Effective parameters of periodic electromagnetic structures from spatio-temporal Kramers-Kronig relations

Boris Gralak CNRS – Institut Fresnel Marseille

boris.gralak@fresnel.fr

Herglotz-Nevanlinna Theory Applied to Passive, Causal and Active Systems

Banff International Research Station for mathematical Innovation and Discovery

6-11 October 2019, Banff, Canada (□) (

Propagation of EM waves in periodic structures : $\varepsilon(x, y)$ (no boundaries)

modeling for all frequency and wavevector

Effective homogeneous parameter

for the propagation of EM waves

 $ightarrow arepsilon_{ ext{eff}}(\omega, \mathbf{k})$

 $\rightarrow n_{\text{eff}}(\omega, k) = \sqrt{\varepsilon_{\text{eff}}(\omega, k)}$

$$arepsilon_{ ext{eff}}(\omega,oldsymbol{k})$$

2/34

Modeling of unusal effective properties : $n_{\rm eff} < 1, \; n_{\rm eff} < 0, \; \mu_{\rm eff} \; \dots$

J. Opt. Soc. Am. A **17**, 001012 (2000) Phys. Rev. B **88**, 115110 (2013) Propagation of EM waves in periodic structures : $\varepsilon(x, y)$

(no boundaries)

Propagation of EM waves is governed by the <u>dispersion law</u> : $\omega(k)$

The dispersion law : $\omega(k)$

The effective parameter :

 $n_{\text{eff}}(\omega, k) \omega = ck$

4/34

The dispersion law : folded or developed ?

The complex frequency : $\omega \rightarrow \omega + i\eta = \omega$ The complex wavevector : $k \rightarrow k + i\xi = k$

Assumption : analyticity of the developed dispersion law

$$n_{ ext{eff}}(\omega,k)\,\omega=ck$$

All the information $n_{\text{eff}}(\omega, k)$ for (ω, k) in \bigcirc \iff All the information $n_{\text{eff}}(\omega, k)$ for all (ω, k)

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミト ミー りへで

5/34

Main ideas for the modeling of the dispersion law

6/34

- \rightarrow consider the developed dispersion law
- \rightarrow consider <u>complex</u> frequency and wavevector (ω, k)
- \rightarrow assume effective parameters $n_{\text{eff}}(\omega, k)$ analytic of (ω, k)
- \rightarrow use perturbation technique to obtain information in \bigcirc
- → use analytic continuation (Kramers-Kronig relations) to obtain $n_{\text{eff}}(\omega, k)$

A motivation

An opportunity to investigate spatial dispersion (ω, k)

- 1 Arguments supporting analyticity of $n_{\text{eff}}(\omega, \mathbf{k})$
- 2 Kramers-Kronig relations extended to (ω, k)
- 3 Perturbation technique
- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

1 Arguments supporting analyticity of $n_{\text{eff}}(\omega, \mathbf{k})$

- 2 Kramers-Kronig relations extended to (ω, k)
- 3 Perturbation technique
- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

Analytic property from causality principle

$$\boldsymbol{P}(\boldsymbol{x},t) = \int_{-\infty}^{t} ds \, \chi(\boldsymbol{x},t-s) \, \boldsymbol{E}(\boldsymbol{x},s)$$

Analytic property from time causality

 $\chi(\mathbf{x},t) = 0$ in the domain t < 0 $\overleftarrow{}^{\dagger}$

 $\varepsilon(\mathbf{x},\omega), \ \mathbf{E}(\mathbf{x},\omega), \ \mathsf{R}(\omega)... \ \text{analytic in the domain } \mathbf{Im}(\omega) > 0$

9/34

Analytic property from causality principle

$$\boldsymbol{P}(\boldsymbol{x},t) = \int_{-\infty}^{t} ds \int_{|\boldsymbol{x}-\boldsymbol{y}| \leq ct} \chi(\boldsymbol{x}-\boldsymbol{y},t-s) \boldsymbol{E}(\boldsymbol{y},s)$$

10/34

990

Analytic property from space-time causality

light cone :
$$\chi(\mathbf{x}, t) = 0$$
, $G(\mathbf{x}, t) = 0$ in the domain $t < |\mathbf{x}|/c$
 $\Leftrightarrow^{\dagger}$
 $\varepsilon(\mathbf{k}, \omega)$, $\mathbf{E}(\mathbf{x}, \mathbf{k}, \omega)$... analytic in the cone $\operatorname{Im}(\omega) - c|\operatorname{Im}(\mathbf{k})| > 0$

[†] Related to the Paley-Wiener theorem.

Time harmonic Maxwell's equations :

$$\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{x},\omega) = -i\omega\varepsilon(\boldsymbol{x},\omega)\boldsymbol{E}(\boldsymbol{x},\omega),$$

 $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{x},\omega) = i\omega\mu_0 \boldsymbol{H}(\boldsymbol{x},\omega).$

Periodicity and Bloch decomposition : $\nabla \longrightarrow \nabla + i\mathbf{k}$

$$[\boldsymbol{\nabla} + i\boldsymbol{k}] \times \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{k}, \omega) = -i\omega\varepsilon(\boldsymbol{x}, \omega)\boldsymbol{E}(\boldsymbol{x}, \boldsymbol{k}, \omega),$$

$$[\boldsymbol{\nabla} + i\boldsymbol{k}] \times \boldsymbol{E}(\boldsymbol{x}, \boldsymbol{k}, \omega) = i\omega\mu_0 \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{k}, \omega).$$

The fields $\boldsymbol{E}(\boldsymbol{x},t)$ can be expressed from the dispersion law $\omega(\boldsymbol{k})$ or $\boldsymbol{k}(\omega) : \boldsymbol{E}(\boldsymbol{x},t) = \int d\omega d\boldsymbol{k} \exp[i\boldsymbol{k}\cdot\boldsymbol{x} - i\omega t]\hat{\boldsymbol{E}}(\boldsymbol{k},\omega(\boldsymbol{k}))$

space-time causality : analytic if $Im(\omega) - c|Im(\mathbf{k})| > 0$

 $\rightarrow \omega(\mathbf{k})$ or $\mathbf{k}(\omega)$ have analytic properties^{1,2}

1. H. Knörrer and E. Trubovitz, Comment. Math. Helvetici 65, 114-149 (1990).

2. <u>http://arxiv.org/abs/1807.01658</u> (Editors V. Markel and I. Tsukerman)

- The dispersion law $\omega(\mathbf{k})$ or $\mathbf{k}(\omega)$ has the analytic property related to the space-time causality
- The effective parameters $n_{\rm eff}(\omega,k)$ are derived from the dispersion law

Assumption^{*} : $n_{\text{eff}}(\omega, \mathbf{k})$ analytic if $\text{Im}(\omega) - c|\text{Im}(\mathbf{k})| > 0$

Consequence (related to the Paley-Wiener theorem) :

$$n_{\rm eff}(\boldsymbol{\omega},\boldsymbol{k}) = \int_0^\infty dt \int_{|\boldsymbol{x}| \le ct} d\boldsymbol{x} \exp[i\boldsymbol{\omega} t - \boldsymbol{k} \cdot \boldsymbol{x}] \chi_{\rm eff}(\boldsymbol{x},t)$$

 \rightarrow True in $1D^{*\dagger}$

[†] Phys. Rev. B **88**, 165104 (2013).

- 1 Arguments supporting analyticity of $n(\omega, k)$
- 2 Kramers-Kronig relations extended to (ω, k)
- 3 Perturbation technique
- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

ω

$$\varepsilon(\omega) = \varepsilon_0 + \int_0^\infty dt \exp[i\omega t] \chi(t) , \qquad \sigma(\nu) = \frac{\operatorname{Im}[\nu \varepsilon(\nu)]}{\pi} > 0 .$$

use of causality / analyticity : $\varepsilon(\omega) - \varepsilon_0 = \widehat{\chi} = \widehat{\theta} * \widehat{\chi} = \frac{1}{2} * \widehat{\chi} ...$

"Kramers-Kronig relations" for $Im(\omega) > 0$ \rightarrow "representation of Herglotz-Nevanlinna functions"

$$arepsilon(\omega) = arepsilon_0 - \int_{\mathbb{R}} d
u \, rac{\sigma(
u)}{\omega^2 -
u^2} \, .$$

Superposition of elementary resonances[†]: $\varepsilon(\omega) = \varepsilon_0 - \frac{\Omega^2}{\omega^2 - \mu^2}$

Simple models for elementary resonances :

- \rightarrow elastically bound electron[†]
- \rightarrow coupling of EM waves with quantized atom
- \rightarrow any causal and passive system... (\square) ((\square) (\square) (\square) ((\square) (\square) (\square) ((\square) (\square) (\square) ((\square) ((\square)

$$\varepsilon(\omega, \mathbf{k}) = \varepsilon_0 + \int_0^\infty dt \int_{|\mathbf{x}| \le ct} d\mathbf{x} \exp[i\omega t - \mathbf{k} \cdot \mathbf{x}] \chi(\mathbf{x}, t),$$

ightarrow introduction of $\sigma(
u, \kappa) = rac{\mathrm{Im}[\, \nu \, arepsilon(
u, \kappa) \,]}{\pi}$ and use of causality

Different results depending on $\boldsymbol{x}, \, \boldsymbol{k} \in \mathbb{R}, \, \mathbb{R}^2, \, \mathbb{R}^3$:

$$\mathbf{1D}: \boldsymbol{\omega}[\varepsilon(\boldsymbol{\omega},\boldsymbol{k})-\varepsilon_0] = -\frac{i}{\pi c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\sigma(\nu,\kappa)}{(\boldsymbol{\omega}-\nu)^2/c^2-(\boldsymbol{k}-\kappa)^2}.$$

$$2\mathbf{D}: \boldsymbol{\omega}[\boldsymbol{\varepsilon}(\boldsymbol{\omega},\boldsymbol{k})-\boldsymbol{\varepsilon}_{0}] = \frac{1}{2\pi c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\boldsymbol{\sigma}(\nu,\kappa)}{[(\boldsymbol{\omega}-\nu)^{2}/c^{2}-(\boldsymbol{k}-\kappa)^{2}]^{3/2}}$$

$$3\mathbf{D}: \boldsymbol{\omega}[\varepsilon(\boldsymbol{\omega}, \boldsymbol{k}) - \varepsilon_0] = \frac{i}{\pi^2 c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\sigma(\nu, \kappa)}{[(\boldsymbol{\omega} - \nu)^2/c^2 - (\boldsymbol{k} - \kappa)^2]^2}.$$

"Kramers-Kronig relations" for $n_{\text{eff}}(\omega, k)$, x and $k \in \mathbb{R}$

$$\omega[n_{\text{eff}}(\omega, \mathbf{k}) - \varepsilon_0] = -\frac{i}{\pi c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\sigma(\nu, \kappa)}{(\omega - \nu)^2/c^2 - (\mathbf{k} - \kappa)^2},$$

where :

$$\sigma(\nu,\kappa) = \frac{\operatorname{Im}[\nu \, n_{\operatorname{eff}}(\nu,\kappa)]}{\pi} > 0.$$

Superposition of elementary convolutions with $\frac{1}{\omega^2/c^2-k^2}$

Simple model for elementary resonances :

- \rightarrow convolution with the free scalar EM Green's function
- \rightarrow may be not a coincidence...
- \rightarrow related to a "Herglotz-Nevanlinna representation" ?

Numerical check of the Kramers-Kronig relation in 1D $_{17/34}$

The effective index of a multilayer

+ Kramers-Kronig relations; – exact retrieval expression Phys. Rev. B 88, 165104 (2013)

- 1 Arguments supporting analyticity of $n(\omega, k)$
- 2 Kramers-Kronig relations extended to (ω, k)

3 Perturbation technique

- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

Kramers-Kronig relations for ω and k:

$$\omega[n_{\text{eff}}(\omega, \mathbf{k}) - n_0(\omega)] = -\frac{i}{\pi c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\sigma(\nu, \kappa)}{(\omega - \nu)^2/c^2 - (\mathbf{k} - \kappa)^2},$$

Small contrast (perturbation) : stop band width $\ll \omega_p(k)$

◆□▶ ◆母▶ ◆差▶ ◆差▶ = のへで

Kramers-Kronig relations for ω and k:

$$\omega[n_{\text{eff}}(\omega, \mathbf{k}) - n_0(\omega)] = -\frac{i}{\pi c} \int_{\mathbb{R}} d\nu \int_{\mathbb{R}} d\kappa \frac{\sigma(\nu, \kappa)}{(\omega - \nu)^2/c^2 - (\mathbf{k} - \kappa)^2}.$$

Small contrast and perturbation technique :

$$\sigma(\nu,\kappa) \approx \sum_{p} \delta[\nu^2 - \omega_p^2(\kappa)] \Omega_p^2(\kappa) \,.$$

Resulting expression :

$$n_{\rm eff}(\omega, k) - n_0(\omega) \approx -\sum_p \frac{\Omega_p^2(k)}{\omega^2 - \omega_p^2(k)}.$$

- 1 Arguments supporting analyticity of $n(\omega, k)$
- 2 New Kramers-Kronig relations extended to (ω, k)
- 3 Perturbation technique
- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

Approached expression :

$$n_{\mathrm{eff}}(\omega, \mathbf{k}) - n_0(\omega) pprox - \sum_p \frac{\Omega_p^2(\mathbf{k})}{\omega^2 - \omega_p^2(\mathbf{k})}$$

 $\mathbf{with}:$

$$n_{0}(\omega) = \left[\int_{0}^{a} dx \frac{\varepsilon_{0}}{\varepsilon(x,\omega)}\right]^{-1/2}$$

$$\omega_{p}^{2}(k) = \frac{c^{2}}{n_{0}^{2}(\omega_{p}(k))} \left[p^{2}\pi^{2}/a^{2} + k^{2}\right]$$

$$\Omega_{p}^{2}(k) = \frac{c^{2}}{n_{0}^{2}(\omega_{p}(k))} \frac{\left[p^{2}\pi^{2}/a^{2} + k^{2}\right]^{2}}{p^{2}\pi^{2}/a^{2}} \alpha_{p}(\omega_{p}(k)) \alpha_{-p}(\omega_{p}(k))$$

$$\alpha_{p}(\omega) = n_{0}^{2}(\omega) \left[\int_{0}^{a} dx \frac{\varepsilon_{0}}{\varepsilon(x,\omega)} \exp[i2p\pi x/a]\right]$$

Approached expression :
$$n_{\text{eff}}(\omega, k) - n_0(\omega) \approx -\sum_p \frac{\Omega_p^2(k)}{\omega^2 - \omega_p^2(k)}$$

Case without dispersion : $\omega_p^2(\mathbf{k}) = [p^2 \pi^2 / a^2 + k^2]c^2 / n_0^2 \longrightarrow$ $n_{\text{eff}}(\omega, \mathbf{k})$ as a sum of hydrodynamical model resonances : $\varepsilon = \varepsilon_0 - \frac{\Omega^2}{\omega^2 - \omega_0^2 - v^2 k^2}$

+ model ; – exact retrieval expression Y. Liu, PhD thesis, Aix-Marseille university (2013)

◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ 三 の � @

- 1 Arguments supporting analyticity of $n(\omega, k)$
- 2 New Kramers-Kronig relations extended to (ω, k)
- 3 Perturbation technique
- 4 Application to the 1D case
- 5 The imaginary part of the effective permeability

26/34

Kramers-Kronig relations for $Im(\omega) > 0$ \rightarrow representation of Herglotz-Nevanlinna functions

$$\mu(\omega)=\mu_0-rac{1}{\pi}\,\int_{\mathbb{R}}d
u\,rac{\mathrm{Im}\left[
u\mu(
u)
ight]}{\omega^2-
u^2}\,.$$

At the nul frequency (static) :

$$\mu(0) = \mu_0 + \frac{2}{\pi} \int_0^\infty d\nu \, \frac{\text{Im}[\nu\mu(\nu)]}{\nu^2}$$

Paramagnetic media: $\mu(\mathbf{0}) - \mu_{\mathbf{0}} = \frac{2}{\pi} \int_{0}^{\infty} d\nu \frac{\operatorname{Im}[\nu\mu(\nu)]}{\nu^{2}} > 0.$

Diamagnetic media: $\mu(\mathbf{0}) - \mu_{\mathbf{0}} = \frac{2}{\pi} \int_{0}^{\infty} d\nu \, \frac{\mathrm{Im}[\nu \mu(\nu)]}{\nu^{2}} < 0.$

Imaginary part of the permeability : positive or negative?

28/34

Questions on the sign of the imaginary part of $\omega \mu_{\text{eff}}(\omega)^{\dagger}$

PHYSICAL REVIEW E 78, 026608 (2008)

Can the imaginary part of permeability be negative?

PHYSICAL REVIEW B 83, 081102(R) (2011)

Restoring the physical meaning of metamaterial constitutive parameters

PHYSICAL REVIEW B 83, 165119 (2011)

Examining the validity of Kramers-Kronig relations for the magnetic permeability

\rightarrow test with the effective parameters of a 1D system

[†]The Kramers-Kronig relations are modified for $\mu(\omega)$ in the book by Landau and Lifshitz, *Electrodynamics of continuous media*.

Maxwell's equations in magneto-dielectric media

$$-\boldsymbol{\nabla} \times \frac{1}{\omega \mu(\omega)} \boldsymbol{\nabla} \times \boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x}) + \omega \,\varepsilon(\omega) \boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x}) = 0 \qquad (\text{source free})$$

 \rightarrow can be written

$$-\boldsymbol{\nabla}\times\frac{1}{\omega\mu_0}\boldsymbol{\nabla}\times\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})-\boldsymbol{\nabla}\times\left[\frac{1}{\omega\mu(\omega)}-\frac{1}{\omega\mu_0}\right]\boldsymbol{\nabla}\times\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})+\omega\,\varepsilon(\omega)\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})=0$$

and, in a homogeneous medium, $\nabla \times \longleftrightarrow i\mathbf{k} \times$

$$-\boldsymbol{\nabla}\times\frac{1}{\omega\mu_0}\boldsymbol{\nabla}\times\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})+\boldsymbol{\boldsymbol{k}}\times\left[\frac{1}{\omega\mu(\omega)}-\frac{1}{\omega\mu_0}\right]\boldsymbol{\boldsymbol{k}}\times\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})+\omega\,\varepsilon(\omega)\boldsymbol{\boldsymbol{\mathcal{E}}}(\boldsymbol{x})=0\,.$$

Permittivity $\underline{\varepsilon}(\omega, \mathbf{k})$ with spatial dispersion (ω, \mathbf{k}) defines permeability $\mu(\omega)$:

$$\omega_{\underline{\varepsilon}_{eff}}(\omega, \mathbf{k}) = \omega \varepsilon_{eff}(\omega) + \mathbf{k} \times \left[\frac{1}{\omega \mu_{eff}(\omega)} - \frac{1}{\omega \mu_0}\right] \mathbf{k} \times \mathbf{k}$$

Effective parameters of a multilayered stack

The effective permittivity with spatial dispersion (ω, \mathbf{k}) is

$$\omega_{ ilde{arepsilon}_{ ext{eff}}}(\omega,oldsymbol{k})=\omegaarepsilon_{ ext{eff}}(\omega,oldsymbol{k}_{\parallel})+oldsymbol{k} imes \left[rac{1}{\omega\mu_{ ext{eff}}(\omega,oldsymbol{k}_{\parallel})}-rac{1}{\omega\mu_{ ext{0}}}
ight]oldsymbol{k} imes$$

where, for $\xi_{\text{eff}}(\omega, k_{\parallel}) = \varepsilon_{\text{eff}}(\omega, k_{\parallel}), \ \mu_{\text{eff}}(\omega, k_{\parallel})$:

$$\xi_{\text{eff}}(\omega, k_{\parallel}) = \begin{bmatrix} \xi_{\parallel}(\omega, k_{\parallel}) & 0 & 0 \\ 0 & \xi_{\parallel}(\omega, k_{\parallel}) & 0 \\ 0 & 0 & \xi_{\perp}(\omega, k_{\parallel}) \end{bmatrix}.$$

Four effective parameters :

 $\varepsilon_{\parallel}(\omega, k_{\parallel}), \quad \varepsilon_{\perp}(\omega, k_{\parallel}), \quad \mu_{\parallel}(\omega, k_{\parallel}), \quad \mu_{\perp}(\omega, k_{\parallel})$ Four parameters in the transfer matrices *s* and *p*:

$$\begin{bmatrix} \cos \left[k_{\perp}^{s,p}(\omega, k_{\parallel})\right] & \left[Z^{s,p}(\omega, k_{\parallel})\right]^{-1} \sin \left[k_{\perp}^{s,p}(\omega, k_{\parallel})\right] \\ -Z^{s,p}(\omega, k_{\parallel}) \sin \left[k_{\perp}^{s,p}(\omega, k_{\parallel})\right] & \cos \left[k_{\perp}^{s,p}(\omega, k_{\parallel})\right] \end{bmatrix}$$

Exact retrieval method (no approximation) :

$$\begin{split} \omega \varepsilon_{\parallel}(\omega, k_{\parallel}) &= k_{\perp}^{p}(\omega, k_{\parallel})/Z^{p}(\omega, k_{\parallel}) \\ \omega \mu_{\parallel}(\omega, k_{\parallel}) &= k_{\perp}^{s}(\omega, k_{\parallel})Z^{s}(\omega, k_{\parallel}) \\ \frac{1}{\omega \varepsilon_{\perp}(\omega, k_{\parallel})} &= \frac{k_{\perp}^{p}(\omega, k_{\parallel})Z^{p}(\omega, k_{\parallel}) - k_{\perp}^{s}(\omega, k_{\parallel})Z^{s}(\omega, k_{\parallel})}{k_{\parallel}^{2}} \\ \frac{1}{\omega \mu_{\perp}(\omega, k_{\parallel})} &= \frac{k_{\perp}^{s}(\omega, k_{\parallel})/Z^{s}(\omega, k_{\parallel}) - k_{\perp}^{p}(\omega, k_{\parallel})/Z^{p}(\omega, k_{\parallel})}{k_{\parallel}^{2}} \end{split}$$

In the domain $\operatorname{Im}(\omega) - c |\operatorname{Im}(k_{\parallel})| > 0$ The four effective parameters are (ω, k_{\parallel}) -analytic[†] : $rac{1}{\omega arepsilon_{\perp}(\omega, k_{\parallel})}, rac{1}{\omega \mu_{\perp}(\omega, k_{\parallel})}.$ $\omega \varepsilon_{\parallel}(\omega, \mathbf{k}_{\parallel}), \qquad \omega \mu_{\parallel}(\omega, \mathbf{k}_{\parallel}),$ The absence of Bloch modes^{\ddagger} implies : $\operatorname{Im} k_{\perp}^{p}(\omega, \underline{k}_{\parallel}) > 0$ $\operatorname{Im} k^{s}_{\perp}(\omega, \underline{k}_{\parallel}) > 0$ $\operatorname{Im}[\omega \varepsilon(\omega, x_{\perp})] - c |\operatorname{Im}(k_{\parallel})| > 0$ of the permittivity implies[†]: $\operatorname{Im}[\omega \varepsilon_{\parallel}(\omega, k_{\parallel})] > 0$, $\operatorname{Im}[\omega \varepsilon_{\parallel}(\omega, k_{\parallel})] > 0$, $\operatorname{Re}Z^{s}(\omega, k_{\parallel}) > 0$, $\operatorname{Re}Z^{p}(\boldsymbol{\omega}, \boldsymbol{k}_{\parallel}) > 0.$ \rightarrow No condition on $\operatorname{Im}[\omega\mu_{\parallel}(\omega, k_{\parallel})]$ and $\operatorname{Im}[\omega\mu_{\perp}(\omega, k_{\parallel})]$.

[†] Phys. Rev. B **88**, 165104 (2013) [‡] J. Phys. A : Math. Gen. **33**, 006223 (2000)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Let $\operatorname{Im}(\omega) = \eta > 0$ be fixed : from the (ω, k_{\parallel}) -analyticity

$$\int_{\mathbb{R}+i\eta} d\omega \left[rac{1}{\omega \mu_{ ext{eff}}(oldsymbol{\omega},oldsymbol{k}_{\parallel})} - rac{1}{\omega \mu_0}
ight] = 0\,.$$

Taking the limit $\eta \downarrow 0$

$$\mathcal{PV} \int_{\mathbb{R}} d\omega \left[\frac{1}{\omega \mu_{\text{eff}}(\omega, k_{\parallel})} - \frac{1}{\omega \mu_{0}} \right] = i\pi \left[\frac{1}{\mu_{\text{eff}}(0, k_{\parallel})} - \frac{1}{\mu_{0}} \right].$$

Since $\mu_{\text{eff}}(0, k_{\parallel}) = \mu_{0}$:

$$\mathrm{Im}\int_{0}^{\infty}d\omega\left[rac{1}{\omega\mu_{\mathrm{eff}}(\omega,\,k_{\parallel})}-rac{1}{\omega\mu_{0}}
ight]=0\implies\int_{0}^{\infty}d\omegarac{\mathrm{Im}[\omega\mu_{\mathrm{eff}}(\omega,\,k_{\parallel})]}{\left|\omega\mu_{\mathrm{eff}}(\omega,\,k_{\parallel})
ight|^{2}}=0\,.$$

 $\omega \mu_{ ext{eff}}(\omega, \mathbf{k}_{\parallel}) ext{ is not a Herglotz function} \longrightarrow \omega_{\underline{\varepsilon}_{ ext{eff}}}(\omega, \mathbf{k}_{\parallel}) ext{ is } !$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

And the (original) system is passive...

The system is passive : $\operatorname{Im}[\omega \varepsilon(\omega, x_{\perp})] \ge \operatorname{Im}(\omega \varepsilon_0) \ge 0$

The imaginary part of $\omega_{\in_{eff}}(\omega, \mathbf{k})$ is positive :

$$\mathrm{Im}\left[\omega\varepsilon_{\mathrm{eff}}(\omega,k_{\parallel})+\boldsymbol{k}\times\left(\frac{1}{\omega\mu_{\mathrm{eff}}(\omega,k_{\parallel})}-\frac{1}{\omega\mu_{0}}\right)\boldsymbol{k}\times\right]\geq\mathrm{Im}(\omega\varepsilon_{0})\geq0\,,$$

while $\operatorname{Im}[\omega \mu_{\text{eff}}(\omega, k_{\parallel})]$ takes both positive and negative values since

$$\int_{0}^{\infty} d\omega \frac{\mathrm{Im}[\omega\mu_{\mathrm{eff}}(\omega, k_{\parallel})]}{|\omega\mu_{\mathrm{eff}}(\omega, k_{\parallel})|^{2}} = 0.$$

Yan Liu, Xidian university (Xi'an, China) Sébastien Guenneau and Maxence Cassier, Institut Fresnel Marseille

Thank you

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○