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Stochastic volatility model: Heston (1993)

Let W = (WM W®) denote a two-dimensional Brownian
motion with AW () dW P (t) = pdt

Underlying asset S(t) follows

dS(t) = pS(t) dt + /o (t)S(t) dW (1),
do(t) = *(0" — o(t)) dt +v/o(t) dW P (1),

for 0 <t < T with S(0),0(0) > 0.

fi: drift
Kk*: mean reversion speed
v: volatility of volatility

0*: long-run mean of o



Heston PDE

Option price V = V(S, 0,t) solves
Vi + %S%VSS + poSVs, + %1220"/00 +1rSVy
+ [k5(0" — o) = Ao |V, —rV =0,
for S,0 >0, 0 <t < T and subject to, e.g., for the put option
V(S,0,T) = max(K — S,0)

and suitable boundary conditions



Heston PDE

Option price V = V(S, 0,t) solves

Vi + %SQO'VSS + pvoSVs, + %UQO'VUU +7rSVs
+ [k5(0" — o) = Ao |V, —rV =0,
for S,0 >0, 0 <t < T and subject to, e.g., for the put option
V(S,0,T) = max(K — S,0)
and suitable boundary conditions

— for constant parameters there exists a closed form solution
— in general has to be solved
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Tangman et. al (2008): compact scheme for 1d case,
remark on 2D case, final scheme is low order
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Literature (incomplete)

Ikonen/Toivanen (2007): compare different efficient, 2nd

order methods for solving American option pricing

problem

in't Hout/Foulon (2007): adapt different, 2nd order ADI

schemes to include mixed spatial derivative term

Tangman et. al (2008): compact scheme for 1d case,

remark on 2D case, final scheme is low order

finite element-finite volume (Zvan et. al,

1998), multigrid (Clarke/Parrott, 1999), sparse wavelet (Hilber
et. al, 2005), spectral methods (Zhu/Kopriva, 2010),
FFT-based (Osterlee et. al, 2012), RBF-FD (v. Sydow et. al,
2015), ...

— derive high-order compact finite difference scheme



High-order schemes

Higher-order approximation (e.g. fourth-order in spatial
discretisation parameter) can be obtained by increasing the
width of the computational stencil, e.g.
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High-order schemes

Higher-order approximation (e.g. fourth-order in spatial
discretisation parameter) can be obtained by increasing the
width of the computational stencil, e.g.

—Ui42 + 16UZ’+1 — 3OUZ + 16'LL1'_1 — Uj—2
12A22

— leads to increased bandwidth of the discretisation matrices

— complicates formulations of boundary conditions

— such approaches sometimes suffer from restrictive stability
conditions and spurious numerical oscillations



High-order compact schemes

These problems do not arise when using a compact stencil, e.g.
in 2D: use nine-point computational stencil involving the eight
nearest neighboring points of the reference grid point (4, j):
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Ui—1,5-1 Ui j—1 Ui41,5-1



High-order compact schemes

These problems do not arise when using a compact stencil, e.g.
in 2D: use nine-point computational stencil involving the eight
nearest neighboring points of the reference grid point (4, j):

Yi-tg+1 Wig+r  Witdj+1

Wi—1,5 Ui,j Uit1,5
Ui—1,5-1 Ui j—1 Ui41,5-1

— how to obtain high-order consistency?



High-order compact schemes

These problems do not arise when using a compact stencil, e.g.
in 2D: use nine-point computational stencil involving the eight
nearest neighboring points of the reference grid point (4, j):

Wi—1,5+1 Ui, j+1 Wit1,5+1
Wi—1,j Wi, j Uit1,5
Ui—1,5-1 Ui j—1 Ui41,5-1

— how to obtain high-order consistency?

operate on the differential equation as auxiliary relation
to obtain finite difference approximations for high-order
derivatives in the truncation error of a lower-order
approximation



High-order compact schemes: literature

High-order compact schemes for

elliptic problems: Collatz ('74), (Gupta et al. ('84,'85),
Spotz & Carey ('96)

parabolic problems (isotropic): Spotz & Carey ('01),
Karaa & Zhang ('02)

fully nonlinear parabolic PDEs: B.D., Fournié & Jiingel
('03,'04)

anisotropic, elliptic PDE, constant coefficients: Fournié &
Karaa ('06)



Heston PDE

Option price V = V(S,0,t) solves
Vi+ %SQO'VSS + pvoSVs, + %U%VM +rSVy
+ [K*(0" — ) — Aa]V, — 1V =0,
for S;0 > 0, 0 <t < T and subject to, e.g., for the put option
V(S,0,T) = max(K — 5,0)

and suitable boundary conditions
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allows to study the problem with one parameter less.



Parameters and boundary conditions

Introducing modified parameters

K=K +X 0=r"0"/(K"+ )
allows to study the problem with one parameter less.
Boundary conditions for the put option are

—Ke7TD T>t>0 0>0

—0, T>t>0,0>0,a S —
-0, T>t>0,5>0, as0 — 00
—0, T>t>0,5>0,as0—0



Transformation of the equation

Using

=In(S/K), y=o/v, t=T—t, u=exp(rt)V/K,

we obtain
1 1 0 — vy
Up — Evy(uquuyy) PUY Uy + (21)y r) Uy — K ” u, =0,

to be solved on R x R* with initial and boundary conditions.



Transformation of the equation

Using
r=m(S/K), y=o/v, t=T—t, u=exp(rt)V/K,

we obtain

1 1 0 — vy
ut—Evy(uquuyy) — PUY Uy + (ivy—r> Uy — K ” u, =0,

to be solved on R x R* with initial and boundary conditions.

B.D. and M. Fournié.

High-order compact finite difference scheme for option pricing in
stochastic volatility models.

J. Comput. Appl. Math. 236(17), 2012. (arXiv:1404.5140)
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High-order compact scheme

operate on the differential equation as auxiliary relation
to obtain finite difference approximations for high-order
derivatives in the truncation error

Use nine-point computational stencil involving the eight
nearest neighboring points of the reference grid point (4, j):

Ui—1,5+1 = Ug Ujj41 = U2 Uit1,j+1 = Us

Uj—1,5 = U3 U5 = Up Uit1,5 = U1
Uj—1,5—1 = U7 U j—1 = Ug Ujt1,5—1 = U

— consider first the problem with right-hand side f



Derivation of the high-order compact scheme

Introduce uniform grid with mesh spacing h in both the x- and
y-direction, standard is

1
_ §ij (521’@',]‘ + 5§ui7j) — pvyj5$5yui,j

1 0 — vy,
+ (§ij - T> 6xui,j - Kﬂéyuz] fz,]a

where &,, 62 (4, (55, respectively) denote the first and second
order central difference approximations
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Derivation of the high-order compact scheme

Introduce uniform grid with mesh spacing h in both the x- and
y-direction, standard is

1
_ §ij (521’@',]‘ + 5§ui7j) — pvyj5$5yui,j
1 0 — vy;
+ (§ij — 7“> Opli j — /{ﬂéyu” = fijs

where &,, 62 (4, (55, respectively) denote the first and second
order central difference approximations
is given by
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1

gpvth (uxyyy + um:my)

1 k(0 —

2r — Uy)h Ugzg + éthUyyy + O<h4)
v

1
Tij = ﬂvyh (Uozea + Uyyyy) +

12(

— seek second-order approximations to the derivatives



Derivation of the high-order compact scheme

Substituting these expressions the truncation error yields a
new expression for the error term 7, ; that consists only of
terms which are either

terms of order O(h*), or

terms of order O(h?) multiplied by derivatives of u which
can be approximated up to O(h?) within the nine-point
compact stencil



Derivation of the high-order compact scheme

Substituting these expressions the truncation error yields a
new expression for the error term 7, ; that consists only of
terms which are either

terms of order O(h*), or

terms of order O(h?) multiplied by derivatives of u which
can be approximated up to O(h?) within the nine-point
compact stencil

— inserting all into the central difference approximation of the
equation yields a O(h?') approximation to the elliptic

Heston PDE . .
> aw => i
1=0 1=0

with given coefficients a; and ~;
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— any time integrator can be implemented
— consider here methods involving two times steps:
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Euler (1 = 0), Crank-Nicolson (1 = 1/2) and backward Euler
(1 = 1) schemes.
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Time integration

Considering the time derivative in place of f(x,y)

— any time integrator can be implemented

— consider here methods involving two times steps:

For example, differencing at ¢, = (1 — p)t"™ + pt™*!, where

0 < p < 1 yields a class of integrators that include the forward
Euler (1 = 0), Crank-Nicolson (1 = 1/2) and backward Euler
(1 = 1) schemes.

Resulting fully discrete difference scheme for node (3, j)

Z poguy 4 w)oquy = Z Y6 uy,

. n+1l_,n
with (5t+u” = %

— for ;1 = 1/2 the scheme is of order and of order



Initial condition

The initial condition is given by the transformed payoff
function of the put option,

u(z,y,0) = max(l —exp(x),0), zeR, y>0.

m Kreiss (1970) states that we cannot achieve fourth order
convergence if the initial condition is not sufficiently
smooth.

m Smoothing operators are defined in the Fourier space, we
apply smoothing operator to the initial condition

1 3h 3h T y
U2, 22) = 2 /3h/3h G4 (ﬁ) O4 <E> ug (@1 —x, To—y)dzdy.



Final scheme

8 8
Final scheme can be written as E Bmf“ = E Guy' with
=0 =0

Bo =(((2y;> — 8)v™ + ((=8k — 8r)y; — 8pr)v® + (8x7y; > + 8r°)v?
— 16&29vyj + 8&292);/,16 + 16v3yj)h2 + (—16p2 + 4O)yj2114uk
Bi,3 =+ ((kOV? — vt — kyjv®)uk — (g + 20)0° + 202 )R + (((—y;2 + 2)0*
+ ((4r + 2r)y; + 4p'r)v3 — (2k6 + 4T2)U2)[,Lk + 2v3yj)h2
£ (doty;? + (=8y; ko — By;m)v® + By rOpu ) ukh + (8p° — 8)y; v ik,
Bag ==* ((2n2<9v — 2&21)2;1;3- — 2v3n)uk — 21)2yjn + 2vk6 — 21;3)h3 + ((2'u4
+ Qr»iijg + (—4n2yj2 + 2&9)1}2 + SNZG’ij - 4&292);#6 + 2113yj)h2
+ ((8yj2n + 8yjp'r)v3 — 4v4y‘72p — 8v2yj kO)pkh + (8p2 — 8)y‘72v4y‘k,
Bs,7 =((v'p + (—v°k + ryjp + )0 + (0 + 2r)ryj0° — 2rK0v)uk
+ 0% py)R® £ ((2p + Dy 2ot + (2 + 4p)sy;” + (—dpr — 2r)y;)v°
+ (—260 — 46p)mij2)uk:h + (-2 - 4p2 — 6p)yj2v4uk:,
Bo,s =((—v*p + (95 2k — Ky;p — 1% + (=0 — 2r)ny;v* + 2re0v)uk
—%pyj)h® £ (20 — Dy 20" + (2 = 4p)wy; > + (27 — dpr)y;)v®

+ (46p — 29)nyj'u2)u,kh + (74p2 + 6p — 2)y_7~2v4,u,k,



Final scheme

8 8
Final scheme can be written as E Bmf“ = E Guy' with
=0 =0

Co =16v%y;h% + (1 — wk(((8 — 2y;°)v" + (8 + 8r)y; + 8pr)v?

+ (—81‘2 — 8n2yj2)v2 + lﬁnzeuyj — 8&202)}12 + (—40 + 16p2)yj2114),
C1,3 =% (2r — (y5 + 20)0)0°h® + 20%y; 8% + (1 — k(£ (vry; +v° — KO)v h>

+ ('UQij — (4r + 2K)vY; + ar? 4+ 2Kk60 — 202 — 4pv7‘)v2h2

+ ((—4v + 8Kp>’(}3yj2 + (—8kbp + 8vr)v2yj)h + (81)2 — 8'()2;32)1}2'1/]-2)7
(2,4 =+ (2vK0 — 21)2yjn —20%R3 + 21)3yjh2 + (1 — u)k:(:l:Z(vB»i — k20v

+ nzvzyj)ha + (4l<,2v2yj2 - (21/2 + 8k0)Kkvy; + 2k0(2K0 — 1)2) - 2114)h,2

£ ((—80%k + 40*p)y; % + (8k00% — 8% pr)y)h + (—8v*p? + 8uH)y;?),
5,7 =07 pyih® + (1 — wk((WPy; %k — v(vkb + 2rsw + Ko p)y;

- 'u(v2'r — 2rKr0 + ’Usp))h2 + (*U(2v3p + 0% 4 4nv2p + 2v2n)yj2

+ v(2vk0 + 4vkOp + 4'u2p7' + 2v21")yj)h + v(2u3 + 6v3p + 4v3p2)yj2),
Co,8 = — v3py;h% + (1 — wk((—v3y; %k + v(vrb + 2o + K02 p)y;

+ v(v2r — 2rkf 4+ 'L)?’p))h,2 + (v(—2v3p +0% 4 4nv2p — 2v2n)yj2

+ v(2vk0 — dvkbOp + 4v2p7‘ - 2v2r)yj)h + 'u(2'u3 —60v°p + 4v3p2)yj2).



Numerical analysis: von Neumann stability

Rewrite u}!; as uj}; = g"e’"1717%> where I is the imaginary
unit, g" is the amplitude at time level n, and z; = 2wh/)\; and
2o = 2mh /) are phase angles with wavelengths A; and A, in
the range [—m, 7], respectively
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Numerical analysis: von Neumann stability

Rewrite u}!; as uj}; = g"e’"1717%> where I is the imaginary
unit, g" is the amplitude at time level n, and z; = 2wh/)\; and
2o = 2mh /) are phase angles with wavelengths A; and A, in
the range [—m, 7], respectively
— scheme is stable if for all z; and z the

G = g™ /g™ satisfies

G <1

We would need to study polynomials in 13 variables. ..
— consider case r = p=0and = 1/2

Theorem (B.D./Fournié '12)

Forr = p =0 and yx = 1/2 (Crank-Nicolson), the scheme is
unconditionally stable (von Neumann).
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Stability analysis: sketch of the proof

We need to study polynomials in 10 variables. ..
Define new variables

cs(5) a=ws(3), m=si(3), s=s(F)
cl = — Cy = — S1 =S8 | — So = SN | —
1 9 ) 2 9 ; 1 9 ) 2 9

2 —0 2
W s951 ( +Uy)’ _ 2w

(% K

which allow us to express G in terms of h, k,x, V, W and
trigonometric functions only
— stability criterion becomes

—8/{;h2(n4h2 + ng) <0
dh® + dyh* + dyh® + dy —

— possible to show that all n; and d; are positive
— numerator is negative, denominator is positive
— unconditional stability
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Stability validation for p # 0

Plot Iy-errors to detect stability restrictions depending on k/h?
or oscillations occurring for high cell Reynolds number (large

h)
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p
0.02
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0.2
o

002 003 004 005 005 007 008 009 0.1

little or no dependence of
the error on the parabolic
mesh ratio k/h?

— unconditional stability

for larger values of h
(higher cell Reynolds
number) error grows
gradually

— no oscillations occur

— conjecture that scheme is unconditionally stable and
convergent also for general choice of parameters



Amplification factor for p # 0

fix v, k, 6 to practical

b ’ relevant values and
replace all sin terms by
equivalent cos expressions
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Amplification factor for p # 0

fix v, k, 6 to practical

b - relevant values and
replace all sin terms by
equivalent cos expressions

-1,%10°7
stability condition depends
Max |G]"2 -1 on ,0 and C1, C2, Y, h| k

line-search
global-optimization
algorithm based on the
Powell's and Brent's
methods

-2,%x10°7

=37 %07

— maxima for each p are always negative and very
close to zero (|G|> =1 for y = 0)

— conjecture that stability condition is satisfied
although hard to prove analytically
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Numerical efficiency and convergence

We use the parameters
K =100, T=0.5, r=0.05 v=0.1, k=2, 0=0.01, p=-0.5

3 10°

X HOC X HOC
O 2™ order O 2" order

10

Z 10 Z 10

10’ : : ! 10’
10° 107 107 107 10° 10° 10
1, error I error

4

— for similar computational effort: orders of magnitude better
in error

— to achieve a given error level: order of magnitude less
computational effort
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— introduce transformation ¢ from non-uniform to uniform
grid:

A ~
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Non-uniform grids

concentrate grid points around strike K
— introduce transformation ¢ from non-uniform to uniform
grid:

A ~

S=In(S/K), ¢(x)=29

HOC scheme: 4th order in space, 2nd order in time

numerical results suggest unconditional stability

B.D., M. Fournié and C. Heuer.

High-order compact finite difference schemes for option pricing in
stochastic volatility models on non-uniform grids.

J. Comput. Appl. Math. 271, 2014. (arXiv:1504.5138)



High-order ADI schemes

Consider convection-diffusion equation
u = div(DVu) + ¢ - Vu

on a rectangular domain Q C R?, supplemented with initial
and boundary conditions with

C1 dll d12
p— D p—
‘ (02)7 (d21 d22)’

where D , positive definite diffusion matrix.
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Consider convection-diffusion equation
u = div(DVu) 4 ¢- Vu

on a rectangular domain Q C R?, supplemented with initial
and boundary conditions with

C1 dll d12
p— D p—
‘ (@)’ (d21 d22)’

where D , positive definite diffusion matrix.

Time: Hundsdorfer (2002) ADI, 2nd order in time
Space: HOC scheme, 4th order
B.D., M. Fournié, A. Rigal.
High-order ADI schemes for convection-diffusion equations with
mixed derivative terms.
In: Spectral and High Order Methods for PDEs, M. Azaiez et al.
(eds.), LNCSE 95, Springer, 2013. (arXiv:1505.07621)



Sparse grid combination technique

Further efficiency gains with sparse grids approach

[ ]
[
-]
-
i

D D — e full grid
[:l 1074 |~ | —o— sparse grid !

I e

comp. time [s]

B.D., C. Hendricks, J. Miles.

Sparse grid high-order ADI scheme for option pricing in stochastic
volatility models. In: Novel Methods in Computational Finance,
M. Ehrhardt et al. (eds.), pp. 295-312, Springer, 2017.
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additionally allow jumps in process for underlying asset
pricing PIDE with additional (nonlocal) integral term
implicit-explicit high-order scheme [cf. Salmi et al. '14]

|_error
time

‘?q‘ " o © Izerrormn
B.D. and A. Pitkin.
High-order compact finite difference scheme for option pricing in

stochastic volatility jump models.
J. Comput. Appl. Math. 355, 201-217, 2019. (arXiv:1704.05308)



Memory requirements: HOC vs. FD vs. FEM

Scheme h DOF l,-error l-error Time (s) Memory (kB)
0.4 121 36201 1.6891 0.016 6916
HOC 0.2 441 0.4728 0.2063 0.130 +1060
0.1 1681 0.0230 0.0168 1.106 +5536
0.05 6561 0.0022 0.0009 21.145 +18284
0.4 441 6.5837 2.3944 1.294 123128
FEM (p = 2) 0.2 1681 1.0438 0.3737 3.304 +1780
p= 0.1 6561 0.1522 0.0581 23.426 +8268
0.05 25921 0.0225 0.0088 300.019 +40828
0.4 121 14.8087 3.0653 0.036 6948
) 0.2 441 3.9321 0.8913 0.191 +1772
0.1 1681 0.8751 0.1806 1715 +8384
0.05 6561 0.1758 0.0364 28.706 +23064
0.4 121 5.5209 24373 1.072 123276
_ 0.2 441 1.8816 0.7876 1.462 +192
FEM (p = 1) 0.1 1681 0.3846 0.1166 4727 +2052

0.05 6561 0.0940 0.0354 49.171 +8176
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Scheme h DOF l,-error l-error Time (s) Memory (kB)
0.4 121 36201 1.6891 0.016 6916
HOC 0.2 441 0.4728 0.2063 0.130 +1060
0.1 1681 0.0230 0.0168 1.106 +5536
0.05 6561 0.0022 0.0009 21.145 +18284
0.4 441 6.5837 2.3944 1.294 123128
FEM (p = 2) 0.2 1681 1.0438 0.3737 3.304 +1780
p= 0.1 6561 0.1522 0.0581 23.426 +8268
0.05 25921 0.0225 0.0088 300.019 +40828
0.4 121 14.8087 3.0653 0.036 6948
D 0.2 441 3.9321 0.8913 0.191 +1772
0.1 1681 0.8751 0.1806 1715 +8384
0.05 6561 0.1758 0.0364 28.706 +23064
0.4 121 5.5209 24373 1.072 123276
_ 0.2 441 1.8816 0.7876 1.462 +192
FEM (p = 1) 0.1 1681 0.3846 0.1166 4727 +2052
0.05 6561 0.0940 0.0354 49.171 +8176

— HOC very parsimonious, achieves high-order convergence
without requiring additional unknowns, unlike finite
element methods with higher polynomial order basis



High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:

— derivation is algebraically demanding

— often ‘taylor-made’ for a specific application or rather small
class of problems

— algebraic complexity is even higher in the numerical
stability analysis
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Drawbacks of high-order compact (HOC) schemes:

— derivation is algebraically demanding

— often ‘taylor-made’ for a specific application or rather small
class of problems

— algebraic complexity is even higher in the numerical
stability analysis

Hence, in the mathematical literature:
— only few HOC schemes with stability analysis (mostly 1D)
— most works focus on isotropic case (Laplacian)

Can we generalize our HOC approach to a wider
class of problems with mixed derivative terms?



Parabolic initial-boundary value problem

uT+Za282+Z ”8 8 Z :g in Q x (0,7)

7J_
1<J

with initial condition uy = u(z1,...x,,0) and boundary
conditions, where a; = a;(x1,...x,,T) <0,

bij = bij(xl, .. ..%'n,T), C; = CZ'(ZEh .. .ZEn,T) and
g=g(r1,...2,,7T)



Parabolic initial-boundary value problem

Uy + Za282+2”8 oz, Z :g in Q x (0,7)

7J_
1<J

with initial condition uy = u(z1,...x,,0) and boundary
conditions, where a; = a;(x1,...x,,T) <0,
bij = bij(xl, Ty, T), C; = CZ'(ZEh C ZEn,T) and
g=g(r1,...2,,7T)
HOC scheme: 4th order in space, 2nd order in time
arbitrary spatial dimension
stability analysis in 2D and 3D
B.D. and C. Heuer.
High-order compact schemes for parabolic problems with mixed

derivatives in multiple space dimensions.
SIAM J. Numer. Anal. 53(5), 2015. (arXiv:1506.06711)



high-order compact (HOC) finite difference schemes for
option pricing

fourth-order in space, second-order in time

thorough Fourier analysis: unconditional stability

can be extended to non-uniform grids, HOC-ADI, sparse
grids, PIDE, ...

parsimonious in terms of memory requirements and
computational effort, e.g. in comparison with finite
element methods with higher polynomial order
approach works for more general parabolic
initial-boundary value problems in multiple space
dimension



high-order compact (HOC) finite difference schemes for
option pricing
fourth-order in space, second-order in time
thorough Fourier analysis: unconditional stability
can be extended to non-uniform grids, HOC-ADI, sparse
grids, PIDE, ...
parsimonious in terms of memory requirements and
computational effort, e.g. in comparison with finite
element methods with higher polynomial order
approach works for more general parabolic
initial-boundary value problems in multiple space
dimension
C++ implementation (CC BY 4.0) for Bates model available at
http://dx.doi.org/10.17632/964tyzmwrn.1



high-order compact (HOC) finite difference schemes for
option pricing
fourth-order in space, second-order in time
thorough Fourier analysis: unconditional stability
can be extended to non-uniform grids, HOC-ADI, sparse
grids, PIDE, ...
parsimonious in terms of memory requirements and
computational effort, e.g. in comparison with finite
element methods with higher polynomial order
approach works for more general parabolic
initial-boundary value problems in multiple space
dimension
C++ implementation (CC BY 4.0) for Bates model available at
http://dx.doi.org/10.17632/964tyzmwrn.1

THANK YOU!



