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Appointment Scheduling

Random processing duration for patient i € [n] is &
Scheduled duration for patient i is s; where sp =0
Reporting time for patient i is s; + S + ...+ si_1

Delay due to patient i is max(0, &; — s;)

Waiting time for patient / is w; = max(w;_1 + ;1 — s;—1,0)
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Appointment Scheduling

@ Total waiting time of the patients and doctor’s overtime

f(G,s) = max(d; — s1,0) + max(do — sp, 0o — sp + 01 — 51,0) + . ..
n n
+max(ﬁ,,—s,,,...,2ﬁ,-—25,-)
i=1 i=1

@ Equivalent representation as the optimal objective of a network
optimization problem with random arc lengths:

max (ﬁ)/y

st. yi—yi1>-1, i=2, ..
Yn <1,
yi>0, i=1...,n
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Appointment Scheduling

@ Seek a schedule to minimize the total expected waiting time and
overtime (Gupta and Denton, 2008):
min Ep[f (i, s)]
seS
@ Challenges:
e Specifying the joint probability distribution
o Complexity of solving the resulting stochastic program
o Begen and Queyranne, 2011 - Integer valued, independent random
processing durations:
e Pseudo-polynomial time algorithm for computing the objective value
for a fixed schedule (polynomial in the maximum processing duration)
e Polynomial number of expected cost evaluations to find the optimal
schedule using ideas from discrete convexity
@ Generalizations to no-shows (Begen and Queyranne, 2011), sampling
based approaches (Begen, Levi and Queyranne, 2012), piecewise
linear cost functions (Ge, Wan, Wang and Zhang, 2014).
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Distributionally Robust Appointment Scheduling

@ Seek a schedule s € S to minimize the worst-case sum of waiting
times (Kong, Lee, Teo and Zheng, 2013):

min sup E[f(d,s)]
SES gep

o Set of feasible scheduled durations: S={s : s5;>0,> .5, < T}.

@ Summary of results:

P Approach Polynomial-time solvable Tight

Mean + Covariance Copositive X v

(Kong, Lee, Teo and Zheng, 2013) SDP relaxation v X

Mean + Variance SOCP v v
(Mak, Rong and Zhang, 2015)

Mean + Hypercube support + No-show (Bernoulli) LP v v
(Jiang, Shen and Zhang, 2017 )

Mean + Bound on sum of variances and covariances SOCP v X

(Bertsimas, Sim and Zhang, 2018)
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Moments: Random Mixed Integer Linear Program

o Consider:
Z(€) =max {€&x:x € X}
where X is the bounded feasible region to a MILP:
X={xeR":Ax=b, x>0, x;€ ZforjcZC[n]}.
@ Moment problem:
Zin(p, M) = sup {Ey [Z(€)] - Eg[E] = p, Eg[e€] =N, 6 € P(R") }.

@ Other conic representable moment ambiguity sets - Delage and Ye
(2010), Bertsimas, Doan, Natarajan, Teo (2010), Wiesemann, Kuhn
and Sim (2014), ...
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Moments: Completely Positive Program

@ Given a closed convex cone C, generalized completely positive cone
over K:

C(K)={A€8":3by,...,b, € K such that A=) byb}}.
kelp]

@ Building on Burer (2010), Natarajan, Teo and Zheng (2011) provided
an equivalent reformulation for 0-1 integer linear programs:

Ze(p,n) = mxa,)\? trace(Y)

)

1w p
st |p N Y| eC(Ry xR xR,
p Y X
ayp = by, Vk € [p]
al Xa, = b2, Vk € [p]
ij = Xj, Vjel.
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Moments: Completely Positive Program

@ General approach is to build on:

where x(€) is a randomly chosen optimal solution for €.

@ Testing feasibility in the completely positive cone is NP-hard
(Dickinson and Gibjen, 2014).

@ Doubly nonnegative relaxation is often used for the completely
positive cone - intersection of SDP and nonnegative cone

e Hanasusanto and Kuhn (2018), Xu and Burer (2018) provide
copositive programs (dual formulation) for two-stage distributionally
robust and robust linear programs with ambiguity set defined by a
2-Wasserstein ball around a discrete distribution and other
uncertainty sets.
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Moments: Large SDP

e Natarajan and Teo (2017) provide an alternate formulation based on
convex hull of quadratic forms over the feasible region and SDP:

Z n = t Y
cunt (g, 1) ;ga; race(Y)

1 ul p/
s.t p N Y| =0,
p Y X

(p,X) € conv {(x, xx') :x € X} .

@ Characterizing the convex hull of quadratic forms is NP-hard for sets
such as the Boolean quadric polytope with X = {0,1}" (Pitowsky,
1991)

@ ldentifying instances where this set is efficiently representable remains
an active area of research (Anstreicher and Burer, 2010, Burer, 2015,
Yang and Burer, 2018)
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Exploiting Partial Correlations: Moments

@ Information corresponding to non-overlapping moments

o N={1,...,n}

o Non-overlapping subsets Ni,...,Ng of N/

e Means p", Second moments " for r=1,... R.
o n= 57-/\/1 = {172}7-/\/’2 = {37475}

pt = [, ) 12 = [ps, pa, ps)’

My Mz Mz Mg Ts

Mor Tl Tz Tlag Mlos m 2
M= M3 M3 M3z Mz Tzs —{7 ﬂ2}

Mgy Mg Tlaz Tlag Tys

Ms; Mso Msz Msq Mss

@ Special case: Mean + Variance

M= {1}, No = {2}, ...\ N,y = {n}

@ Special case: Mean + Covariance

N={1,...,n}



Exploiting Partial Correlations: A Tight Formulation

Theorem

Define Z* as the tight bound:

Z" = sup{]Eg {mea%f:’x] : Egl€] = p, Egl€"(€")]=N" forre[R], 6 € P(R")}
X

Define Z* as the optimal objective value of the following semidefinite program:

R
Z* = max Ztrace(Y’)
r=1

p,X",Y"
1 ur/ pr/
st |pt N7 Y| =0, for r € [R],
pr Yr Xr

(p, XL,..., XR) € conv{(x, xlxll,...,xRle> :xeX}.

Then, 2* =7~

v
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@ Using earlier result from Natarajan and Teo (2017):

Z* = max trace(Y)
P7X7Y7A
1 Hl pl
s.t uw A Y| =0,
p Y X

AN, ]=N", forrel[R],
(p, X)Econv{(x, xx’) :XEX}.

o Z*< 7% - straightforward

o Z* > 7* - exploit results from positive semidefinite matrix completion
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ution to Z*:

@ We need to complete the matrix given the optimal sol

— -\Y\
r 1 Nll NRI pll pR/‘
ptonto?2oo7o vt o722 |

*

@ Every partial positive semdefinite matrix with a pattern denoted by
graph G has a positive semidefinite completion if and only if G is a
chordal graph (Grone, Johnson, Sa and Wolkowicz, 1984).

@ The matrix L, has a positive semidefinite completion.
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Special Case: Marginal Moments

@ Assuming only knowledge of mean and variance:

n
ZF = n;(axy E Yii
PiXiYi

1w pi
s.t wi Mi Yl =0, fori e [n],
pi Yi Xi

p,X11,...,X,,,,)eaonv{(x,xf,...,xf) :xeX}.

@ Characterizing this convex hull is hard for general polytopes; related to
two-norm maximization over polytope (Freund and Orlin, 1985, Mangasarian
and Shiau, 1986).

@ For 0-1 polytopes with a compact representation, the bound is efficiently
computable (Bertsimas, Natarajan and Teo, 2004).

@ Mak, Rong and Zhang (2015) show that for the appointment scheduling
problem, the bound is efficiently computable using an extended formulation
for the network flow structure.
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Appointment Scheduling (Adjoining Pairs of Patients)

o Computing the worst-case when correlations among service time
durations of adjoining patients are known:

Z3o(s) = sup {Eq [f(ia,s)] : Eg [ii] = pi, Bo[i7] = My, for i € [n],
Eg[ﬁjaj+1] = ﬂj’jH, fOf_j S {1,37...717 — 1}}

@ In the reduced formulation, we need to characterise

conv { [l,xl, e Xy X X2 XX, X3Xg, ,x,,_lx,,] 1X € Xapp}
Term | Mean-+Variance | |N,| =2 | Mean+Covariance
Xi v v v
x? v v v
XiXit1 v v
XX v
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Appointment Scheduling (Adjoining Pairs of Patients)

Given a schedule s € S, we calculate the worst-case expected cost as
follows:

(S = max (Yii — sipi)
D Pi»Xij» Yij tkj Z
1 i Hit1 pi Pit1
Hi Mji M it1 Yii Yii+1
s.t. pivr  Miivn Mipaiva Yipr,i o Yigri+1| =0,  foriodd, i € [n],
pi Yii Yit1,i Xii Xii+1
piv1 Yiit1  Yiyivr Xy Xy
i ontl
= Z Z ti(j — i), fori € [n],

il S gl — i, fori € [,
)

i ontl
Xiiv1 = Xit1,i Z > . tyi(j — ) — (i + 1)), foriodd, i € [n]
k=1j=i+
i on+l
E tg =1, forie [n],
2 0 for1 <

k<j<n+1.

January 2019 17 /27




o Polytope:
{x ERY :xi—xi—1>—-1, i=2,..,n—1,x,<1,x,>0,i € [n]}
o At every extreme point, either x; = 0 or x; = xj11 + 1.

Partition of intervals of integers in {1,2,...,n+ 1} (Zangwill, 1966,
1969).

@ Extreme points of the feasible region are given by:
i n+l i n+l

{x ERT =3 Y Tg(i—i. i > Ty=1i€]n,
k=1 j=i k=1 j=i

Ty € {0,1}, for1§k§j§n+1}.
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Key ldea

i n+1
@ Cross-terms: XiXj+1 = Z Z Tk_/(./ — I)(j — (I + ]_))
k=1 j=i+1
} ; ;1 11;1 :
A

o Convex hull of the set (exploit total unimodularity):

2
Capp = conv{ (Prs- -y Pny X1ty -+ o s Xon, X12, X34, . .., Xn—1,n) € RS2
i on+l i n+l 5
pi=2_0 Tli— i), Xi=>_> Tli—i)?, fori€ln],
k=1 j=i k=1 j=i
i n+l
Xiis1 =2 > Tili— )G — (i+1)), fori€ [n],iodd,
k=1j=i+1
i n+l
SIS Ty =1, forie[n], Tye{0,1}for1<k< )< n+1}.
k=1 j=i
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Other Generalizations

@ Project Evaluation and Review Technique (PERT) Networks:
Maximum expected length of longest path in a graph under
knowledge of partial moments

@ Linear Assignment: Maximum expected total profit under knowledge
of partial moments

January 2019 20 / 27



Numerical Examples: Distributionally Robust Appointment

Scheduling

n random variables

o

Approaches o i ~U[-2,2] Vi€ [n]
o
o

@ Mean-variance

o1 ~U(0,5] Vi € [n]

- tight bound . .
. Correlation matrix:
- polynomial size SOCP 1 p 7 7 7
@ Doubly nonnegative relaxation p 1 72 72
- weaker upper bound 7?71 0p
- polynomial sized SDP 7?7 p 1
relaxation 9 m e o
° La_rge—SDP @ 50 random instances
- tight bound

o Matlab-SDPT3 solver with
v YALMIP interface

- not a polynomial sized SDP
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Computations: Bounds

Table: Ratio of bounds over tight bound (Large-SDP) for various p values for

n = 6. While the comonotone distribution is optimal under marginal information
for the sum of waiting times objective (supermodular), the mean-variance bound
is not necessarily tight for p = 1.

Bound / Exact-Bound

™

g

&

W

W

9

=

Mean-variance Our Approach DNN Relaxation
P mean min max mean min max mean min max
-1.0 1.489 1.054 2.028 1 1 1 1.001 1 1.008
-0.7 1.251 1.036 1.492 1 1 1 1.001 1 1.006
-0.3 1.141 1.023 1.285 1 1 1 1.001 1 1.004
0.0 1.088 1.016 1.185 1 1 1 1.001 1.001 1.007
0.3 1.051 1.010 1.111 1 1 1 1.001 1 1.002
0.7 1.017 1.001 1.039 1 1 1 1.001 1 1.001
1.0 1.010 1 1.055 1 1 1 1.002 1 1.056
Bound Ratios over Exact-Bound vs rho Bound Ratios over Our Bound vs n
= = Mean-variance 227 = = Mean-variance
«{= Non-overlapping (2] «{= Our Approach
—— DNN 201 — DNN
I _ '
"\ Bue -
\|\ 2, ,}f
+\+-++ ) 12 r
it ST

-100 -0.75 -050 -0.25 000 025 050 075 100
tho
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Computations: Execution time

n Mean Min Max

30 | 8397 | 8.052 | 8.835
T Nenaveriapaing (2 l 40 | 19.565 | 18.712 | 21.127

= Loesor 50 | 41.215 | 38.515 | 48.330

/ f..-f 60 | 78.533 | 75.563 | 82.552

! e 70 | 129.533 | 122.533 | 142.875

J _..»-*""' 80 | 227.400 | 206.607 | 244.174
BP AR 90 | 416.586 | 343.712 | 478.861
P8 Eoww 100 | 672.803 | 611.037 | 716.489

Figure: Execution times in seconds
of various approaches with n
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solving the reduced semidefinite

program




Computations: Optimal Schedules

n = 20 patients

pi =2 Vi€ [n]

o;i = 0.5 Vi€ [n]

Vary correlation between consecutive patients p € {1,0,—0.5, —1}
Feasible region of schedules )", s; < 45,s; > 0

Compare four approaches with mean and second moment
information:

e SOCP - Variance

o DNN relaxation - Full covariance (set remaining correlations to 0)
o DNN relaxation - Non-overlapping

e Reduced SDP - Non-overlapping
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Computations: Optimal Schedules

Comparison of Schedules

~+0 Mean-variance
=%+~ DNN- Non-overlapping
4 o+ DNMN- Full covariance
“{Zr MNon-overlapping, R=n/2

Comparison of Schedules

~+0 Mean-variance

=%+~ DNN- Non-overlapping
4 o+ DNMN- Full covariance
“{Zr MNon-overlapping, R=n/2

Scheduled Duration

Scheduled Duration

Patient Patient

(b) Correlation between patient 1 and
2 = correlation between patients 3 and
4 = ... = p=0. Mean-Variance
bound = 25.6151, DNN relaxation (full
covariance) bound = 11.4267, DNN
relaxation (non-overlapping) bound =
19.8607, Reduced SDP
(non-overlapping) bound = 19.7474

(a) Correlation between patient 1 and
2 = correlation between patients 3 and
4 = ... =p=1. Mean-Variance
bound = 25.6151, DNN relaxation (full
covariance) bound = 15.9465, DNN
relaxation (non-overlapping) bound =
25.1534, Reduced SDP
(non-overlapping) bound = 25.0688
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Computations: Optimal Schedules

Comparison of Schedules

«+&+ Mean-variance

=¥+ DNN- Non-overlapping
4 ~-o- DNN- Full covariance
«{=» Non-overlapping, R=nf2

Scheduled Duration

Patient

(a) Correlations between patient 1
and 2 = correlations between patients
3and4=...=p=-0.5.
Mean-Variance bound = 25.6151,
DNN relaxation (full covariance)
bound = 9.4195, DNN relaxation
(non-overlapping) bound = 14.7904,
Reduced SDP (non-overlapping)
bound = 14.6842

Comparison of Schedules

=&+ Mean-variance
=-¥- DNN- Non-gverlapping
=+ DNN- Full covariance
-{Zr Mon-overlapping, R=n/2

=

w

T g,

0o o B @\ﬂ@v@*‘&»

[

Scheduled Duration

kY

(b) Correlation between patient 1 and 2
= correlation between patients 3 and 4
= = p = —1. Mean-Variance bound
= 25 6151, DNN relaxation (full
covariance) bound = 4.2223, DNN
relaxation (non-overlapping) bound =
4.2290, Reduced SDP

(non-overlapping) bound = 4.1162
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THANK YOU!
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