Np,q(M, Ip ⊗ Iq) ⇔ Yi j ∼ N(Mi j, 1)

Bayes estimator (posterior mean)

M̂π(Y) = Y
(
Iq − (Iq + Σ)−1

)
Since Y>Y ∼ Wq(Iq + Σ, p) marginally,

E[(Y>Y)−1] =
1

p − q − 1
(Iq + Σ)−1

→ Replace (Iq + Σ)−1 in M̂π(Y) by (p − q − 1)(Y>Y)−1

→ Efron–Morris estimator
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Matrix completion

Netflix problem
I matrix of movie ratings by users

We want to estimate unobserved entries for recommendation.
→ matrix completion
Many studies investigated its theory and algorithm.
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Matrix completion

Low-rankness of the underlying matrix is crucial in matrix
completion.
Existing algorithms employ low rank property.

I SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...

e.g. SVT algorithm
I ‖A‖∗: nuclear norm (sum of singular values)

minimize
M̂

‖M̂‖∗

subject to |Yi j − M̂i j| ≤ Ei j, (i, j) ∈ Ω

→ sparse singular values (low rank)
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EB algorithm
We develop an empirical Bayes (EB) algorithm for matrix
completion.
EB is based on the following hierarchical model

I Same with the derivation of the Efron–Morris estimator
I C: scalar or diagonal matrix (unknown)

M ∼ Np,q(0, Ip ⊗ Σ)

Y | M ∼ Np,q(M, Ip ⊗C)

Goal: estimate M from observed entries of Y
I If Y is fully observed, it reduces to the previous problem.

→ EM algorithm !!
Apr 11, 2019 @ Banff 26 / 33



EB algorithm

EB algorithm
E step: estimate (Σ,C) from M̂ and Y
M step: estimate M from Y and (Σ̂, Ĉ)
Iterate until convergence

Both steps can be solved analytically.
I Sherman-Morrison-Woodbery formula

We obtain two algorithms corresponding to C is scalar or
diagonal.
EB does not require heuristic parameter tuning other than
tolerance.
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Simulation setting

We compare EB to existing algorithms (SVT, SOFT-IMPUTE,
OPTSPACE, Manopt)
data generation

U ∼ Np,r(0, Ip ⊗ Ir), V ∼ Nr,q(0, Ir ⊗ Iq)

M = UV, Y = M + E, E ∼ Np,q(0, Ip ⊗ R)

Observed entries Ω ⊂ {1, · · · , p} × {1, · · · , q}: uniformly random
We evaluate the accuracy by the normalized error for the
unobserved entries.

error :=
(
∑

(i, j)<Ω(M̂i j − Mi j)2)1/2

(
∑

(i, j)<Ω M2
i j)1/2
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Numerical results

Results on simulated data
I 1000 rows, 100 columns, rank = 30, 50 % entries observed
I observation noise: homogeneous (R = Iq)

error time

EB (scalar) 0.26 4.33

EB (diagonal) 0.26 4.26

SVT 0.48 1.44

SOFT-IMPUTE 0.50 3.58

OPTSPACE 0.89 67.74

Manopt 0.89 0.17

EB has the best accuracy.
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Numerical results: heterogeneity

Results on simulated data with heterogeneity
I 1000 rows, 100 columns, rank = 30, 50 % entries observed
I observation noise: heterogeneous (R = diag(0.05, 0.1, · · · , 5))

error time

EB (scalar) 0.27 3.94

EB (diagonal) 0.24 3.12

SVT 0.43 1.59

SOFT-IMPUTE 0.37 2.10

OPTSPACE 0.28 7.46

Manopt 0.28 0.12

EB (diagonal) has the best accuracy.
I accounts for heterogeneity
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Numerical results: rank

Performance with respect to rank
I 1000 rows, 100 columns, 50 % entries observed
I observation noise: unit variance

EB has the best accuracy when r ≥ 20.
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Application to real data

Mice Protein Expression dataset
I expression levels of 77 proteins measured in the cerebral cortex

of 1080 mice
I from UCI Machine Learning Repository

error time

EB (scalar) 0.12 2.90

EB (diagonal) 0.11 3.35

SVT 0.84 0.17

SOFT-IMPUTE 0.29 2.14

OPTSPACE 0.33 12.39

Manopt 0.64 0.19

EB attains the best accuracy.
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Summary
Efron–Morris estimator (Efron and Morris, 1972)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
minimax estimator of a normal mean matrix
natural extension of the James–Stein estimator

↓

Singular value shrinkage prior (M. and Komaki, 2015)

πSVS(M) = det(M>M)−(p−q−1)/2

superharmonic (∆πSVS ≤ 0), natural generalization of the Stein prior
works well for low-rank matrices→ reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness
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