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Appointment Scheduling

Random processing duration for patient i ∈ [n] is ũi

Scheduled duration for patient i is si where s0 = 0

Reporting time for patient i is s1 + s2 + . . .+ si−1

Delay due to patient i is max(0, ũi − si )

Waiting time for patient i is wi = max(wi−1 + ũi−1 − si−1, 0)
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Appointment Scheduling

Total waiting time of the patients and doctor’s overtime

f (ũ, s) = max(ũ1 − s1, 0) + max(ũ2 − s2, ũ2 − s2 + ũ1 − s1, 0) + . . .

+ max(ũn − sn, . . . ,
n∑

i=1

ũi −
n∑

i=1

si )

Equivalent representation as the optimal objective of a network
optimization problem with random arc lengths:

max (

c̃︷ ︸︸ ︷
ũ− s)′y

s.t. yi − yi−1 ≥ −1, i = 2, ..., n − 1

yn ≤ 1,

yi ≥ 0, i = 1, . . . , n
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Appointment Scheduling

Seek a schedule to minimize the total expected waiting time and
overtime (Gupta and Denton, 2008):

min
s∈S

Eθ[f (ũ, s)]

Challenges:
Specifying the joint probability distribution
Complexity of solving the resulting stochastic program

Begen and Queyranne, 2011 - Integer valued, independent random
processing durations:

Pseudo-polynomial time algorithm for computing the objective value
for a fixed schedule (polynomial in the maximum processing duration)
Polynomial number of expected cost evaluations to find the optimal
schedule using ideas from discrete convexity

Generalizations to no-shows (Begen and Queyranne, 2011), sampling
based approaches (Begen, Levi and Queyranne, 2012), piecewise
linear cost functions (Ge, Wan, Wang and Zhang, 2014).
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Distributionally Robust Appointment Scheduling

Seek a schedule s ∈ S to minimize the worst-case sum of waiting
times (Kong, Lee, Teo and Zheng, 2013):

min
s∈S

sup
θ∈P

E [f (ũ, s)]

Set of feasible scheduled durations: S = {s : si ≥ 0,
∑

i si ≤ T}.
Summary of results:

P Approach Polynomial-time solvable Tight
Mean + Covariance Copositive X X

(Kong, Lee, Teo and Zheng, 2013) SDP relaxation X X
Mean + Variance SOCP X X

(Mak, Rong and Zhang, 2015)
Mean + Hypercube support + No-show (Bernoulli) LP X X

(Jiang, Shen and Zhang, 2017 )
Mean + Bound on sum of variances and covariances SOCP X X

(Bertsimas, Sim and Zhang, 2018)

January 2019 6 / 27



Moments: Random Mixed Integer Linear Program

Consider:

Z (c̃) = max
{

c̃′x : x ∈ X
}

where X is the bounded feasible region to a MILP:

X = {x ∈ Rn : Ax = b, x ≥ 0, xj ∈ Z for j ∈ I ⊆ [n]} .

Moment problem:

Z ∗full(µ,Π) = sup
{
Eθ [Z (c̃)] : Eθ[c̃] = µ, Eθ[c̃c̃′] = Π, θ ∈ P(Rn)

}
.

Other conic representable moment ambiguity sets - Delage and Ye
(2010), Bertsimas, Doan, Natarajan, Teo (2010), Wiesemann, Kuhn
and Sim (2014), ...
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Moments: Completely Positive Program

Given a closed convex cone K, generalized completely positive cone
over K:

C(K) = {A ∈ Sn : ∃b1, . . . ,bp ∈ K such that A =
∑
k∈[p]

bkb′k}.

Building on Burer (2010), Natarajan, Teo and Zheng (2011) provided
an equivalent reformulation for 0-1 integer linear programs:

Z ∗full(µ,Π) = max
p,X,Y

trace(Y)

s.t

1 µ′ p′

µ Π Y′

p Y X

 ∈ C(R+ × Rn × Rn
+),

a′kp = bk , ∀k ∈ [p]

a′kXak = b2
k , ∀k ∈ [p]

Xjj = xj , ∀j ∈ I.
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Moments: Completely Positive Program

General approach is to build on:

E

 1
c̃

x(c̃)

 1
c̃

x(c̃)

′ ,

where x(c̃) is a randomly chosen optimal solution for c̃.

Testing feasibility in the completely positive cone is NP-hard
(Dickinson and Gibjen, 2014).

Doubly nonnegative relaxation is often used for the completely
positive cone - intersection of SDP and nonnegative cone

Hanasusanto and Kuhn (2018), Xu and Burer (2018) provide
copositive programs (dual formulation) for two-stage distributionally
robust and robust linear programs with ambiguity set defined by a
2-Wasserstein ball around a discrete distribution and other
uncertainty sets.
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Moments: Large SDP

Natarajan and Teo (2017) provide an alternate formulation based on
convex hull of quadratic forms over the feasible region and SDP:

Z ∗full(µ,Π) = max
p,X,Y

trace(Y)

s.t

1 µ′ p′

µ Π Y′

p Y X

 � 0,(
p,X

)
∈ conv

{(
x, xx′

)
: x ∈ X

}
.

Characterizing the convex hull of quadratic forms is NP-hard for sets
such as the Boolean quadric polytope with X = {0, 1}n (Pitowsky,
1991)

Identifying instances where this set is efficiently representable remains
an active area of research (Anstreicher and Burer, 2010, Burer, 2015,
Yang and Burer, 2018)
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Exploiting Partial Correlations: Moments

Information corresponding to non-overlapping moments
N = {1, . . . , n}
Non-overlapping subsets N1, . . . ,NR of N
Means µr , Second moments Πr for r = 1, . . . ,R.
n = 5,N1 = {1, 2},N2 = {3, 4, 5}
µ1 = [µ1, µ2]′, µ2 = [µ3, µ4, µ5]′

Π =


Π11 Π12 Π13 Π14 Π15

Π21 Π22 Π23 Π24 Π25

Π31 Π32 Π33 Π34 Π35

Π41 Π42 Π43 Π44 Π45

Π51 Π52 Π53 Π54 Π55

 =

[
Π1 ?
? Π2

]

Special case: Mean + Variance

N1 = {1},N2 = {2}, . . . ,Nn = {n}

Special case: Mean + Covariance

N = {1, . . . , n}
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Exploiting Partial Correlations: A Tight Formulation

Theorem

Define Z ∗ as the tight bound:

Z∗ = sup

{
Eθ
[

max
x∈X

c̃′x

]
: Eθ[c̃] = µ, Eθ[c̃r (c̃r )′] = Πr for r ∈ [R ], θ ∈ P(Rn)

}
.

Define Ẑ∗ as the optimal objective value of the following semidefinite program:

Ẑ∗ = max
p,Xr ,Yr

R∑
r=1

trace(Yr )

s.t

 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0, for r ∈ [R ],

(
p, X1, . . . , XR

)
∈ conv

{(
x, x1x1′, . . . , xRxR

′
)

: x ∈ X
}
.

Then, Ẑ∗ = Z∗.
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Key Idea

Using earlier result from Natarajan and Teo (2017):

Z ∗ = max
p,X,Y,∆

trace(Y)

s.t

1 µ′ p′

µ ∆ Y′

p Y X

 � 0,

∆[Nr ] = Πr , for r ∈ [R ],(
p, X

)
∈ conv

{(
x, xx′

)
: x ∈ X

}
.

Z ∗ ≤ Ẑ ∗ - straightforward

Z ∗ ≥ Ẑ ∗ - exploit results from positive semidefinite matrix completion
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Key Idea

We need to complete the matrix given the optimal solution to Ẑ ∗:

Lp =



1 µ1′ . . . µR ′ p1
∗
′

. . . pR
∗
′

µ1 Π1 ? ? Y1
∗
′

? ?
... ?

. . . ? ?
. . . ?

µR ? ? ΠR ? ? YR
∗
′

p1
∗ Y1

∗ ? ?
... ?

. . . ? X̂
pR
∗ ? ? YR

∗


.

Every partial positive semdefinite matrix with a pattern denoted by
graph G has a positive semidefinite completion if and only if G is a
chordal graph (Grone, Johnson, Sa and Wolkowicz, 1984).

The matrix Lp has a positive semidefinite completion.
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Special Case: Marginal Moments

Assuming only knowledge of mean and variance:

Z∗ = max
pi ,Xii ,Yii

n∑
i=1

Yii

s.t

 1 µi pi
µi Πii Yii

pi Yii Xii

 � 0, for i ∈ [n ],(
p, X11, . . . , Xnn

)
∈ conv

{(
x, x2

1 , . . . , x
2
n

)
: x ∈ X

}
.

Characterizing this convex hull is hard for general polytopes; related to
two-norm maximization over polytope (Freund and Orlin, 1985, Mangasarian
and Shiau, 1986).

For 0-1 polytopes with a compact representation, the bound is efficiently
computable (Bertsimas, Natarajan and Teo, 2004).

Mak, Rong and Zhang (2015) show that for the appointment scheduling
problem, the bound is efficiently computable using an extended formulation
for the network flow structure.
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Appointment Scheduling (Adjoining Pairs of Patients)

Computing the worst-case when correlations among service time
durations of adjoining patients are known:

Z∗app(s) = sup
{
Eθ [f (ũ, s)] : Eθ [ũi ] = µi ,Eθ[ũ2

i ] = Πii , for i ∈ [n],

Eθ[ũj ũj+1] = Πj,j+1, for j ∈ {1, 3, ..., n − 1}
}
.

In the reduced formulation, we need to characterise
conv

{[
1, x1, . . . , xn, x

2
1 , . . . , x

2
n , x1x2, x3x4, . . . , xn−1xn

]
: x ∈ Xapp

}
Term Mean+Variance |Nr | = 2 Mean+Covariance

xi X X X
x2
i X X X

xixi+1 X X
xixj X
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Appointment Scheduling (Adjoining Pairs of Patients)

Theorem

Given a schedule s ∈ S, we calculate the worst-case expected cost as
follows:

Z∗
app(s) = max

pi ,Xij ,Yij ,tkj

n∑
i=1

(Yii − si pi )

s.t.


1 µi µi+1 pi pi+1
µi Πii Πi,i+1 Yii Yi,i+1
µi+1 Πi,i+1 Πi+1,i+1 Yi+1,i Yi+1,i+1
pi Yii Yi+1,i Xii Xi,i+1

pi+1 Yi,i+1 Yi+1,i+1 Xi,i+1 Xi+1,i+1

 � 0, for i odd, i ∈ [n],

pi =
i∑

k=1

n+1∑
j=i

tkj (j − i), for i ∈ [n],

Xii =
i∑

k=1

n+1∑
j=i

tkj (j − i)2, for i ∈ [n],

Xi,i+1 = Xi+1,i =
i∑

k=1

n+1∑
j=i+1

tkj (j − i)(j − (i + 1)), for i odd, i ∈ [n],

i∑
k=1

n+1∑
j=i

tkj = 1, for i ∈ [n],

tkj ≥ 0, for 1 ≤ k ≤ j ≤ n + 1.
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Key Idea

Polytope:{
x ∈ Rn

+ : xi − xi−1 ≥ −1, i = 2, ..., n − 1, xn ≤ 1, xi ≥ 0, i ∈ [n]
}

At every extreme point, either xi = 0 or xi = xi+1 + 1.

Partition of intervals of integers in {1, 2, . . . , n + 1} (Zangwill, 1966,
1969).

Extreme points of the feasible region are given by:{
x ∈ Rn

+ : xi =
i∑

k=1

n+1∑
j=i

Tkj(j − i), i ∈ [n],
i∑

k=1

n+1∑
j=i

Tkj = 1, i ∈ [n],

Tkj ∈ {0, 1}, for 1 ≤ k ≤ j ≤ n + 1

}
.
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Key Idea

Cross-terms: xixi+1 =
i∑

k=1

n+1∑
j=i+1

Tkj(j − i)(j − (i + 1))

Convex hull of the set (exploit total unimodularity):

Capp = conv

{ (
p1, . . . , pn, X11, . . . , Xnn, X12, X34, . . . , Xn−1,n

)
∈ R5n/2 :

pi =
i∑

k=1

n+1∑
j=i

Tkj (j − i), Xii =
i∑

k=1

n+1∑
j=i

Tkj (j − i)2
, for i ∈ [n],

Xi,i+1 =
i∑

k=1

n+1∑
j=i+1

Tkj (j − i)(j − (i + 1)), for i ∈ [n], i odd,

i∑
k=1

n+1∑
j=i

Tkj = 1, for i ∈ [n], Tkj ∈ {0, 1} for 1 ≤ k ≤ j ≤ n + 1

}
.
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Other Generalizations

Project Evaluation and Review Technique (PERT) Networks:
Maximum expected length of longest path in a graph under
knowledge of partial moments

Linear Assignment: Maximum expected total profit under knowledge
of partial moments
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Numerical Examples: Distributionally Robust Appointment
Scheduling

Approaches

Mean-variance
- tight bound
- polynomial size SOCP

Doubly nonnegative relaxation
- weaker upper bound
- polynomial sized SDP
relaxation

Large-SDP
- tight bound
- not a polynomial sized SDP

n random variables

µi ∼ U [−2, 2] ∀i ∈ [n]

σi ∼ U(0, 5] ∀i ∈ [n]

Correlation matrix:
1 ρ ? ? . . .
ρ 1 ? ? . . .
? ? 1 ρ ?
? ? ρ 1 ?

? ? ? ?
. . .


50 random instances

Matlab-SDPT3 solver with
YALMIP interface
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Computations: Bounds

Table: Ratio of bounds over tight bound (Large-SDP) for various ρ values for
n = 6. While the comonotone distribution is optimal under marginal information
for the sum of waiting times objective (supermodular), the mean-variance bound
is not necessarily tight for ρ = 1.

Mean-variance Our Approach DNN Relaxation
ρ mean min max mean min max mean min max

-1.0 1.489 1.054 2.028 1 1 1 1.001 1 1.008
-0.7 1.251 1.036 1.492 1 1 1 1.001 1 1.006
-0.3 1.141 1.023 1.285 1 1 1 1.001 1 1.004
0.0 1.088 1.016 1.185 1 1 1 1.001 1.001 1.007
0.3 1.051 1.010 1.111 1 1 1 1.001 1 1.002
0.7 1.017 1.001 1.039 1 1 1 1.001 1 1.001
1.0 1.010 1 1.055 1 1 1 1.002 1 1.056
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Computations: Execution time

Figure: Execution times in seconds
of various approaches with n

n Mean Min Max

30 8.397 8.052 8.835

40 19.565 18.712 21.127

50 41.215 38.515 48.330

60 78.533 75.563 82.552

70 129.533 122.533 142.875

80 227.400 206.607 244.174

90 416.586 343.712 478.861

100 672.803 611.037 716.489

Table: Execution times (in sec) for
solving the reduced semidefinite
program
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Computations: Optimal Schedules

n = 20 patients

µi = 2 ∀i ∈ [n]

σi = 0.5 ∀i ∈ [n]

Vary correlation between consecutive patients ρ ∈ {1, 0,−0.5,−1}
Feasible region of schedules

∑
i si ≤ 45, si ≥ 0

Compare four approaches with mean and second moment
information:

SOCP - Variance
DNN relaxation - Full covariance (set remaining correlations to 0)
DNN relaxation - Non-overlapping
Reduced SDP - Non-overlapping
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Computations: Optimal Schedules

(a) Correlation between patient 1 and
2 = correlation between patients 3 and
4 = . . . = ρ = 1. Mean-Variance
bound = 25.6151, DNN relaxation (full
covariance) bound = 15.9465, DNN
relaxation (non-overlapping) bound =
25.1534, Reduced SDP
(non-overlapping) bound = 25.0688

(b) Correlation between patient 1 and
2 = correlation between patients 3 and
4 = . . . = ρ = 0. Mean-Variance
bound = 25.6151, DNN relaxation (full
covariance) bound = 11.4267, DNN
relaxation (non-overlapping) bound =
19.8607, Reduced SDP
(non-overlapping) bound = 19.7474
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Computations: Optimal Schedules

(a) Correlations between patient 1
and 2 = correlations between patients
3 and 4 = . . . = ρ = −0.5.
Mean-Variance bound = 25.6151,
DNN relaxation (full covariance)
bound = 9.4195, DNN relaxation
(non-overlapping) bound = 14.7904,
Reduced SDP (non-overlapping)
bound = 14.6842

(b) Correlation between patient 1 and 2
= correlation between patients 3 and 4
= . . . = ρ = −1. Mean-Variance bound
= 25.6151, DNN relaxation (full
covariance) bound = 4.2223, DNN
relaxation (non-overlapping) bound =
4.2290, Reduced SDP
(non-overlapping) bound = 4.1162
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THANK YOU!
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