High-order compact finite difference schemes for option pricing

Bertram Düring

Department of Mathematics

Joint work with
M. Fournié, C. Heuer, J. Miles, A. Pitkin, A. Rigal

Stochastic volatility model: Heston (1993)

Let $W=\left(W^{(1)}, W^{(2)}\right)$ denote a two-dimensional Brownian motion with correlation $d W^{(1)}(t) d W^{(2)}(t)=\rho d t$

Stochastic volatility model: Heston (1993)

Let $W=\left(W^{(1)}, W^{(2)}\right)$ denote a two-dimensional Brownian motion with correlation $d W^{(1)}(t) d W^{(2)}(t)=\rho d t$

Underlying asset $S(t)$ follows

$$
\begin{aligned}
d S(t) & =\bar{\mu} S(t) d t+\sqrt{\sigma(t)} S(t) d W^{(1)}(t) \\
d \sigma(t) & =\kappa^{*}\left(\theta^{*}-\sigma(t)\right) d t+v \sqrt{\sigma(t)} d W^{(2)}(t)
\end{aligned}
$$

for $0<t \leq T$ with $S(0), \sigma(0)>0$.
$\bar{\mu}$: drift
κ^{*} : mean reversion speed
v : volatility of volatility
θ^{*} : long-run mean of σ

Heston PDE

Option price $V=V(S, \sigma, t)$ solves

$$
\begin{aligned}
V_{t}+\frac{1}{2} S^{2} \sigma V_{S S}+\rho v \sigma S & V_{S \sigma}+\frac{1}{2} v^{2} \sigma V_{\sigma \sigma}+r S V_{S} \\
& +\left[\kappa^{*}\left(\theta^{*}-\sigma\right)-\lambda \sigma\right] V_{\sigma}-r V=0
\end{aligned}
$$

for $S, \sigma>0,0 \leq t<T$ and subject to, e.g., for the put option

$$
V(S, \sigma, T)=\max (K-S, 0)
$$

and suitable boundary conditions

Heston PDE

Option price $V=V(S, \sigma, t)$ solves

$$
\begin{aligned}
V_{t}+\frac{1}{2} S^{2} \sigma V_{S S}+\rho v \sigma S & V_{S \sigma}+\frac{1}{2} v^{2} \sigma V_{\sigma \sigma}+r S V_{S} \\
& +\left[\kappa^{*}\left(\theta^{*}-\sigma\right)-\lambda \sigma\right] V_{\sigma}-r V=0
\end{aligned}
$$

for $S, \sigma>0,0 \leq t<T$ and subject to, e.g., for the put option

$$
V(S, \sigma, T)=\max (K-S, 0)
$$

and suitable boundary conditions
\rightarrow for constant parameters there exists a closed form solution
\rightarrow in general has to be solved numerically

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- Tangman et. al (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- Tangman et. al (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order
Other approaches: finite element-finite volume (Zvan et. al, 1998), multigrid (Clarke/Parrott, 1999), sparse wavelet (Hilber et. al, 2005), spectral methods (Zhu/Kopriva, 2010),
FFT-based (Osterlee et. al, 2012), RBF-FD (v. Sydow et. al, 2015), ...

Literature (incomplete)

Finite difference literature:

- Ikonen/Toivanen (2007): compare different efficient, 2nd order methods for solving American option pricing problem
- in't Hout/Foulon (2007): adapt different, 2nd order ADI schemes to include mixed spatial derivative term
- Tangman et. al (2008): compact scheme for 1d case, remark on 2D case, final scheme is low order
Other approaches: finite element-finite volume (Zvan et. al, 1998), multigrid (Clarke/Parrott, 1999), sparse wavelet (Hilber et. al, 2005), spectral methods (Zhu/Kopriva, 2010),
FFT-based (Osterlee et. al, 2012), RBF-FD (v. Sydow et. al, 2015), ...
\rightarrow Aim: derive high-order compact finite difference scheme

High-order schemes

Higher-order approximation (e.g. fourth-order in spatial discretisation parameter) can be obtained by increasing the width of the computational stencil, e.g.

$$
\left(u_{x x}\right)_{i} \approx \frac{-u_{i+2}+16 u_{i+1}-30 u_{i}+16 u_{i-1}-u_{i-2}}{12 \Delta x^{2}}
$$

High-order schemes

Higher-order approximation (e.g. fourth-order in spatial discretisation parameter) can be obtained by increasing the width of the computational stencil, e.g.

$$
\left(u_{x x}\right)_{i} \approx \frac{-u_{i+2}+16 u_{i+1}-30 u_{i}+16 u_{i-1}-u_{i-2}}{12 \Delta x^{2}}
$$

However:

\rightarrow leads to increased bandwidth of the discretisation matrices
\rightarrow complicates formulations of boundary conditions
\rightarrow such approaches sometimes suffer from restrictive stability conditions and spurious numerical oscillations

High-order compact schemes

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j) :

$$
\left(\begin{array}{rrr}
u_{i-1, j+1} & u_{i, j+1} & u_{i+1, j+1} \\
u_{i-1, j} & u_{i, j} & u_{i+1, j} \\
u_{i-1, j-1} & u_{i, j-1} & u_{i+1, j-1}
\end{array}\right)
$$

High-order compact schemes

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j) :

$$
\left(\begin{array}{rrr}
u_{i-1, j+1} & u_{i, j+1} & u_{i+1, j+1} \\
u_{i-1, j} & u_{i, j} & u_{i+1, j} \\
u_{i-1, j-1} & u_{i, j-1} & u_{i+1, j-1}
\end{array}\right)
$$

\rightarrow how to obtain high-order consistency?

High-order compact schemes

These problems do not arise when using a compact stencil, e.g. in 2D: use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j) :

$$
\left(\begin{array}{rrr}
u_{i-1, j+1} & u_{i, j+1} & u_{i+1, j+1} \\
u_{i-1, j} & u_{i, j} & u_{i+1, j} \\
u_{i-1, j-1} & u_{i, j-1} & u_{i+1, j-1}
\end{array}\right)
$$

\rightarrow how to obtain high-order consistency?
Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error of a lower-order approximation

High-order compact schemes: literature

High-order compact schemes for

- elliptic problems: Collatz ('74), (Gupta et al. ('84,'85), Spotz \& Carey ('96)
- parabolic problems (isotropic): Spotz \& Carey ('01), Karaa \& Zhang ('02)
- fully nonlinear parabolic PDEs: B.D., Fournié \& Jüngel ('03,'04)
- anisotropic, elliptic PDE, constant coefficients: Fournié \& Karaa ('06)

Heston PDE

Option price $V=V(S, \sigma, t)$ solves

$$
\begin{aligned}
V_{t}+\frac{1}{2} S^{2} \sigma V_{S S}+\rho v \sigma S & V_{S \sigma}+\frac{1}{2} v^{2} \sigma V_{\sigma \sigma}+r S V_{S} \\
& +\left[\kappa^{*}\left(\theta^{*}-\sigma\right)-\lambda \sigma\right] V_{\sigma}-r V=0
\end{aligned}
$$

for $S, \sigma>0,0 \leq t<T$ and subject to, e.g., for the put option

$$
V(S, \sigma, T)=\max (K-S, 0)
$$

and suitable boundary conditions

Parameters and boundary conditions

Introducing modified parameters

$$
\kappa=\kappa^{*}+\lambda, \quad \theta=\kappa^{*} \theta^{*} /\left(\kappa^{*}+\lambda\right)
$$

allows to study the problem with one parameter less.

Parameters and boundary conditions

Introducing modified parameters

$$
\kappa=\kappa^{*}+\lambda, \quad \theta=\kappa^{*} \theta^{*} /\left(\kappa^{*}+\lambda\right)
$$

allows to study the problem with one parameter less.
Boundary conditions for the put option are

$$
\begin{aligned}
V(0, \sigma, t) & =K e^{-r(T-t)}, \quad T>t \geq 0, \sigma>0 \\
V(S, \sigma, t) & \rightarrow 0, \quad T>t \geq 0, \sigma>0, \text { as } S \rightarrow \infty \\
V_{\sigma}(S, \sigma, t) & \rightarrow 0, \quad T>t \geq 0, \quad S>0, \text { as } \sigma \rightarrow \infty \\
V_{\sigma}(S, \sigma, t) & \rightarrow 0, \quad T>t \geq 0, \quad S>0, \text { as } \sigma \rightarrow 0
\end{aligned}
$$

Transformation of the equation

Using

$$
x=\ln (S / K), \quad y=\sigma / v, \quad \tilde{t}=T-t, \quad u=\exp (r \tilde{t}) V / K
$$

we obtain
$u_{t}-\frac{1}{2} v y\left(u_{x x}+u_{y y}\right)-\rho v y u_{x y}+\left(\frac{1}{2} v y-r\right) u_{x}-\kappa \frac{\theta-v y}{v} u_{y}=0$,
to be solved on $\mathbb{R} \times \mathbb{R}^{+}$with initial and boundary conditions.

Transformation of the equation

Using

$$
x=\ln (S / K), \quad y=\sigma / v, \quad \tilde{t}=T-t, \quad u=\exp (r \tilde{t}) V / K
$$

we obtain
$u_{t}-\frac{1}{2} v y\left(u_{x x}+u_{y y}\right)-\rho v y u_{x y}+\left(\frac{1}{2} v y-r\right) u_{x}-\kappa \frac{\theta-v y}{v} u_{y}=0$,
to be solved on $\mathbb{R} \times \mathbb{R}^{+}$with initial and boundary conditions.
B.D. and M. Fournié.

High-order compact finite difference scheme for option pricing in stochastic volatility models.
J. Comput. Appl. Math. 236(17), 2012. (arXiv:1404.5140)

High-order compact scheme

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error

High-order compact scheme

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error

Use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j) :

$$
\left(\begin{array}{rrrr}
u_{i-1, j+1} & =u_{6} & u_{i, j+1} & =u_{2}
\end{array} \begin{array}{lr}
u_{i+1, j+1} & =u_{5} \\
u_{i-1, j} & =u_{3} \\
u_{i, j} & =u_{0}
\end{array} \quad u_{i+1, j}=u_{1},\right.
$$

High-order compact scheme

Idea: operate on the differential equation as auxiliary relation to obtain finite difference approximations for high-order derivatives in the truncation error

Use nine-point computational stencil involving the eight nearest neighboring points of the reference grid point (i, j) :

$$
\left(\begin{array}{rrrr}
u_{i-1, j+1}=u_{6} & u_{i, j+1}=u_{2} & u_{i+1, j+1}=u_{5} \\
u_{i-1, j}=u_{3} & u_{i, j}=u_{0} & u_{i+1, j}=u_{1} \\
u_{i-1, j-1}=u_{7} & u_{i, j-1}=u_{4} & u_{i+1, j-1}=u_{8}
\end{array}\right)
$$

\rightarrow consider first the elliptic problem with right-hand side f

Derivation of the high-order compact scheme

Introduce uniform grid with mesh spacing h in both the x - and y-direction, standard central difference approximation is

$$
\begin{aligned}
& -\frac{1}{2} v y_{j}\left(\delta_{x}^{2} u_{i, j}+\delta_{y}^{2} u_{i, j}\right)-\rho v y_{j} \delta_{x} \delta_{y} u_{i, j} \\
& \quad+\left(\frac{1}{2} v y_{j}-r\right) \delta_{x} u_{i, j}-\kappa \frac{\theta-v y_{j}}{v} \delta_{y} u_{i, j}-\tau_{i, j}=f_{i, j}
\end{aligned}
$$

where $\delta_{x}, \delta_{x}^{2}\left(\delta_{y}, \delta_{y}^{2}\right.$, respectively) denote the first and second order central difference approximations

Derivation of the high-order compact scheme

Introduce uniform grid with mesh spacing h in both the x - and y-direction, standard central difference approximation is

$$
\begin{aligned}
& -\frac{1}{2} v y_{j}\left(\delta_{x}^{2} u_{i, j}+\delta_{y}^{2} u_{i, j}\right)-\rho v y_{j} \delta_{x} \delta_{y} u_{i, j} \\
& \quad+\left(\frac{1}{2} v y_{j}-r\right) \delta_{x} u_{i, j}-\kappa \frac{\theta-v y_{j}}{v} \delta_{y} u_{i, j}-\tau_{i, j}=f_{i, j}
\end{aligned}
$$

where $\delta_{x}, \delta_{x}^{2}\left(\delta_{y}, \delta_{y}^{2}\right.$, respectively) denote the first and second order central difference approximations
Truncation error is given by

$$
\begin{aligned}
\tau_{i, j}= & \frac{1}{24} v y h^{2}\left(u_{x x x x}+u_{y y y y}\right)+\frac{1}{6} \rho v y h^{2}\left(u_{x y y y}+u_{x x x y}\right) \\
& +\frac{1}{12}(2 r-v y) h^{2} u_{x x x}+\frac{1}{6} \frac{\kappa(\theta-v y)}{v} h^{2} u_{y y y}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Derivation of the high-order compact scheme

Introduce uniform grid with mesh spacing h in both the x - and y-direction, standard central difference approximation is

$$
\begin{aligned}
& -\frac{1}{2} v y_{j}\left(\delta_{x}^{2} u_{i, j}+\delta_{y}^{2} u_{i, j}\right)-\rho v y_{j} \delta_{x} \delta_{y} u_{i, j} \\
& \quad+\left(\frac{1}{2} v y_{j}-r\right) \delta_{x} u_{i, j}-\kappa \frac{\theta-v y_{j}}{v} \delta_{y} u_{i, j}-\tau_{i, j}=f_{i, j}
\end{aligned}
$$

where $\delta_{x}, \delta_{x}^{2}\left(\delta_{y}, \delta_{y}^{2}\right.$, respectively) denote the first and second order central difference approximations
Truncation error is given by

$$
\begin{aligned}
\tau_{i, j}= & \frac{1}{24} v y h^{2}\left(u_{x x x x}+u_{y y y y}\right)+\frac{1}{6} \rho v y h^{2}\left(u_{x y y y}+u_{x x x y}\right) \\
& +\frac{1}{12}(2 r-v y) h^{2} u_{x x x}+\frac{1}{6} \frac{\kappa(\theta-v y)}{v} h^{2} u_{y y y}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

\rightarrow seek second-order approximations to the derivatives

Derivation of the high-order compact scheme

Substituting these expressions the truncation error yields a new expression for the error term $\tau_{i, j}$ that consists only of terms which are either

- terms of order $\mathcal{O}\left(h^{4}\right)$, or
- terms of order $\mathcal{O}\left(h^{2}\right)$ multiplied by derivatives of u which can be approximated up to $\mathcal{O}\left(h^{2}\right)$ within the nine-point compact stencil

Derivation of the high-order compact scheme

Substituting these expressions the truncation error yields a new expression for the error term $\tau_{i, j}$ that consists only of terms which are either

- terms of order $\mathcal{O}\left(h^{4}\right)$, or
- terms of order $\mathcal{O}\left(h^{2}\right)$ multiplied by derivatives of u which can be approximated up to $\mathcal{O}\left(h^{2}\right)$ within the nine-point compact stencil
\rightarrow inserting all into the central difference approximation of the equation yields a $\mathcal{O}\left(h^{4}\right)$ approximation to the elliptic Heston PDE

$$
\sum_{l=0}^{8} \alpha_{l} u_{l}=\sum_{l=0}^{8} \gamma_{l} f_{l}
$$

with given coefficients α_{l} and γ_{l}

Time integration

Considering the time derivative in place of $f(x, y)$
\rightarrow any time integrator can be implemented
\rightarrow consider here methods involving two times steps:

Time integration

Considering the time derivative in place of $f(x, y)$
\rightarrow any time integrator can be implemented
\rightarrow consider here methods involving two times steps:
For example, differencing at $t_{\mu}=(1-\mu) t^{n}+\mu t^{n+1}$, where $0 \leq \mu \leq 1$ yields a class of integrators that include the forward Euler ($\mu=0$), Crank-Nicolson ($\mu=1 / 2$) and backward Euler ($\mu=1$) schemes.

Time integration

Considering the time derivative in place of $f(x, y)$
\rightarrow any time integrator can be implemented
\rightarrow consider here methods involving two times steps:
For example, differencing at $t_{\mu}=(1-\mu) t^{n}+\mu t^{n+1}$, where $0 \leq \mu \leq 1$ yields a class of integrators that include the forward Euler $(\mu=0)$, Crank-Nicolson ($\mu=1 / 2$) and backward Euler ($\mu=1$) schemes.
Resulting fully discrete difference scheme for node (i, j)

$$
\sum_{l=0}^{8} \mu \alpha_{l} u_{l}^{n+1}+(1-\mu) \alpha_{l} u_{l}^{n}=\sum_{l=0}^{8} \gamma_{l} \delta_{t}^{+} u_{l}^{n}
$$

with $\delta_{t}^{+} u^{n}=\frac{u^{n+1}-u^{n}}{k}$

Time integration

Considering the time derivative in place of $f(x, y)$
\rightarrow any time integrator can be implemented
\rightarrow consider here methods involving two times steps:
For example, differencing at $t_{\mu}=(1-\mu) t^{n}+\mu t^{n+1}$, where $0 \leq \mu \leq 1$ yields a class of integrators that include the forward Euler $(\mu=0)$, Crank-Nicolson ($\mu=1 / 2$) and backward Euler ($\mu=1$) schemes.
Resulting fully discrete difference scheme for node (i, j)

$$
\sum_{l=0}^{8} \mu \alpha_{l} u_{l}^{n+1}+(1-\mu) \alpha_{l} u_{l}^{n}=\sum_{l=0}^{8} \gamma_{l} \delta_{t}^{+} u_{l}^{n}
$$

with $\delta_{t}^{+} u^{n}=\frac{u^{n+1}-u^{n}}{k}$
\rightarrow for $\mu=1 / 2$ the scheme is of order two in time and of order four in space

Initial condition

The initial condition is given by the transformed payoff function of the put option,

$$
u(x, y, 0)=\max (1-\exp (x), 0), \quad x \in \mathbb{R}, \quad y>0
$$

- Kreiss (1970) states that we cannot achieve fourth order convergence if the initial condition is not sufficiently smooth.
- Smoothing operators are defined in the Fourier space, we apply smoothing operator to the initial condition

$$
\tilde{u}_{0}\left(x_{1}, x_{2}\right)=\frac{1}{h^{2}} \int_{-3 h}^{3 h} \int_{-3 h}^{3 h} \phi_{4}\left(\frac{x}{h}\right) \phi_{4}\left(\frac{y}{h}\right) u_{0}\left(x_{1}-x, x_{2}-y\right) d x d y .
$$

Final scheme

Final scheme can be written as $\sum_{l=0}^{8} \beta_{l} u_{l}^{n+1}=\sum_{l=0}^{8} \zeta_{l} u_{l}^{n}$ with

$$
\begin{aligned}
\beta_{0}= & \left(\left(\left(2 y_{j}^{2}-8\right) v^{4}+\left((-8 \kappa-8 r) y_{j}-8 \rho r\right) v^{3}+\left(8 \kappa^{2} y_{j}^{2}+8 r^{2}\right) v^{2}\right.\right. \\
& \left.\left.-16 \kappa^{2} \theta v y_{j}+8 \kappa^{2} \theta^{2}\right) \mu k+16 v^{3} y_{j}\right) h^{2}+\left(-16 \rho^{2}+40\right) y_{j}{ }^{2} v^{4} \mu k \\
\beta_{1,3}= & \pm\left(\left(\kappa \theta v^{2}-v^{4}-\kappa y_{j} v^{3}\right) \mu k-\left(y_{j}+2 \rho\right) v^{3}+2 v^{2} r\right) h^{3}+\left(\left(\left(-y_{j}{ }^{2}+2\right) v^{4}\right.\right. \\
& \left.\left.+\left((4 r+2 \kappa) y_{j}+4 \rho r\right) v^{3}-\left(2 \kappa \theta+4 r^{2}\right) v^{2}\right) \mu k+2 v^{3} y_{j}\right) h^{2} \\
& \pm\left(4 v^{4} y_{j}{ }^{2}+\left(-8 y_{j}{ }^{2} \kappa \rho-8 y_{j} r\right) v^{3}+8 y_{j} \kappa \theta \rho v^{2}\right) \mu k h+\left(8 \rho^{2}-8\right) y_{j}{ }^{2} v^{4} \mu k, \\
\beta_{2,4}= & \pm\left(\left(2 \kappa^{2} \theta v-2 \kappa^{2} v^{2} y_{j}-2 v^{3} \kappa\right) \mu k-2 v^{2} y_{j} \kappa+2 v \kappa \theta-2 v^{3}\right) h^{3}+\left(\left(2 v^{4}\right.\right. \\
& \left.\left.+2 \kappa y_{j} v^{3}+\left(-4 \kappa^{2} y_{j}{ }^{2}+2 \kappa \theta\right) v^{2}+8 \kappa^{2} \theta v y_{j}-4 \kappa^{2} \theta^{2}\right) \mu k+2 v^{3} y_{j}\right) h^{2} \\
& \pm\left(\left(8 y_{j}{ }^{2} \kappa+8 y_{j} \rho r\right) v^{3}-4 v^{4} y_{j}{ }^{2} \rho-8 v^{2} y_{j} \kappa \theta\right) \mu k h+\left(8 \rho^{2}-8\right) y_{j}{ }^{2} v^{4} \mu k, \\
\beta_{5,7}= & \left(\left(v^{4} \rho+\left(-y^{2} \kappa+\kappa y_{j} \rho+r\right) v^{3}+(\theta+2 r) \kappa y_{j} v^{2}-2 r \kappa \theta v\right) \mu k\right. \\
& \left.+v^{3} \rho y_{j}\right) h^{2} \pm\left((2 \rho+1) y_{j}{ }^{2} v^{4}+\left((2+4 \rho) \kappa y_{j}{ }^{2}+(-4 \rho r-2 r) y_{j}\right) v^{3}\right. \\
& \left.+(-2 \theta-4 \theta \rho) \kappa y_{j} v^{2}\right) \mu k h+\left(-2-4 \rho^{2}-6 \rho\right) y_{j}{ }^{2} v^{4} \mu k, \\
\beta_{6,8}= & \left(\left(-v^{4} \rho+\left(y_{j}{ }^{2} \kappa-\kappa y_{j} \rho-r\right) v^{3}+(-\theta-2 r) \kappa y_{j} v^{2}+2 r \kappa \theta v\right) \mu k\right. \\
& \left.-v^{3} \rho y_{j}\right) h^{2} \pm\left((2 \rho-1) y_{j}{ }^{2} v^{4}+\left((2-4 \rho) \kappa y_{j}{ }^{2}+(2 r-4 \rho r) y_{j}\right) v^{3}\right. \\
& \left.+(4 \theta \rho-2 \theta) \kappa y_{j} v^{2}\right) \mu k h+\left(-4 \rho^{2}+6 \rho-2\right) y_{j}^{2} v^{4} \mu k,
\end{aligned}
$$

Final scheme

Final scheme can be written as $\sum_{l=0}^{8} \beta_{l} u_{l}^{n+1}=\sum_{l=0}^{8} \zeta_{l} u_{l}^{n}$ with

$$
\begin{aligned}
\zeta_{0}= & 16 v^{3} y_{j} h^{2}+(1-\mu) k\left(\left(\left(8-2 y_{j}^{2}\right) v^{4}+\left((8 \kappa+8 r) y_{j}+8 \rho r\right) v^{3}\right.\right. \\
& \left.\left.+\left(-8 r^{2}-8 \kappa^{2} y_{j}^{2}\right) v^{2}+16 \kappa^{2} \theta v y_{j}-8 \kappa^{2} \theta^{2}\right) h^{2}+\left(-40+16 \rho^{2}\right) y_{j}^{2} v^{4}\right), \\
\zeta_{1,3}= & \pm\left(2 r-\left(y_{j}+2 \rho\right) v\right) v^{2} h^{3}+2 v^{3} y_{j} h^{2}+(1-\mu) k\left(\pm\left(v \kappa y_{j}+v^{2}-\kappa \theta\right) v^{2} h^{3}\right. \\
& +\left(v^{2} y_{j}^{2}-(4 r+2 \kappa) v y_{j}+4 r^{2}+2 \kappa \theta-2 v^{2}-4 \rho v r\right) v^{2} h^{2} \\
& \left. \pm\left((-4 v+8 \kappa \rho) v^{3} y_{j}^{2}+(-8 \kappa \theta \rho+8 v r) v^{2} y_{j}\right) h+\left(8 v^{2}-8 v^{2} \rho^{2}\right) v^{2} y_{j}^{2}\right), \\
\zeta_{2,4}= & \pm\left(2 v \kappa \theta-2 v^{2} y_{j} \kappa-2 v^{3}\right) h^{3}+2 v^{3} y_{j} h^{2}+(1-\mu) k\left(\pm 2\left(v^{3} \kappa-\kappa^{2} \theta v\right.\right. \\
& \left.+\kappa^{2} v^{2} y_{j}\right) h^{3}+\left(4 \kappa^{2} v^{2} y_{j}^{2}-\left(2 v^{2}+8 \kappa \theta\right) \kappa v y_{j}+2 \kappa \theta\left(2 \kappa \theta-v^{2}\right)-2 v^{4}\right) h^{2} \\
& \left. \pm\left(\left(-8 v^{3} \kappa+4 v^{4} \rho\right) y_{j}^{2}+\left(8 \kappa \theta v^{2}-8 v^{3} \rho r\right) y_{j}\right) h+\left(-8 v^{4} \rho^{2}+8 v^{4}\right) y_{j}^{2}\right), \\
\zeta_{5,7}= & v^{3} \rho y_{j} h^{2}+(1-\mu) k\left(\left(v^{3} y_{j}^{2} \kappa-v\left(v \kappa \theta+2 r \kappa v+\kappa v^{2} \rho\right) y_{j}\right.\right. \\
& \left.-v\left(v^{2} r-2 r \kappa \theta+v^{3} \rho\right)\right) h^{2} \pm\left(-v\left(2 v^{3} \rho+v^{3}+4 \kappa v^{2} \rho+2 v^{2} \kappa\right) y_{j}^{2}\right. \\
& \left.\left.+v\left(2 v \kappa \theta+4 v \kappa \theta \rho+4 v^{2} \rho r+2 v^{2} r\right) y_{j}\right) h+v\left(2 v^{3}+6 v^{3} \rho+4 v^{3} \rho^{2}\right) y_{j}^{2}\right), \\
\zeta_{6,8}= & -v^{3} \rho y_{j} h^{2}+(1-\mu) k\left(\left(-v^{3} y_{j}^{2} \kappa+v\left(v \kappa \theta+2 r \kappa v+\kappa v^{2} \rho\right) y_{j}\right.\right. \\
& \left.+v\left(v^{2} r-2 r \kappa \theta+v^{3} \rho\right)\right) h^{2} \pm\left(v\left(-2 v^{3} \rho+v^{3}+4 \kappa v^{2} \rho-2 v^{2} \kappa\right) y_{j}^{2}\right. \\
& \left.\left.+v\left(2 v \kappa \theta-4 v \kappa \theta \rho+4 v^{2} \rho r-2 v^{2} r\right) y_{j}\right) h+v\left(2 v^{3}-6 v^{3} \rho+4 v^{3} \rho^{2}\right) y_{j}^{2}\right) .
\end{aligned}
$$

Numerical analysis: von Neumann stability

Rewrite $u_{i, j}^{n}$ as $u_{i, j}^{n}=g^{n} e^{I i z_{1}+I j z_{2}}$ where I is the imaginary unit, g^{n} is the amplitude at time level n, and $z_{1}=2 \pi h / \lambda_{1}$ and $z_{2}=2 \pi h / \lambda_{2}$ are phase angles with wavelengths λ_{1} and λ_{2}, in the range $[-\pi, \pi]$, respectively

Numerical analysis: von Neumann stability

Rewrite $u_{i, j}^{n}$ as $u_{i, j}^{n}=g^{n} e^{I i z_{1}+I j z_{2}}$ where I is the imaginary unit, g^{n} is the amplitude at time level n, and $z_{1}=2 \pi h / \lambda_{1}$ and $z_{2}=2 \pi h / \lambda_{2}$ are phase angles with wavelengths λ_{1} and λ_{2}, in the range $[-\pi, \pi]$, respectively
\rightarrow scheme is stable if for all z_{1} and z_{2} the amplification factor $G=g^{n+1} / g^{n}$ satisfies

$$
|G|^{2} \leq 1
$$

Numerical analysis: von Neumann stability

Rewrite $u_{i, j}^{n}$ as $u_{i, j}^{n}=g^{n} e^{I i z_{1}+I j z_{2}}$ where I is the imaginary unit, g^{n} is the amplitude at time level n, and $z_{1}=2 \pi h / \lambda_{1}$ and $z_{2}=2 \pi h / \lambda_{2}$ are phase angles with wavelengths λ_{1} and λ_{2}, in the range $[-\pi, \pi]$, respectively
\rightarrow scheme is stable if for all z_{1} and z_{2} the amplification
factor $G=g^{n+1} / g^{n}$ satisfies

$$
|G|^{2} \leq 1
$$

We would need to study polynomials in 13 variables...

Numerical analysis: von Neumann stability

Rewrite $u_{i, j}^{n}$ as $u_{i, j}^{n}=g^{n} e^{I i z_{1}+I j z_{2}}$ where I is the imaginary unit, g^{n} is the amplitude at time level n, and $z_{1}=2 \pi h / \lambda_{1}$ and $z_{2}=2 \pi h / \lambda_{2}$ are phase angles with wavelengths λ_{1} and λ_{2}, in the range $[-\pi, \pi]$, respectively
\rightarrow scheme is stable if for all z_{1} and z_{2} the amplification
factor $G=g^{n+1} / g^{n}$ satisfies

$$
|G|^{2} \leq 1
$$

We would need to study polynomials in 13 variables...
\rightarrow consider case $r=\rho=0$ and $\mu=1 / 2$

Numerical analysis: von Neumann stability

Rewrite $u_{i, j}^{n}$ as $u_{i, j}^{n}=g^{n} e^{I i z_{1}+I j z_{2}}$ where I is the imaginary unit, g^{n} is the amplitude at time level n, and $z_{1}=2 \pi h / \lambda_{1}$ and $z_{2}=2 \pi h / \lambda_{2}$ are phase angles with wavelengths λ_{1} and λ_{2}, in the range $[-\pi, \pi]$, respectively
\rightarrow scheme is stable if for all z_{1} and z_{2} the amplification
factor $G=g^{n+1} / g^{n}$ satisfies

$$
|G|^{2} \leq 1
$$

We would need to study polynomials in 13 variables...
\rightarrow consider case $r=\rho=0$ and $\mu=1 / 2$

Theorem (B.D./Fournié '12)

For $r=\rho=0$ and $\mu=1 / 2$ (Crank-Nicolson), the scheme is unconditionally stable (von Neumann).

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...
Define new variables

$$
\begin{gathered}
c_{1}=\cos \left(\frac{z_{1}}{2}\right), \quad c_{2}=\cos \left(\frac{z_{2}}{2}\right), \quad s_{1}=\sin \left(\frac{z_{1}}{2}\right), \quad s_{2}=\sin \left(\frac{z_{2}}{2}\right) \\
W=-\frac{2 s_{2} s_{1}(-\theta+v y)}{v}, \quad V=\frac{2 v y}{\kappa}
\end{gathered}
$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...
Define new variables

$$
\begin{gathered}
c_{1}=\cos \left(\frac{z_{1}}{2}\right), \quad c_{2}=\cos \left(\frac{z_{2}}{2}\right), \quad s_{1}=\sin \left(\frac{z_{1}}{2}\right), \quad s_{2}=\sin \left(\frac{z_{2}}{2}\right) \\
W=-\frac{2 s_{2} s_{1}(-\theta+v y)}{v}, \quad V=\frac{2 v y}{\kappa}
\end{gathered}
$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only
\rightarrow stability criterion becomes

$$
\frac{-8 k h^{2}\left(n_{4} h^{2}+n_{2}\right)}{d_{6} h^{6}+d_{4} h^{4}+d_{2} h^{2}+d_{0}} \leq 0
$$

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...
Define new variables

$$
\begin{gathered}
c_{1}=\cos \left(\frac{z_{1}}{2}\right), \quad c_{2}=\cos \left(\frac{z_{2}}{2}\right), \quad s_{1}=\sin \left(\frac{z_{1}}{2}\right), \quad s_{2}=\sin \left(\frac{z_{2}}{2}\right) \\
W=-\frac{2 s_{2} s_{1}(-\theta+v y)}{v}, \quad V=\frac{2 v y}{\kappa}
\end{gathered}
$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only
\rightarrow stability criterion becomes

$$
\frac{-8 k h^{2}\left(n_{4} h^{2}+n_{2}\right)}{d_{6} h^{6}+d_{4} h^{4}+d_{2} h^{2}+d_{0}} \leq 0
$$

\rightarrow possible to show that all n_{i} and d_{i} are positive

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...
Define new variables

$$
\begin{gathered}
c_{1}=\cos \left(\frac{z_{1}}{2}\right), \quad c_{2}=\cos \left(\frac{z_{2}}{2}\right), \quad s_{1}=\sin \left(\frac{z_{1}}{2}\right), \quad s_{2}=\sin \left(\frac{z_{2}}{2}\right) \\
W=-\frac{2 s_{2} s_{1}(-\theta+v y)}{v}, \quad V=\frac{2 v y}{\kappa}
\end{gathered}
$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only
\rightarrow stability criterion becomes

$$
\frac{-8 k h^{2}\left(n_{4} h^{2}+n_{2}\right)}{d_{6} h^{6}+d_{4} h^{4}+d_{2} h^{2}+d_{0}} \leq 0
$$

\rightarrow possible to show that all n_{i} and d_{i} are positive
\rightarrow numerator is negative, denominator is positive

Stability analysis: sketch of the proof

We need to study polynomials in 10 variables...
Define new variables

$$
\begin{gathered}
c_{1}=\cos \left(\frac{z_{1}}{2}\right), \quad c_{2}=\cos \left(\frac{z_{2}}{2}\right), \quad s_{1}=\sin \left(\frac{z_{1}}{2}\right), \quad s_{2}=\sin \left(\frac{z_{2}}{2}\right) \\
W=-\frac{2 s_{2} s_{1}(-\theta+v y)}{v}, \quad V=\frac{2 v y}{\kappa}
\end{gathered}
$$

which allow us to express G in terms of h, k, κ, V, W and trigonometric functions only
\rightarrow stability criterion becomes

$$
\frac{-8 k h^{2}\left(n_{4} h^{2}+n_{2}\right)}{d_{6} h^{6}+d_{4} h^{4}+d_{2} h^{2}+d_{0}} \leq 0
$$

\rightarrow possible to show that all n_{i} and d_{i} are positive
\rightarrow numerator is negative, denominator is positive
\rightarrow unconditional stability

Stability validation for $\rho \neq 0$

Plot l_{2}-errors to detect stability restrictions depending on k / h^{2} or oscillations occurring for high cell Reynolds number (large h)

Stability validation for $\rho \neq 0$

Plot l_{2}-errors to detect stability restrictions depending on k / h^{2} or oscillations occurring for high cell Reynolds number (large h)

- little or no dependence of the error on the parabolic mesh ratio k / h^{2}
\rightarrow unconditional stability
- for larger values of h (higher cell Reynolds number) error grows gradually
\rightarrow no oscillations occur

Stability validation for $\rho \neq 0$

Plot l_{2}-errors to detect stability restrictions depending on k / h^{2} or oscillations occurring for high cell Reynolds number (large h)

- little or no dependence of the error on the parabolic mesh ratio k / h^{2}
\rightarrow unconditional stability
- for larger values of h (higher cell Reynolds number) error grows gradually
\rightarrow no oscillations occur
\rightarrow conjecture that scheme is unconditionally stable and convergent also for general choice of parameters

Amplification factor for $\rho \neq 0$

- fix v, κ, θ to practical relevant values and replace all sin terms by equivalent cos expressions
- stability condition depends on ρ and c_{1}, c_{2}, y, h, k
- line-search global-optimization algorithm based on the Powell's and Brent's methods

Amplification factor for $\rho \neq 0$

- fix v, κ, θ to practical relevant values and replace all sin terms by equivalent cos expressions
- stability condition depends on ρ and c_{1}, c_{2}, y, h, k
- line-search global-optimization algorithm based on the Powell's and Brent's methods
\rightarrow maxima for each ρ are always negative and very close to zero $\left(|G|^{2}=1\right.$ for $\left.y=0\right)$
\rightarrow conjecture that stability condition is satisfied although hard to prove analytically

Numerical efficiency and convergence

We use the parameters

$$
K=100, T=0.5, r=0.05, v=0.1, \kappa=2, \theta=0.01, \rho=-0.5
$$

Numerical efficiency and convergence

We use the parameters

$$
K=100, T=0.5, r=0.05, v=0.1, \kappa=2, \theta=0.01, \rho=-0.5
$$

Numerical efficiency and convergence

We use the parameters

$$
K=100, T=0.5, r=0.05, v=0.1, \kappa=2, \theta=0.01, \rho=-0.5
$$

\rightarrow for similar computational effort: orders of magnitude better in error
\rightarrow to achieve a given error level: order of magnitude less computational effort

Non-uniform grids

Goal: concentrate grid points around strike K
\rightarrow introduce transformation φ from non-uniform to uniform grid:

$$
\hat{S}=\ln (S / K), \quad \varphi(x)=\hat{S}
$$

Non-uniform grids

Goal: concentrate grid points around strike K
\rightarrow introduce transformation φ from non-uniform to uniform grid:

$$
\hat{S}=\ln (S / K), \quad \varphi(x)=\hat{S}
$$

- HOC scheme: 4th order in space, 2nd order in time
- numerical results suggest unconditional stability

Non-uniform grids

Goal: concentrate grid points around strike K
\rightarrow introduce transformation φ from non-uniform to uniform grid:

$$
\hat{S}=\ln (S / K), \quad \varphi(x)=\hat{S}
$$

- HOC scheme: 4th order in space, 2nd order in time
- numerical results suggest unconditional stability
B.D., M. Fournié and C. Heuer.

High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids.
J. Comput. Appl. Math. 271, 2014. (arXiv:1504.5138)

High-order ADI schemes

Consider convection-diffusion equation

$$
u_{t}=\operatorname{div}(D \nabla u)+c \cdot \nabla u
$$

on a rectangular domain $\Omega \subset \mathbb{R}^{2}$, supplemented with initial and boundary conditions with

$$
c=\binom{c_{1}}{c_{2}}, \quad D=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)
$$

where D fully populated, positive definite diffusion matrix.

High-order ADI schemes

Consider convection-diffusion equation

$$
u_{t}=\operatorname{div}(D \nabla u)+c \cdot \nabla u
$$

on a rectangular domain $\Omega \subset \mathbb{R}^{2}$, supplemented with initial and boundary conditions with

$$
c=\binom{c_{1}}{c_{2}}, \quad D=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)
$$

where D fully populated, positive definite diffusion matrix.

- Time: Hundsdorfer (2002) ADI, 2nd order in time
- Space: HOC scheme, 4th order
B.D., M. Fournié, A. Rigal.

High-order ADI schemes for convection-diffusion equations with mixed derivative terms.
In: Spectral and High Order Methods for PDEs, M. Azaïez et al. (eds.), LNCSE 95, Springer, 2013. (arXiv:1505.07621)

Sparse grid combination technique

- Further efficiency gains with sparse grids approach

comp. time [s]
B.D., C. Hendricks, J. Miles.

Sparse grid high-order ADI scheme for option pricing in stochastic volatility models. In: Novel Methods in Computational Finance, M. Ehrhardt et al. (eds.), pp. 295-312, Springer, 2017.

Partial-integro differential equation: Bates model

- additionally allow jumps in process for underlying asset
- pricing PIDE with additional (nonlocal) integral term
- implicit-explicit high-order scheme [cf. Salmi et al. '14]

Partial-integro differential equation: Bates model

- additionally allow jumps in process for underlying asset
- pricing PIDE with additional (nonlocal) integral term
- implicit-explicit high-order scheme [cf. Salmi et al. '14]

B.D. and A. Pitkin.

High-order compact finite difference scheme for option pricing in stochastic volatility jump models.
J. Comput. Appl. Math. 355, 201-217, 2019. (arXiv:1704.05308)

Memory requirements: HOC vs. FD vs. FEM

Scheme	h	DOF	l_{2}-error	l_{∞}-error	Time (s)	Memory (kB)
	0.4	121	3.6201	1.6891	0.016	6916
HOC	0.2	441	0.4728	0.2063	0.130	+1060
	0.1	1681	0.0230	0.0168	1.106	+5536
	0.05	6561	0.0022	0.0009	21.145	+18284
	0.4	441	6.5837	2.3944	1.294	123128
FEM $(p=2)$	0.2	1681	1.0438	0.3737	3.304	+1780
	0.1	6561	0.1522	0.0581	23.426	+8268
	0.05	25921	0.0225	0.0088	300.019	+40828
	0.4	121	14.8087	3.0653	0.036	6948
FD	0.2	441	3.9321	0.8913	0.191	+1772
	0.1	1681	0.8751	0.1806	1.715	+8384
	0.05	6561	0.1758	0.0364	28.706	+23064
	0.4	121	5.5209	2.4373	1.072	123276
FEM $(p=1)$	0.2	441	1.8816	0.7876	1.462	+192
	0.1	1681	0.3846	0.1166	4.727	+2052
	0.05	6561	0.0940	0.0354	49.171	+8176

Memory requirements: HOC vs. FD vs. FEM

Scheme	h	DOF	l_{2}-error	l_{∞}-error	Time (s)	Memory (kB)
	0.4	121	3.6201	1.6891	0.016	6916
HOC	0.2	441	0.4728	0.2063	0.130	+1060
	0.1	1681	0.0230	0.0168	1.106	+5536
	0.05	6561	0.0022	0.0009	21.145	+18284
	0.4	441	6.5837	2.3944	1.294	123128
FEM $(p=2)$	0.2	1681	1.0438	0.3737	3.304	+1780
	0.1	6561	0.1522	0.0581	23.426	+8268
	0.05	25921	0.0225	0.0088	300.019	+40828
	0.4	121	14.8087	3.0653	0.036	6948
FD	0.2	441	3.9321	0.8913	0.191	+1772
	0.1	1681	0.8751	0.1806	1.715	+8384
	0.05	6561	0.1758	0.0364	28.706	+23064
	0.4	121	5.5209	2.4373	1.072	123276
FEM $(p=1)$	0.2	441	1.8816	0.7876	1.462	+192
	0.1	1681	0.3846	0.1166	4.727	+2052
	0.05	6561	0.0940	0.0354	49.171	+8176

\rightarrow HOC very parsimonious, achieves high-order convergence without requiring additional unknowns, unlike finite element methods with higher polynomial order basis

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:
\rightarrow derivation is algebraically demanding
\rightarrow often 'taylor-made' for a specific application or rather small class of problems
\rightarrow algebraic complexity is even higher in the numerical stability analysis

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:
\rightarrow derivation is algebraically demanding
\rightarrow often 'taylor-made' for a specific application or rather small class of problems
\rightarrow algebraic complexity is even higher in the numerical stability analysis

Hence, in the mathematical literature:
\rightarrow only few HOC schemes with stability analysis (mostly 1D)
\rightarrow most works focus on isotropic case (Laplacian)

High-order compact schemes: the price to pay

Drawbacks of high-order compact (HOC) schemes:
\rightarrow derivation is algebraically demanding
\rightarrow often 'taylor-made' for a specific application or rather small class of problems
\rightarrow algebraic complexity is even higher in the numerical stability analysis

Hence, in the mathematical literature:
\rightarrow only few HOC schemes with stability analysis (mostly 1D)
\rightarrow most works focus on isotropic case (Laplacian)

Challenge: Can we generalize our HOC approach to a wider class of problems with mixed derivative terms?

Parabolic initial-boundary value problem

$$
u_{\tau}+\sum_{i=1}^{n} a_{i} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\sum_{\substack{i, j=1 \\ i<j}}^{n} b_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} c_{i} \frac{\partial u}{\partial x_{i}}=g \quad \text { in } \Omega \times(0, T)
$$

with initial condition $u_{0}=u\left(x_{1}, \ldots x_{n}, 0\right)$ and boundary
conditions, where $a_{i}=a_{i}\left(x_{1}, \ldots x_{n}, \tau\right)<0$,
$b_{i j}=b_{i j}\left(x_{1}, \ldots x_{n}, \tau\right), c_{i}=c_{i}\left(x_{1}, \ldots x_{n}, \tau\right)$ and
$g=g\left(x_{1}, \ldots x_{n}, \tau\right)$

Parabolic initial-boundary value problem

$$
u_{\tau}+\sum_{i=1}^{n} a_{i} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\sum_{\substack{i, j=1 \\ i<j}}^{n} b_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} c_{i} \frac{\partial u}{\partial x_{i}}=g \quad \text { in } \Omega \times(0, T)
$$

with initial condition $u_{0}=u\left(x_{1}, \ldots x_{n}, 0\right)$ and boundary
conditions, where $a_{i}=a_{i}\left(x_{1}, \ldots x_{n}, \tau\right)<0$,
$b_{i j}=b_{i j}\left(x_{1}, \ldots x_{n}, \tau\right), c_{i}=c_{i}\left(x_{1}, \ldots x_{n}, \tau\right)$ and
$g=g\left(x_{1}, \ldots x_{n}, \tau\right)$

- HOC scheme: 4th order in space, 2nd order in time
- arbitrary spatial dimension
- stability analysis in 2D and 3D
B.D. and C. Heuer.

High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions.
SIAM J. Numer. Anal. 53(5), 2015. (arXiv:1506.06711)

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension
C++ implementation (CC BY 4.0) for Bates model available at http://dx.doi.org/10.17632/964tyzmwrn. 1

Summary

- high-order compact (HOC) finite difference schemes for option pricing
- fourth-order in space, second-order in time
- thorough Fourier analysis: unconditional stability
- can be extended to non-uniform grids, HOC-ADI, sparse grids, PIDE, ...
- parsimonious in terms of memory requirements and computational effort, e.g. in comparison with finite element methods with higher polynomial order
- approach works for more general parabolic initial-boundary value problems in multiple space dimension
C++ implementation (CC BY 4.0) for Bates model available at http://dx.doi.org/10.17632/964tyzmwrn. 1

THANK YOU!

