Introduction	Motivation 00	Background O	Methodology 00000	Analysis	Conclusions ○

Robust Estimation of Conditional Risk Measures for Crude Oil and Natural Gas Futures Prices in the Presence of Outliers

Joe Wayne Byers Department of Finance Spears School of Business Oklahoma State University Stillwater, OK 74078 joe.w.byers@okstate.edu Ivilina Popova Department of Finance & Economics McCoy College of Business Texas State University San Marcos, TX 78666 ip12@txstate.edu Betty Simkins Department of Finance Spears School of Business Oklahoma State University Stillwater, OK 7407 betty.simkins@okstate.edu

1/30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

💶 🕪 🕀 🕘 🗽 🕨 - Drawing set: Default 🔒

æ

2/30

Figure:

Byers, Popova, Simkins

Outliers

・ロン・(部)とくほどくほど

Figure:

Byers, Popova, Simkins

Outliers

æ

3/ 30

イロト イポト イヨト イヨト

Introduction	Motivation	Background	Methodology	Analysis	Conclusions
	00	⊖	00000	0000000000000000000	○
Why ou	tliers?				

- Commodity prices have been identified as one of the significant market risks for banks by the revised market risk framework, Basel III (2019).
- World Economic Forum's Global Risk Perception Survey (GRPS) of leading global businesses, academics, Non-Government Organizations (NGOs), and others place Oil and Gas prices spikes, extreme energy and agriculture volatility, and severe energy price shocks in their top 5 risks in terms of global impact 5 of the last 11 years, and if we include Environment and Societal risks like extreme weather, natural disasters, and climate change that will influence prices, then all of the past 11 years include these risk.
- Outliers?
 - On September 16, 2008 the OPEC cartel lowered its forecast for oil demand that year due to slowing economic growth.
 - On July 15, 2008, President Bush lifted nearly two decades of executive orders banning drilling for crude oil and natural gas off the country shoreline.

3

Introduction

lotivation

Backgrou

Methodology

Analysis

Conclusions

Why outliers?

Our methodology is potentially relevant when researching the following issues in commodity risk management:

- **1.** Biased statement of risk.
- 2. Inaccurate cost to hedge the risk.
- 3. Inappropriate and inadequate hedges.
- 4. Misstatement of risk associated with extreme events.
- **5.** Poor scenario and sensitivity analysis.

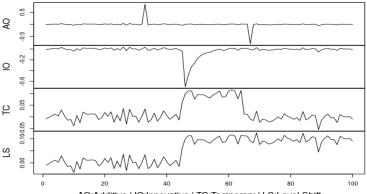
ъ

イロト イ押ト イヨト イヨト

- Commodity firms like British Petroleum and financial firms like Goldman Sachs, hold commodity portfolios that contain open transactions numbering in the millions of dollars.
- The quantity of risk factors associated with the company's portfolios measure in the hundreds and even thousands. Each of these risk factors is part of a risk model that price outliers can influence.
- Outliers could cause these diversification effects of commodity hedges to be incorrectly measured and hence costly for this firm.

イロト イポト イヨト イヨト

Introduction Motivation Background Methodology Analysis Conclusions


Why do we care? We find:

- Results using 14 years of daily settlements for commodity instruments from the CME group, show that a robust estimation (after properly modeling outliers) leads to an increase or decrease of VaR metrics.
- The analysis showed that risk metrics like VaR and CVaR can be inaccurately reported, which could impact hedging cost and hedging decisions.
- Risk metrics of VaR and CVaR generally decreased implying risk could be overstate, but ...
- Increases in VaR occurred in 5% of crude oil contracts and 5.5% for natural gas contracts. These cases could potentially cause serious problems for a commodity trading firm.
 - Why? Expected loss if VaR is exceeded could be much larger than anticipated.
 - These larger losses would require immediate risk capital to be deployed.

Introduction
Motivation
Background
Methodology
Analysis
Conclusions

coop
op
e
oppose
<

Outlier Types

AO:Additive | IO:Innovative | TC:Temporary | LS:Level Shift

æ

8/30

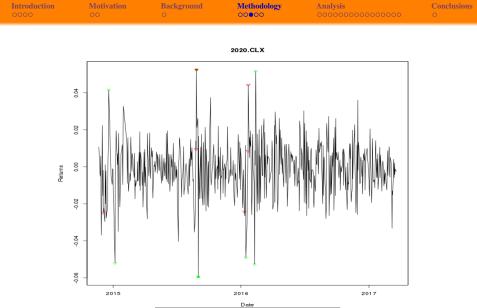
< ∃⇒

Image: A matching of the second se

Introduction	Motivation	Background	Methodology	Analysis	Conclusions
	00	○	•••••	000000000000000000	○
Methodo	ology				

We follow Chen and Liu (1993) and use a nonseasonal case without a constant term:

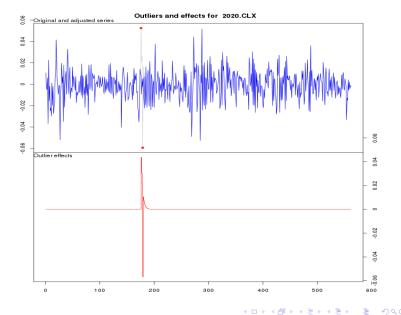
• Let Y_t be a time series following ARMA process without drift or trend:


$$Y_t = \frac{\theta(B)}{\varphi(B) \cdot \alpha(B)} a_t, t = 1, \cdots, n \tag{1}$$

- Where *n* is the number of observations,
- *B* is the back shift operator,
- $\theta(B)$ is a moving average component, roots outside of the unit circle,
- $\varphi(B)$ is an auto regressive component, roots outside of the unit circle and
- $\alpha(B)$ is a difference component, roots on the unit circle.
- a_t are Normal $(0, \sigma_a^2)$ IID.

э.

- Stage 1. Outlier detection is performed estimating ARIMA models and checking for significant outliers at different times based on t-statistics from the parametric estimation.
- Stage 2. Filter outliers by joint estimation of ARIMA models with results from Stage 1. Outliers found to be insignificant are dropped from the initial set based on t-statistics by parameter estimation.
- Stage 3. Iterate over Stages 1 and 2 to determine the intervention modeled series and the final outlier effects.



Empty Outlier symbols identity removed outliers.

Image: A matched block of the second seco

🗄 🔊 ९ 🖓 11/30

Byers, Popova, Simkins

Outliers

Introduction	Motivation	Background O	Analysis 0000000000000000000	Conclusions O

Outlier detection process

- The algorithm for managing outliers will select parametric ARIMA models with outlier effects based on the minimization of Akaike (AIC) and Bayesian (BIC) information criterion statistics.
- The algorithm will return :
 - 1 the final outlier set,
 - 2 the regression coefficients,
 - 3 intervention modeled data series,
 - 4 regression residuals, and
 - 5 outlier impacts.
- Our analysis utilizes the *R* Analytical software and statistical packages for outliers and forecast developed by Lopez-de Lacalle (2016) and Hyndman (2017), for estimating the initial and final outliers in each time series.
- Parametric specifications of the time series components of the log returns of commodity prices are returned if outliers are found:
 - an ARIMA model specification of the log returns and functional specifications for outliers with a decay rate of $\delta = 0.7$.
 - Only the ARIMA specification is returned if no outliers are found, and this is the best fit model of the time series.

Introduction	Motivation ○○	Background ○	Methodology	Analysis • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conclusions O
Analysis	of crude	oil (CL)	and natural	gas (NG) futur	es
prices –	data desc	ription			

- The data for this analysis is from the CME Group daily settlements for commodity instruments.
- The specific CME instruments are outright futures contracts for natural gas (NG) and crude oil (CL).
- The data starts on 2003-12-31 and ends on 2017-03-20.
- The contracts are monthly for each commodity.
- The CME Group lists CL future contracts 9 forward years with monthly listing for the current year and following 5 years.
- Year 6 and out are listed for June and December contract monthly.
- Additional months are added annually when the December contract expires to keep 9 years of the combination of monthly and biannual contracts listed.
- NG is listed monthly for the current year plus the following 12 calendar years with a new year added when the December contract expires for the current year.

Introduction
occoreMotivation
occoreBackground
occoreMethodology
occoreAnalysis
occoreConclusion
occoreSummary statistic comparison of log returns of the raw and
outlier intervention modeled CL and NG commodity
contractsConclusion

	CL				NG		
Contracts	198	Min	Max	Contracts	276	Min	Max
Observations	196,301	79	2,213	Observations	376,429	75	2,232
	Average	Ran	ge		Average	Ran	ge
			Rav	v (Base) Data			
Mean(%)	-0.02	-0.12	0.12	Mean(%)	-0.06	-0.29	0.09
Annualized Mean(%)	-7.06	-44.89	45.22	Annualized Mean(%)	-22.70	-104.81	32.21
Median(%)		-0.14	0.17	Median(%)		-0.09	0.07
StDev(%)	1.50	0.97	2.42	StDev(%)	1.06	0.56	2.14
Annualized				Annualized			
StDev(%)	23.78	15.42	38.43	StDev(%)	16.77	8.83	33.92
Skewness		-1.40	0.91	Skewness		-1.751	1.123
Kurtosis		-0.56	11.10	Kurtosis		1.009	22.773

3

15/30

イロト イ押ト イヨト イヨト

Introduction
ococcMotivation
ococcBackground
ococcMethodology
ococccAnalysis
ococcccccccccccConclusion
ocSummary statistic comparison of log returns of the raw and
outlier intervention modeled CL and NG commodity
contractsConclusion

Intervention Model							
Mean(%)	0.00	-0.20	0.14	Mean(%)	-0.14	-2.32	0.14
Annualized Mean(%)	-0.68	-72.74	49.93	Annualized Mean(%)	-52.58	-847.9	52.32
Median(%)		-0.06	0.18	Median(%)		-2.28	0.12
StDev(%)	1.40	0.82	2.33	StDev(%)	0.95	0.45	1.97
Annualized				Annualized			
StDev(%)	22.27	13.02	36.92	StDev(%)	15.13	7.19	31.19
Skewness		-1.03	0.32	Skewness		-0.58	1.02
Kurtosis		-0.56	7.97	Kurtosis		0.03	9.64

3

16/30

イロト イ押ト イヨト イヨト

Introduction Motivation Background Methodology Analysis Conclusion Conclusion

See ta	able 6 of F	Paper		All Reject No	ormality
				% of Con	traata
	Contracts	Jarque Bera	Shapiro Wilk	Jarque Bera	Shapiro Wilk
		Raw	(Base) Data		
CL	198	31	42	16%	21%
NG	276	0	0	> 0%	0%
		Interv	rention Model		
CL	198	45	47	23%	24%
NG	276	22	31	8%	11%
	Initial	% Total	Final	% Total	% Change
CL	13481	6.87%	1357	0.69%	-89.93%
NG	15079	4.01%	3071	0.82%	-79.63%

Lower part of table: 13,481 potential outliers for CL and 15,079 for NG. Almost 7% of CL data and 4% for NG data. Well within common Extreme Value Theory observations of 5% to 15% of data. Final outliers 1357 (0.69% CL) and 3071 (0.82% NG).

Introduction	Motivation 00	Background ○	Methodology	Analysis 00000000000000000000000000000000000	Conclusions O
Summary	y of initia	al and fina	l outliers b	by type	

See Table 7 of paper

				Level		
		Additive	Innovative	Shift	Temporary	Total
CL	Initial	4,575	0	4,827	4,079	13,481
	Final	703	310	33	311	1,357
	Change	-85%		-99%	-92%	-90%
NG	Initial	6,054	0	3,435	5,590	15,079
	Final	1,465	618	62	926	3,071
	Change	-76%	K	-98%	-83%	-80%

The final set of outliers is reduced by 85% for CL and 76% for NG. Interestingly, IO are not detected in the first stage but the final set includes 310 IO for CL and 618 for NG. Biggest reduction in # of outliers is for LS (99% for CL and 98% for NG).

ъ

- We compute Gaussian VaR and CVaR and Modified VaR and CVaR. Modified risk calculations are based on incorporating skewness and kurtosis via an analytical estimation using a Cornish-Fisher (special case of a Taylor) expansion.
- CL VaR and CvaR decreased on average of 8.6% to 8.9% with NG decreasing on average of 14.4% to 16.7%.
- Some contract's Risk metrics increased.
- Each risk measure is stand alone for a long position in each contract based on 1,000,000 bbls of CL and 1 BCF (1,000,000 mmBTU) of NG.

19/30

イロト イ押ト イヨト イヨト

-			1		
Introduction	Motivation	Background	Methodology	Analysis	Conclusions
	00	○	00000	0000000000000000	O

Percentage change in VaR and CVaR metrics

Risk Metric	Average	Min		Max				
	Crude Oil							
Gaussian VaR	-8.66%	-27.19%	2022.CLF	4.23%	2008.CLM			
Modified VaR	-8.91%	-40.39%	2015.CLG	7.47%	2008.CLV			
Gaussian CVaR	-8.58%	-26.83%	2022.CLF	3.10%	2008.CLM			
Modified CVaR	-8.66%	-26.64%	2022.CLF	12.08%	2008.CLV			
		Natural	Gas					
Gaussian VaR	-15.00%	-48.94%	2029.NGZ	4.80%	2007.NGN			
Modified VaR	-16.85%	-65.43%	2029.NGX	6.26%	2022.NGK			
Gaussian CVaR	-14.37%	-47.04%	2029.NGZ	4.37%	2007.NGN			
Modified CVaR	-14.98%	-56.55%	2029.NGX	4.74%	2010.NGJ			

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · ⑦ Q ⁽²⁾ 20/30

Introduction
occordMotivation
occordHackground
occordMethodology
occordAnalysis
occordCon-
occordAnalysis of risk metrics that increased after outlier
adjustmentsadjustmentsCon-
occord

Risk Metric	Risk Change > 0	Percentage Change	
	Crude Oil		
Gaussian VaR	9	4.55%	
Modified VaR	10	5.05%	
Gaussian CVaR	15	7.58%	
Modified CVaR	8	4.04%	
Total Contracts	198		
	Natural Gas		
Gaussian VaR	15	5.43%	
Modified VaR	17	6.16%	
Gaussian CVaR	15	5.43%	
Modified CVaR	15	5.43%	
Total Contracts	276		

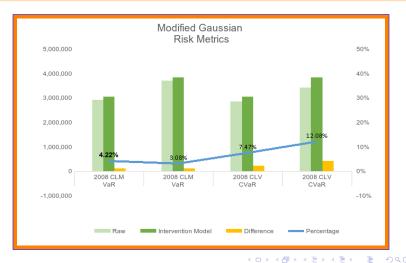
イロト イポト イヨト イヨト

There are cases when the risk metrics increase!

- This occurred for 5% of CL contracts and 5.5% for NG contracts.
- These cases could potentially cause serious problems for a firm.
- Backtests will also suffer showing that the VaR is exceeded, instead of not, more than the predicted number of times per year. This will imply an inadequate risk metric.
- The distributional characteristics will change and the tails will be larger than originally estimated with the raw data. As a result, the expected loss if VaR is exceeded could be much larger than anticipated.
- This larger losses would require immediate risk capital to be deployed, such as a margin call on exchange traded instruments, posting additional capital on over the counter transactions, or being in violation of credit arrangements resulting in technical default.

22/30

イロト イ押ト イヨト イヨト


Introduction
occordMotivation
occordBackground
occordMethodology
occordAnalysis
occordConclusic
occordCL and NG VaR metrics for contracts with significant
increases from raw and intervention modeled risk metrics
Slide 1 of 4Slide 1 of 4

Byers, Popova, Simkins

Outliers

Introduction
ooMotivation
oBackground
oMethodology
occociAnalysis
occociococioConclusioCL and NG VaR metrics for contracts with significant
increases from raw and intervention modeled risk metrics
Slide 2 of 4Slide 2 of 4Slide 2 of 4

Byers, Popova, Simkins

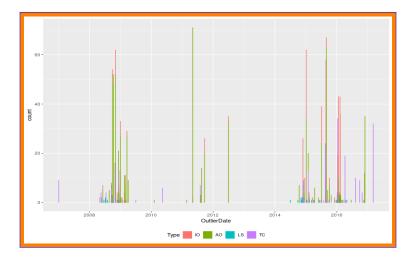
Outliers

Introduction
occordMotivation
occordBackground
occordMethodology
occordAnalysis
occordConclusioCL and NG VaR metrics for contracts with significant
increases from raw and intervention modeled risk metrics
Slide 3 of 4Significant

Byers, Popova, Simkins

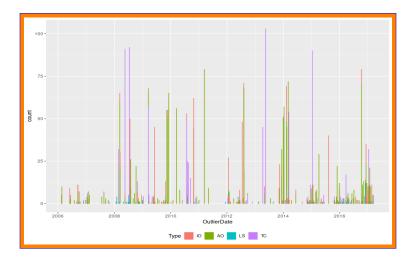
Outliers

Introduction
occordMotivation
occordBackground
occordMethodology
occordAnalysis
occordConclusioCL and NG VaR metrics for contracts with significant
increases from raw and intervention modeled risk metrics
Slide 4 of 4Slide 4 of 4Slide 4 of 4



Byers, Popova, Simkins

Outliers


Introduction	Motivation	Background ○	Methodology 00000	Analysis 00000000000000000	Conclusions O
Number	of outlies	re by each	trading de	v for Crude Oil	

Introduction	Motivation 00	Background ○	Methodology	Analysis ○○○○○○○○○○○○○○○●○	Conclusions O
Number	of outling	re by each	trading de	ay for Natural (100

Number of outliers by each trading day for Natural Gas

<ロ > < 回 > < 回 > < 臣 > < 臣 > 三 の へ ? 28/30

Introduction	Motivation 00	Background ○	Methodology	Analysis	Conclusions O
Summary	y of initia	l and fina	l outliers b	by type	

			Level		
	Additive	Innovative	Shift	Temporary	Total
Initial	4,575	0	4,827	4,079	13,481
Final	703	310	33	311	1,357
Change	-85%		-99%	-92%	-90%
Initial	6,054	0	3,435	5,590	15,079
Final	1,465	618	62	926	3,071
Change	-76%		-98%	-83%	-80%
	Final Change Initial Final	Initial 4,575 Final 703 Change -85% Initial 6,054 Final 1,465	Initial 4,575 0 Final 703 310 Change -85% Initial 6,054 0 Final 1,465 618	Initial4,57504,827Final70331033Change-85%-99%Initial6,05403,435Final1,46561862	Initial4,57504,8274,079Final70331033311Change-85%-99%-92%Initial6,05403,4355,590Final1,46561862926

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ⁽²⁾ 29/30

Introduction	Motivation ○○	Background ○	Methodology	Analysis 0000000000000000000	Conclusions •
Conclus	ion				

- We show that detecting outliers is an important step in identifying the true DGP from a risk measurement point of view.
- The algorithm was able to address common issues with outliers of masking/shadowing as seen by the substantial reduction in each contacts set of final outliers from the initial set.
- The analysis demonstrated that risk could be separated between the DGP and outlier impacts.
- The analysis showed that risk metrics like VaR and ES can be inaccurately reported, which could impact hedging cost and hedging decisions from the changes in 2nd, 3rd, and 4th moments of the DGP.
- The analysis of residual variance or forecast error was similar to Tsay 1988 findings where the 95th percentile decreased by 50% in his research.

Conclusion