High-order compact finite difference schemes for option pricing

Bertram Düring

Department of Mathematics

Joint work with

M. Fournié, C. Heuer, J. Miles, A. Pitkin, A. Rigal

Stochastic volatility model: Heston (1993)

Let $W=(W^{(1)},W^{(2)})$ denote a two-dimensional Brownian motion with correlation $dW^{(1)}(t)dW^{(2)}(t)=\rho dt$

Stochastic volatility model: Heston (1993)

Let $W=(W^{(1)},W^{(2)})$ denote a two-dimensional Brownian motion with correlation $dW^{(1)}(t)dW^{(2)}(t)=\rho dt$

Underlying asset S(t) follows

$$dS(t) = \bar{\mu}S(t) dt + \sqrt{\sigma(t)}S(t) dW^{(1)}(t),$$

$$d\sigma(t) = \kappa^*(\theta^* - \sigma(t)) dt + v\sqrt{\sigma(t)} dW^{(2)}(t),$$

for $0 < t \leq T$ with $S(0), \sigma(0) > 0$.

 $\bar{\mu}$: drift κ^* : mean reversion speed v: volatility of volatility θ^* : long-run mean of σ

Heston PDE

Option price $V = V(S, \sigma, t)$ solves

$$V_t + \frac{1}{2}S^2\sigma V_{SS} + \rho v\sigma SV_{S\sigma} + \frac{1}{2}v^2\sigma V_{\sigma\sigma} + rSV_S + \left[\kappa^*(\theta^* - \sigma) - \lambda\sigma\right]V_{\sigma} - rV = 0,$$

for $S, \sigma > 0 \text{, } 0 \leq t < T$ and subject to, e.g., for the put option

$$V(S,\sigma,T) = \max(K-S,0)$$

and suitable boundary conditions

Heston PDE

Option price $V = V(S, \sigma, t)$ solves

$$V_t + \frac{1}{2}S^2\sigma V_{SS} + \rho v\sigma SV_{S\sigma} + \frac{1}{2}v^2\sigma V_{\sigma\sigma} + rSV_S + [\kappa^*(\theta^* - \sigma) - \lambda\sigma]V_{\sigma} - rV = 0,$$

for $S, \sigma > 0, \, 0 \leq t < T$ and subject to, e.g., for the put option

$$V(S,\sigma,T) = \max(K-S,0)$$

and suitable boundary conditions

 \rightarrow for *constant* parameters there exists a closed form solution \rightarrow in general has to be solved numerically

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- ► Tangman *et. al* (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- ► Tangman *et. al* (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order

Other approaches: finite element-finite volume (Zvan *et. al*, 1998), multigrid (Clarke/Parrott, 1999), sparse wavelet (Hilber *et. al*, 2005), spectral methods (Zhu/Kopriva, 2010), FFT-based (Osterlee *et. al*, 2012), RBF-FD (v. Sydow *et. al*, 2015), ...

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- ► Tangman *et. al* (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order

Other approaches: finite element-finite volume (Zvan *et. al*, 1998), multigrid (Clarke/Parrott, 1999), sparse wavelet (Hilber *et. al*, 2005), spectral methods (Zhu/Kopriva, 2010), FFT-based (Osterlee *et. al*, 2012), RBF-FD (v. Sydow *et. al*, 2015), ...

 \rightarrow Aim: derive high-order compact finite difference scheme

Higher-order approximation (e.g. fourth-order in spatial discretisation parameter) can be obtained by increasing the width of the computational stencil, e.g.

$$(u_{xx})_i \approx \frac{-u_{i+2} + 16u_{i+1} - 30u_i + 16u_{i-1} - u_{i-2}}{12\Delta x^2}$$

Higher-order approximation (e.g. fourth-order in spatial discretisation parameter) can be obtained by increasing the width of the computational stencil, e.g.

$$(u_{xx})_i \approx \frac{-u_{i+2} + 16u_{i+1} - 30u_i + 16u_{i-1} - u_{i-2}}{12\Delta x^2}$$

However:

- \rightarrow leads to increased bandwidth of the discretisation matrices
- \rightarrow complicates formulations of boundary conditions
- \rightarrow such approaches sometimes suffer from restrictive stability conditions and spurious numerical oscillations

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j):

$$\left(\begin{array}{cccc} u_{i-1,j+1} & u_{i,j+1} & u_{i+1,j+1} \\ u_{i-1,j} & u_{i,j} & u_{i+1,j} \\ u_{i-1,j-1} & u_{i,j-1} & u_{i+1,j-1} \end{array}\right)$$

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j):

$$\left(\begin{array}{cccc} u_{i-1,j+1} & u_{i,j+1} & u_{i+1,j+1} \\ u_{i-1,j} & u_{i,j} & u_{i+1,j} \\ u_{i-1,j-1} & u_{i,j-1} & u_{i+1,j-1} \end{array}\right)$$

 \rightarrow how to obtain high-order consistency?

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j):

$$\left(\begin{array}{cccc} u_{i-1,j+1} & u_{i,j+1} & u_{i+1,j+1} \\ u_{i-1,j} & u_{i,j} & u_{i+1,j} \\ u_{i-1,j-1} & u_{i,j-1} & u_{i+1,j-1} \end{array}\right)$$

 \rightarrow how to obtain high-order consistency?

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error of a lower-order approximation High-order compact schemes for

- elliptic problems: Collatz ('74), (Gupta et al. ('84,'85), Spotz & Carey ('96)
- parabolic problems (isotropic): Spotz & Carey ('01), Karaa & Zhang ('02)
- fully nonlinear parabolic PDEs: B.D., Fournié & Jüngel ('03,'04)
- anisotropic, elliptic PDE, constant coefficients: Fournié & Karaa ('06)

Heston PDE

Option price $V = V(S, \sigma, t)$ solves

$$V_t + \frac{1}{2}S^2\sigma V_{SS} + \rho v\sigma SV_{S\sigma} + \frac{1}{2}v^2\sigma V_{\sigma\sigma} + rSV_S + \left[\kappa^*(\theta^* - \sigma) - \lambda\sigma\right]V_{\sigma} - rV = 0,$$

for $S, \sigma > 0, \, 0 \leq t < T$ and subject to, e.g., for the put option

$$V(S,\sigma,T) = \max(K-S,0)$$

and suitable boundary conditions

Introducing modified parameters

$$\kappa = \kappa^* + \lambda, \quad \theta = \kappa^* \theta^* / (\kappa^* + \lambda)$$

allows to study the problem with one parameter less.

Introducing modified parameters

$$\kappa = \kappa^* + \lambda, \quad \theta = \kappa^* \theta^* / (\kappa^* + \lambda)$$

allows to study the problem with one parameter less.

Boundary conditions for the put option are

$$\begin{split} V(0,\sigma,t) &= Ke^{-r(T-t)}, \quad T > t \ge 0, \; \sigma > 0\\ V(S,\sigma,t) &\to 0, \quad T > t \ge 0, \; \sigma > 0, \; \text{as} \; S \to \infty\\ V_{\sigma}(S,\sigma,t) \to 0, \quad T > t \ge 0, \; S > 0, \; \text{as} \; \sigma \to \infty\\ V_{\sigma}(S,\sigma,t) \to 0, \quad T > t \ge 0, \; S > 0, \; \text{as} \; \sigma \to 0 \end{split}$$

Using

$$x = \ln(S/K), \quad y = \sigma/v, \quad \tilde{t} = T - t, \quad u = \exp(r\tilde{t})V/K,$$

we obtain

$$u_t - \frac{1}{2}vy(u_{xx} + u_{yy}) - \rho vyu_{xy} + \left(\frac{1}{2}vy - r\right)u_x - \kappa \frac{\theta - vy}{v}u_y = 0,$$

to be solved on $\mathbb{R}\times\mathbb{R}^+$ with initial and boundary conditions.

Using

$$x = \ln(S/K), \quad y = \sigma/v, \quad \tilde{t} = T - t, \quad u = \exp(r\tilde{t})V/K,$$

we obtain

$$u_t - \frac{1}{2}vy(u_{xx} + u_{yy}) - \rho vyu_{xy} + \left(\frac{1}{2}vy - r\right)u_x - \kappa \frac{\theta - vy}{v}u_y = 0,$$

to be solved on $\mathbb{R}\times\mathbb{R}^+$ with initial and boundary conditions.

B.D. and M. Fournié.
High-order compact finite difference scheme for option pricing in stochastic volatility models.
J. Comput. Appl. Math. 236(17), 2012. (arXiv:1404.5140)

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error

Use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j):

$$\left(\begin{array}{cccc} u_{i-1,j+1} = u_6 & u_{i,j+1} = u_2 & u_{i+1,j+1} = u_5 \\ u_{i-1,j} = u_3 & u_{i,j} = u_0 & u_{i+1,j} = u_1 \\ u_{i-1,j-1} = u_7 & u_{i,j-1} = u_4 & u_{i+1,j-1} = u_8 \end{array}\right).$$

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error

Use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j):

$$\left(\begin{array}{cccc} u_{i-1,j+1} = u_6 & u_{i,j+1} = u_2 & u_{i+1,j+1} = u_5 \\ u_{i-1,j} = u_3 & u_{i,j} = u_0 & u_{i+1,j} = u_1 \\ u_{i-1,j-1} = u_7 & u_{i,j-1} = u_4 & u_{i+1,j-1} = u_8 \end{array}\right).$$

 \rightarrow consider first the elliptic problem with right-hand side f

Introduce uniform grid with mesh spacing h in both the x- and y-direction, standard central difference approximation is

$$\begin{split} &-\frac{1}{2}vy_j \left(\delta_x^2 u_{i,j} + \delta_y^2 u_{i,j}\right) - \rho vy_j \delta_x \delta_y u_{i,j} \\ &+ \left(\frac{1}{2}vy_j - r\right) \delta_x u_{i,j} - \kappa \frac{\theta - vy_j}{v} \delta_y u_{i,j} - \tau_{i,j} = f_{i,j}, \end{split}$$

here δ_x , δ_x^2 (δ_y , δ_y^2 , respectively) denote the first and second

order central difference approximations

W

Introduce uniform grid with mesh spacing h in both the x- and y-direction, standard central difference approximation is

$$-\frac{1}{2}vy_j(\delta_x^2 u_{i,j} + \delta_y^2 u_{i,j}) - \rho vy_j \delta_x \delta_y u_{i,j} + \left(\frac{1}{2}vy_j - r\right) \delta_x u_{i,j} - \kappa \frac{\theta - vy_j}{v} \delta_y u_{i,j} - \tau_{i,j} = f_{i,j},$$

where δ_x , δ_x^2 (δ_y , δ_y^2 , respectively) denote the first and second order central difference approximations Truncation error is given by

$$\tau_{i,j} = \frac{1}{24} vyh^2 (u_{xxxx} + u_{yyyy}) + \frac{1}{6} \rho vyh^2 (u_{xyyy} + u_{xxxy}) + \frac{1}{12} (2r - vy)h^2 u_{xxx} + \frac{1}{6} \frac{\kappa(\theta - vy)}{v} h^2 u_{yyy} + \mathcal{O}(h^4)$$

Introduce uniform grid with mesh spacing h in both the x- and y-direction, standard central difference approximation is

$$-\frac{1}{2}vy_j(\delta_x^2 u_{i,j} + \delta_y^2 u_{i,j}) - \rho vy_j \delta_x \delta_y u_{i,j} + \left(\frac{1}{2}vy_j - r\right) \delta_x u_{i,j} - \kappa \frac{\theta - vy_j}{v} \delta_y u_{i,j} - \tau_{i,j} = f_{i,j},$$

where δ_x , δ_x^2 (δ_y , δ_y^2 , respectively) denote the first and second order central difference approximations Truncation error is given by

$$\tau_{i,j} = \frac{1}{24} vyh^2 (u_{xxxx} + u_{yyyy}) + \frac{1}{6} \rho vyh^2 (u_{xyyy} + u_{xxxy}) + \frac{1}{12} (2r - vy)h^2 u_{xxx} + \frac{1}{6} \frac{\kappa(\theta - vy)}{v} h^2 u_{yyy} + \mathcal{O}(h^4)$$

 \rightarrow seek second-order approximations to the derivatives

Substituting these expressions the truncation error yields a new expression for the error term $\tau_{i,j}$ that consists only of terms which are either

- \blacktriangleright terms of order $\mathcal{O}(h^4)$, or
- ► terms of order O(h²) multiplied by derivatives of u which can be approximated up to O(h²) within the nine-point compact stencil

Substituting these expressions the truncation error yields a new expression for the error term $\tau_{i,j}$ that consists only of terms which are either

- terms of order $\mathcal{O}(h^4)$, or
- ► terms of order O(h²) multiplied by derivatives of u which can be approximated up to O(h²) within the nine-point compact stencil
- \rightarrow inserting all into the central difference approximation of the equation yields a $\mathcal{O}(h^4)$ approximation to the elliptic Heston PDE

$$\sum_{l=0}^{\infty} \alpha_l u_l = \sum_{l=0}^{\infty} \gamma_l f_l,$$

with given coefficients α_l and γ_l

Considering the time derivative in place of f(x,y)

- \rightarrow any time integrator can be implemented
- \rightarrow consider here methods involving two times steps:

Considering the time derivative in place of f(x, y) \rightarrow any time integrator can be implemented \rightarrow consider here methods involving two times steps: For example, differencing at $t_{\mu} = (1 - \mu)t^n + \mu t^{n+1}$, where $0 \le \mu \le 1$ yields a class of integrators that include the forward Euler ($\mu = 0$), Crank-Nicolson ($\mu = 1/2$) and backward Euler ($\mu = 1$) schemes.

Considering the time derivative in place of f(x, y)

- \rightarrow any time integrator can be implemented
- ightarrow consider here methods involving two times steps:

For example, differencing at $t_{\mu} = (1 - \mu)t^n + \mu t^{n+1}$, where $0 \le \mu \le 1$ yields a class of integrators that include the forward Euler ($\mu = 0$), Crank-Nicolson ($\mu = 1/2$) and backward Euler ($\mu = 1$) schemes.

Resulting fully discrete difference scheme for node (i, j)

$$\sum_{l=0}^{8} \mu \alpha_l u_l^{n+1} + (1-\mu) \alpha_l u_l^n = \sum_{l=0}^{8} \gamma_l \delta_t^+ u_l^n,$$

with $\delta^+_t u^n = \frac{u^{n+1}-u^n}{k}$

Considering the time derivative in place of f(x, y)

- \rightarrow any time integrator can be implemented
- ightarrow consider here methods involving two times steps:

For example, differencing at $t_{\mu} = (1 - \mu)t^n + \mu t^{n+1}$, where $0 \le \mu \le 1$ yields a class of integrators that include the forward Euler ($\mu = 0$), Crank-Nicolson ($\mu = 1/2$) and backward Euler ($\mu = 1$) schemes.

Resulting fully discrete difference scheme for node (i, j)

$$\sum_{l=0}^{8} \mu \alpha_l u_l^{n+1} + (1-\mu) \alpha_l u_l^n = \sum_{l=0}^{8} \gamma_l \delta_t^+ u_l^n,$$

with $\delta_t^+ u^n = \frac{u^{n+1}-u^n}{k}$ \rightarrow for $\mu = 1/2$ the scheme is of order two in time and of order four in space The initial condition is given by the transformed payoff function of the put option,

$$u(x, y, 0) = \max(1 - \exp(x), 0), \quad x \in \mathbb{R}, \ y > 0.$$

- Kreiss (1970) states that we cannot achieve fourth order convergence if the initial condition is not sufficiently smooth.
- Smoothing operators are defined in the Fourier space, we apply smoothing operator to the initial condition

$$\tilde{u}_0(x_1, x_2) = \frac{1}{h^2} \int_{-3h}^{3h} \int_{-3h}^{3h} \phi_4\left(\frac{x}{h}\right) \phi_4\left(\frac{y}{h}\right) u_0(x_1 - x, x_2 - y) dx dy.$$

Final scheme

Final scheme can be written as $\sum eta_l u_l^{n+1} = \sum \zeta_l u_l^n$ with $\beta_0 = (((2y_i^2 - 8)v^4 + ((-8\kappa - 8r)y_i - 8\rho r)v^3 + (8\kappa^2 y_i^2 + 8r^2)v^2$ $-16\kappa^{2}\theta v y_{i} + 8\kappa^{2}\theta^{2})\mu k + 16v^{3}y_{i})h^{2} + (-16\rho^{2} + 40)y_{i}^{2}v^{4}\mu k$ $\beta_{1,3} = \pm \left((\kappa \theta v^2 - v^4 - \kappa y_i v^3) \mu k - (y_i + 2\rho) v^3 + 2v^2 r \right) h^3 + \left(((-y_i)^2 + 2) v^4 \right) h^4 + \left(((-y_i$ + $((4r+2\kappa)y_i + 4\rho r)v^3 - (2\kappa\theta + 4r^2)v^2)\mu k + 2v^3y_i)h^2$ $\pm (4v^4 y_i^2 + (-8y_i^2 \kappa \rho - 8y_i r)v^3 + 8y_i \kappa \theta \rho v^2)\mu kh + (8\rho^2 - 8)y_i^2 v^4 \mu k,$ $\beta_{2,4} = \pm \left((2\kappa^2 \theta v - 2\kappa^2 v^2 y_i - 2v^3 \kappa) \mu k - 2v^2 y_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 v_i \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v^2 \kappa + 2v \kappa \theta - 2v^3) h^3 + ((2v^4 + 2v^2 \kappa) \mu k - 2v^2 \kappa + 2v^2$ $+2\kappa y_{i}v^{3}+(-4\kappa^{2}y_{i}^{2}+2\kappa\theta)v^{2}+8\kappa^{2}\theta vy_{i}-4\kappa^{2}\theta^{2})\mu k+2v^{3}y_{i})h^{2}$ $\pm ((8y_i^2\kappa + 8y_i\rho r)v^3 - 4v^4y_i^2\rho - 8v^2y_i\kappa\theta)\mu kh + (8\rho^2 - 8)y_i^2v^4\mu k,$ $\beta_{5,7} = ((v^4\rho + (-u^2\kappa + \kappa u_i\rho + r)v^3 + (\theta + 2r)\kappa u_iv^2 - 2r\kappa\theta v)uk$ $+v^{3}\rho y_{i})h^{2} \pm ((2\rho+1)y_{i}^{2}v^{4} + ((2+4\rho)\kappa y_{i}^{2} + (-4\rho r - 2r)y_{i})v^{3})v^{3}$ $+(-2\theta - 4\theta \rho)\kappa u_i v^2)\mu kh + (-2 - 4\rho^2 - 6\rho)u_i^2 v^4 \mu k,$ $\beta_{6,8} = ((-v^4\rho + (y_i^2\kappa - \kappa y_i\rho - r)v^3 + (-\theta - 2r)\kappa y_iv^2 + 2r\kappa\theta v)\mu k$ $(-v^{3}\rho y_{i})h^{2} \pm ((2\rho - 1)y_{i}^{2}v^{4} + ((2 - 4\rho)\kappa y_{i}^{2} + (2r - 4\rho r)y_{i})v^{3})v^{3}$ $+ (4\theta \rho - 2\theta)\kappa y_i v^2)\mu kh + (-4\rho^2 + 6\rho - 2)y_i^2 v^4 \mu k,$

Final scheme

Final scheme can be written as $\sum \beta_l u_l^{n+1} = \sum \zeta_l u_l^n$ with 1 - 0 $\zeta_0 = 16v^3 y_i h^2 + (1 - \mu)k(((8 - 2y_i^2)v^4 + ((8\kappa + 8r)y_i + 8\rho r)v^3))$ $+ (-8r^2 - 8\kappa^2 y_i^2)v^2 + 16\kappa^2 \theta v y_i - 8\kappa^2 \theta^2)h^2 + (-40 + 16\rho^2)y_i^2 v^4),$ $\zeta_{1,3} = \pm (2r - (y_i + 2\rho)v)v^2h^3 + 2v^3y_ih^2 + (1 - \mu)k(\pm (v\kappa y_i + v^2 - \kappa\theta)v^2h^3)$ $+(v^2y_i^2 - (4r + 2\kappa)vy_i + 4r^2 + 2\kappa\theta - 2v^2 - 4\rho vr)v^2h^2$ $\pm ((-4v + 8\kappa\rho)v^3y_i^2 + (-8\kappa\theta\rho + 8vr)v^2y_i)h + (8v^2 - 8v^2\rho^2)v^2y_i^2),$ $\zeta_{2,4} = \pm (2v\kappa\theta - 2v^2y_i\kappa - 2v^3)h^3 + 2v^3y_ih^2 + (1-\mu)k(\pm 2(v^3\kappa - \kappa^2\theta v$ $+\kappa^{2}v^{2}y_{i}h^{3} + (4\kappa^{2}v^{2}y_{i}^{2} - (2v^{2} + 8\kappa\theta)\kappa vy_{i} + 2\kappa\theta(2\kappa\theta - v^{2}) - 2v^{4})h^{2}$ $\pm ((-8v^{3}\kappa + 4v^{4}\rho)y_{i}^{2} + (8\kappa\theta v^{2} - 8v^{3}\rho r)y_{i})h + (-8v^{4}\rho^{2} + 8v^{4})y_{i}^{2}),$ $\zeta_{5,7} = v^3 \rho u_i h^2 + (1-\mu)k((v^3 u_i^2 \kappa - v(v\kappa\theta + 2r\kappa v + \kappa v^2 \rho))u_i$ $-v(v^2r - 2r\kappa\theta + v^3\rho))h^2 \pm (-v(2v^3\rho + v^3 + 4\kappa v^2\rho + 2v^2\kappa)y_i)^2$ $+v(2v\kappa\theta + 4v\kappa\theta\rho + 4v^{2}\rho r + 2v^{2}r)u_{i})h + v(2v^{3} + 6v^{3}\rho + 4v^{3}\rho^{2})u_{i}^{2}),$ $\zeta_{6,8} = -v^3 \rho y_i h^2 + (1-\mu)k((-v^3 y_i)^2 \kappa + v(v\kappa\theta + 2r\kappa v + \kappa v^2 \rho)y_i)$ $+v(v^{2}r-2r\kappa\theta+v^{3}\rho))h^{2}\pm(v(-2v^{3}\rho+v^{3}+4\kappa v^{2}\rho-2v^{2}\kappa)u^{2})$ $+ v(2v\kappa\theta - 4v\kappa\theta\rho + 4v^{2}\rho r - 2v^{2}r)y_{i})h + v(2v^{3} - 6v^{3}\rho + 4v^{3}\rho^{2})y_{i}^{2}).$

Rewrite $u_{i,j}^n$ as $u_{i,j}^n = g^n e^{Iiz_1 + Ijz_2}$ where I is the imaginary unit, g^n is the amplitude at time level n, and $z_1 = 2\pi h/\lambda_1$ and $z_2 = 2\pi h/\lambda_2$ are phase angles with wavelengths λ_1 and λ_2 , in the range $[-\pi, \pi]$, respectively

Rewrite $u_{i,j}^n$ as $u_{i,j}^n = g^n e^{Iiz_1 + Ijz_2}$ where I is the imaginary unit, g^n is the amplitude at time level n, and $z_1 = 2\pi h/\lambda_1$ and $z_2 = 2\pi h/\lambda_2$ are phase angles with wavelengths λ_1 and λ_2 , in the range $[-\pi, \pi]$, respectively \rightarrow scheme is stable if for all z_1 and z_2 the amplification factor $G = q^{n+1}/q^n$ satisfies

 $|G|^2 \leq 1$

Rewrite $u_{i,j}^n$ as $u_{i,j}^n = g^n e^{Iiz_1 + Ijz_2}$ where I is the imaginary unit, g^n is the amplitude at time level n, and $z_1 = 2\pi h/\lambda_1$ and $z_2 = 2\pi h/\lambda_2$ are phase angles with wavelengths λ_1 and λ_2 , in the range $[-\pi, \pi]$, respectively \rightarrow scheme is stable if for all z_1 and z_2 the amplification factor $G = g^{n+1}/g^n$ satisfies

 $|G|^2 \le 1$

We would need to study polynomials in 13 variables...

Rewrite $u_{i,j}^n$ as $u_{i,j}^n = g^n e^{Iiz_1 + Ijz_2}$ where I is the imaginary unit, g^n is the amplitude at time level n, and $z_1 = 2\pi h/\lambda_1$ and $z_2 = 2\pi h/\lambda_2$ are phase angles with wavelengths λ_1 and λ_2 , in the range $[-\pi, \pi]$, respectively \rightarrow scheme is stable if for all z_1 and z_2 the amplification factor $G = g^{n+1}/g^n$ satisfies

 $|G|^2 \le 1$

We would need to study polynomials in 13 variables... \rightarrow consider case $r = \rho = 0$ and $\mu = 1/2$

Rewrite $u_{i,j}^n$ as $u_{i,j}^n = g^n e^{Iiz_1 + Ijz_2}$ where I is the imaginary unit, g^n is the amplitude at time level n, and $z_1 = 2\pi h/\lambda_1$ and $z_2 = 2\pi h/\lambda_2$ are phase angles with wavelengths λ_1 and λ_2 , in the range $[-\pi, \pi]$, respectively \rightarrow scheme is stable if for all z_1 and z_2 the amplification factor $G = g^{n+1}/g^n$ satisfies

 $|G|^2 \le 1$

We would need to study polynomials in 13 variables...

 \rightarrow consider case $r = \rho = 0$ and $\mu = 1/2$

Theorem (B.D./Fournié '12)

For $r = \rho = 0$ and $\mu = 1/2$ (Crank-Nicolson), the scheme is unconditionally stable (von Neumann).

We need to study polynomials in 10 variables...

We need to study polynomials in 10 variables... Define new variables

$$c_1 = \cos\left(\frac{z_1}{2}\right), \quad c_2 = \cos\left(\frac{z_2}{2}\right), \quad s_1 = \sin\left(\frac{z_1}{2}\right), \quad s_2 = \sin\left(\frac{z_2}{2}\right)$$
$$W = -\frac{2s_2s_1\left(-\theta + vy\right)}{v}, \quad V = \frac{2vy}{\kappa},$$

which allow us to express G in terms of h,k,κ,V,W and trigonometric functions only

We need to study polynomials in 10 variables... Define new variables

$$c_1 = \cos\left(\frac{z_1}{2}\right), \quad c_2 = \cos\left(\frac{z_2}{2}\right), \quad s_1 = \sin\left(\frac{z_1}{2}\right), \quad s_2 = \sin\left(\frac{z_2}{2}\right)$$
$$W = -\frac{2s_2s_1\left(-\theta + vy\right)}{v}, \quad V = \frac{2vy}{\kappa},$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only \rightarrow stability criterion becomes

$$\frac{-8kh^2(n_4h^2+n_2)}{d_6h^6+d_4h^4+d_2h^2+d_0} \le 0$$

We need to study polynomials in 10 variables... Define new variables

$$c_1 = \cos\left(\frac{z_1}{2}\right), \quad c_2 = \cos\left(\frac{z_2}{2}\right), \quad s_1 = \sin\left(\frac{z_1}{2}\right), \quad s_2 = \sin\left(\frac{z_2}{2}\right)$$
$$W = -\frac{2s_2s_1\left(-\theta + vy\right)}{v}, \quad V = \frac{2vy}{\kappa},$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only \rightarrow stability criterion becomes

$$\frac{-8kh^2(n_4h^2+n_2)}{d_6h^6+d_4h^4+d_2h^2+d_0} \leq 0$$

 \rightarrow possible to show that all n_i and d_i are positive

We need to study polynomials in 10 variables... Define new variables

$$c_1 = \cos\left(\frac{z_1}{2}\right), \quad c_2 = \cos\left(\frac{z_2}{2}\right), \quad s_1 = \sin\left(\frac{z_1}{2}\right), \quad s_2 = \sin\left(\frac{z_2}{2}\right)$$
$$W = -\frac{2s_2s_1\left(-\theta + vy\right)}{v}, \quad V = \frac{2vy}{\kappa},$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only \rightarrow stability criterion becomes

$$\frac{-8kh^2(n_4h^2+n_2)}{d_6h^6+d_4h^4+d_2h^2+d_0} \leq 0$$

 \rightarrow possible to show that all n_i and d_i are positive \rightarrow numerator is negative, denominator is positive

We need to study polynomials in 10 variables... Define new variables

$$c_1 = \cos\left(\frac{z_1}{2}\right), \quad c_2 = \cos\left(\frac{z_2}{2}\right), \quad s_1 = \sin\left(\frac{z_1}{2}\right), \quad s_2 = \sin\left(\frac{z_2}{2}\right)$$
$$W = -\frac{2s_2s_1\left(-\theta + vy\right)}{v}, \quad V = \frac{2vy}{\kappa},$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only \rightarrow stability criterion becomes

$$\frac{-8kh^2(n_4h^2+n_2)}{d_6h^6+d_4h^4+d_2h^2+d_0} \leq 0$$

 \rightarrow possible to show that all n_i and d_i are positive \rightarrow numerator is negative, denominator is positive \rightarrow unconditional stability

Stability validation for $\rho \neq 0$

Plot l_2 -errors to detect stability restrictions depending on k/h^2 or oscillations occurring for high cell Reynolds number (large h)

Stability validation for $\rho \neq 0$

Plot l_2 -errors to detect stability restrictions depending on k/h^2 or oscillations occurring for high cell Reynolds number (large h)

- little or no dependence of the error on the parabolic mesh ratio k/h²
 - \rightarrow unconditional stability
- for larger values of h (higher cell Reynolds number) error grows gradually

 \rightarrow no oscillations occur

Stability validation for $\rho \neq 0$

Plot l_2 -errors to detect stability restrictions depending on k/h^2 or oscillations occurring for high cell Reynolds number (large h)

- little or no dependence of the error on the parabolic mesh ratio k/h²
 - \rightarrow unconditional stability
- for larger values of h (higher cell Reynolds number) error grows gradually

ightarrow no oscillations occur

 \rightarrow conjecture that scheme is unconditionally stable and convergent also for general choice of parameters

Amplification factor for $\rho \neq 0$

- fix v, κ, θ to practical relevant values and replace all sin terms by equivalent cos expressions
- stability condition depends on ρ and c₁, c₂, y, h, k
- line-search global-optimization algorithm based on the Powell's and Brent's methods

Amplification factor for $\rho \neq 0$

- fix v, κ, θ to practical relevant values and replace all sin terms by equivalent cos expressions
- stability condition depends on ρ and c₁, c₂, y, h, k
- line-search global-optimization algorithm based on the Powell's and Brent's methods
- \rightarrow maxima for each ρ are always negative and very close to zero ($|G|^2=1$ for y=0)
- \rightarrow conjecture that stability condition is satisfied although hard to prove analytically

Numerical efficiency and convergence

We use the parameters

 $K=100,\;T=0.5,\;r=0.05,\;v=0.1,\;\kappa=2,\;\theta=0.01,\;\rho=-0.5$

Numerical efficiency and convergence

We use the parameters

 $K=100,\;T=0.5,\;r=0.05,\;v=0.1,\;\kappa=2,\;\theta=0.01,\;\rho=-0.5$

Numerical efficiency and convergence

We use the parameters

 $K=100,\;T=0.5,\;r=0.05,\;v=0.1,\;\kappa=2,\;\theta=0.01,\;\rho=-0.5$

- \rightarrow for similar computational effort: orders of magnitude better in error
- \rightarrow to achieve a given error level: order of magnitude less computational effort

Goal: concentrate grid points around strike K \rightarrow introduce transformation φ from non-uniform to uniform grid:

$$\hat{S} = \ln(S/K), \quad \varphi(x) = \hat{S}$$

Goal: concentrate grid points around strike K \rightarrow introduce transformation φ from non-uniform to uniform grid:

$$\hat{S} = \ln(S/K), \quad \varphi(x) = \hat{S}$$

▶ HOC scheme: 4th order in space, 2nd order in time

numerical results suggest unconditional stability

Goal: concentrate grid points around strike $K \rightarrow$ introduce transformation φ from non-uniform to uniform grid:

$$\hat{S} = \ln(S/K), \quad \varphi(x) = \hat{S}$$

- ▶ HOC scheme: 4th order in space, 2nd order in time
- numerical results suggest unconditional stability

B.D., M. Fournié and C. Heuer.
High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids.
J. Comput. Appl. Math. 271, 2014. (arXiv:1504.5138)

High-order ADI schemes

Consider convection-diffusion equation

 $u_t = \operatorname{div}(D\nabla u) + c \cdot \nabla u$

on a rectangular domain $\Omega \subset \mathbb{R}^2,$ supplemented with initial and boundary conditions with

$$c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad D = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix},$$

where D fully populated, positive definite diffusion matrix.

High-order ADI schemes

Consider convection-diffusion equation

 $u_t = \operatorname{div}(D\nabla u) + c \cdot \nabla u$

on a rectangular domain $\Omega \subset \mathbb{R}^2,$ supplemented with initial and boundary conditions with

$$c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad D = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix},$$

where D fully populated, positive definite diffusion matrix.

- ▶ Time: Hundsdorfer (2002) ADI, 2nd order in time
- Space: HOC scheme, 4th order

B.D., M. Fournié, A. Rigal.

High-order ADI schemes for convection-diffusion equations with mixed derivative terms.

In: *Spectral and High Order Methods for PDEs*, M. Azaïez et al. (eds.), LNCSE 95, Springer, 2013. (arXiv:1505.07621)

Sparse grid combination technique

Further efficiency gains with sparse grids approach

B.D., C. Hendricks, J. Miles.Sparse grid high-order ADI scheme for option pricing in stochastic volatility models. In: Novel Methods in Computational Finance, M. Ehrhardt et al. (eds.), pp. 295-312, Springer, 2017.

Partial-integro differential equation: Bates model

- additionally allow jumps in process for underlying asset
- pricing PIDE with additional (nonlocal) integral term
- implicit-explicit high-order scheme [cf. Salmi et al. '14]

Partial-integro differential equation: Bates model

- additionally allow jumps in process for underlying asset
- pricing PIDE with additional (nonlocal) integral term
- implicit-explicit high-order scheme [cf. Salmi et al. '14]

B.D. and A. Pitkin.

High-order compact finite difference scheme for option pricing in stochastic volatility jump models.

J. Comput. Appl. Math. 355, 201-217, 2019. (arXiv:1704.05308)

Memory requirements: HOC vs. FD vs. FEM

Scheme	h	DOF	l2-error	l_{∞} -error	Time (s)	Memory (kB)
НОС	0.4	121	3.6201	1.6891	0.016	6916
	0.2	441	0.4728	0.2063	0.130	+1060
	0.1	1681	0.0230	0.0168	1.106	+5536
	0.05	6561	0.0022	0.0009	21.145	+18284
FEM $(p = 2)$	0.4	441	6.5837	2.3944	1.294	123128
	0.2	1681	1.0438	0.3737	3.304	+1780
	0.1	6561	0.1522	0.0581	23.426	+8268
	0.05	25921	0.0225	0.0088	300.019	+40828
FD	0.4	121	14.8087	3.0653	0.036	6948
	0.2	441	3.9321	0.8913	0.191	+1772
	0.1	1681	0.8751	0.1806	1.715	+8384
	0.05	6561	0.1758	0.0364	28.706	+23064
FEM $(p = 1)$	0.4	121	5.5209	2.4373	1.072	123276
	0.2	441	1.8816	0.7876	1.462	+192
	0.1	1681	0.3846	0.1166	4.727	+2052
	0.05	6561	0.0940	0.0354	49.171	+8176

Memory requirements: HOC vs. FD vs. FEM

Scheme	h	DOF	l ₂ -error	l_{∞} -error	Time (s)	Memory (kB)
НОС	0.4	121	3.6201	1.6891	0.016	6916
	0.2	441	0.4728	0.2063	0.130	+1060
	0.1	1681	0.0230	0.0168	1.106	+5536
	0.05	6561	0.0022	0.0009	21.145	+18284
FEM $(p = 2)$	0.4	441	6.5837	2.3944	1.294	123128
	0.2	1681	1.0438	0.3737	3.304	+1780
	0.1	6561	0.1522	0.0581	23.426	+8268
	0.05	25921	0.0225	0.0088	300.019	+40828
FD	0.4	121	14.8087	3.0653	0.036	6948
	0.2	441	3.9321	0.8913	0.191	+1772
	0.1	1681	0.8751	0.1806	1.715	+8384
	0.05	6561	0.1758	0.0364	28.706	+23064
FEM $(p = 1)$	0.4	121	5.5209	2.4373	1.072	123276
	0.2	441	1.8816	0.7876	1.462	+192
	0.1	1681	0.3846	0.1166	4.727	+2052
	0.05	6561	0.0940	0.0354	49.171	+8176

 \rightarrow HOC very parsimonious, achieves high-order convergence without requiring additional unknowns, unlike finite element methods with higher polynomial order basis

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:

- \rightarrow derivation is algebraically demanding
- \rightarrow often 'taylor-made' for a specific application or rather small class of problems
- \rightarrow algebraic complexity is even higher in the numerical stability analysis

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:

- \rightarrow derivation is algebraically demanding
- \rightarrow often 'taylor-made' for a specific application or rather small class of problems
- \rightarrow algebraic complexity is even higher in the numerical stability analysis

Hence, in the mathematical literature:

- \rightarrow only few HOC schemes with stability analysis (mostly 1D)
- \rightarrow most works focus on isotropic case (Laplacian)

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:

- \rightarrow derivation is algebraically demanding
- \rightarrow often 'taylor-made' for a specific application or rather small class of problems
- \rightarrow algebraic complexity is even higher in the numerical stability analysis

Hence, in the mathematical literature:

- \rightarrow only few HOC schemes with stability analysis (mostly 1D)
- \rightarrow most works focus on isotropic case (Laplacian)

Challenge: Can we generalize our HOC approach to a wider class of problems with mixed derivative terms?

Parabolic initial-boundary value problem

$$u_{\tau} + \sum_{i=1}^{n} a_{i} \frac{\partial^{2} u}{\partial x_{i}^{2}} + \sum_{\substack{i,j=1\\i < j}}^{n} b_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} c_{i} \frac{\partial u}{\partial x_{i}} = g \quad \text{in } \Omega \times (0,T)$$

with initial condition $u_0 = u(x_1, \ldots x_n, 0)$ and boundary conditions, where $a_i = a_i(x_1, \ldots x_n, \tau) < 0$, $b_{ij} = b_{ij}(x_1, \ldots x_n, \tau)$, $c_i = c_i(x_1, \ldots x_n, \tau)$ and $g = g(x_1, \ldots x_n, \tau)$

Parabolic initial-boundary value problem

$$u_{\tau} + \sum_{i=1}^{n} a_{i} \frac{\partial^{2} u}{\partial x_{i}^{2}} + \sum_{\substack{i,j=1\\i < j}}^{n} b_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} c_{i} \frac{\partial u}{\partial x_{i}} = g \quad \text{in } \Omega \times (0,T)$$

with initial condition $u_0 = u(x_1, \ldots x_n, 0)$ and boundary conditions, where $a_i = a_i(x_1, \ldots x_n, \tau) < 0$, $b_{ij} = b_{ij}(x_1, \ldots x_n, \tau)$, $c_i = c_i(x_1, \ldots x_n, \tau)$ and $g = g(x_1, \ldots x_n, \tau)$

- HOC scheme: 4th order in space, 2nd order in time
- arbitrary spatial dimension
- stability analysis in 2D and 3D

B.D. and C. Heuer.

High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions.

SIAM J. Numer. Anal. 53(5), 2015. (arXiv:1506.06711)

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension

C++ implementation (CC BY 4.0) for Bates model available at http://dx.doi.org/10.17632/964tyzmwrn.1

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension

C++ implementation (CC BY 4.0) for Bates model available at http://dx.doi.org/10.17632/964tyzmwrn.1

THANK YOU!