Analyzing Policies in Dynamic Robust Optimization

Yehua Wei

Carroll School of Management Boston College

Models and Algorithms for Sequential Decision Problems Under Uncertainty

January 14, 2019

joint work with Dan lancu (Stanford)

Two-stage Dynamic Robust Optimization

Problem: $\min_{x} \max_{w \in W} \min_{y} f(x, w, y)$

x chosen \mapsto w revealed \mapsto y chosen (in response to w)

Two-stage Dynamic Robust Optimization

Problem: $\min_{\mathbf{x}} \max_{\mathbf{w} \in \mathcal{W}} \min_{\mathbf{y}} f(\mathbf{x}, \mathbf{w}, \mathbf{y})$

x chosen \mapsto w revealed \mapsto y chosen (in response to w)

• The model can be solved via Dynamic Programming (DP):

- Given $x, w \rightarrow \text{find } y^*(x, w) \rightarrow \text{find } x^*$
- For most problems, the DP approach is not practical

Simple Policies/Decision Rules

Problem: $\min_{x} \max_{w \in W} \min_{y} f(x, w, y)$

- Restrict **y** to a simple function of **w** (instead of the optimal response)
- Static Decision Rule: fix \mathbf{y} to be independent of w
- Linear Decision Rule (aka affine policies): set y = Qw + q
- Other decision rules include quadratic, piece-wise linear, finite adaptivity, etc

Simple Policies/Decision Rules

Problem: $\min_{x} \max_{w \in W} \min_{y} f(x, w, y)$

- Restrict \mathbf{y} to a simple function of \boldsymbol{w} (instead of the optimal response)
- Static Decision Rule: fix \mathbf{y} to be independent of w
- Linear Decision Rule (aka affine policies): set y = Qw + q
- Other decision rules include quadratic, piece-wise linear, finite adaptivity, etc

Motivation of This Research

When are simple decision rules (near) optimal?

Literature Review

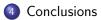
- Tractability and empirical performance for linear decision rules Charnes et al. [1958], Gartska and Wets [1974], Löfberg [2003], Ben-Tal et al. [2004], Ben-Tal et al. [2005], Shapiro and Nemirovski [2005], Chen et al. [2008], Skaf and Boyd [2008], Goh and Sim [2010], Kuhn et al. [2011], ...
- (Sub)-Optimality of static decision rules Ben-Tal et al. [2009], Bertsimas and Goyal [2010], Bertsimas et al. [2015], Marandi and den Hertog [2017]
- (Sub)-optimality of linear decision rules in robust optimization Ben-Tal et al. [2009], Bertsimas et al. [2009], lancu et al. [2013], Bertsimas and Goyal [2012], Ardestani and Delage [2016], Simchi-Levi et al. [2016]
- Other decision rules in robust optimization Chen and Zhang [2009], Bertsimas and Caramanis [2010], Bertsimas et al. [2011a], Bertsimas et al. [2011b], Hanasusanto et al. [2015]

Talk Outline

1 Model and Basic Setup

2 Characterizing the Performances of Decision Rules

- 3 Optimality Conditions in Robust Models
 - Application to Discrete Convex Functions



 $\begin{array}{ll} \mathsf{Our model:} & \min_{\mathbf{x}} \max_{\mathbf{w} \in \mathcal{W}} \min_{\mathbf{y}} \ f(\mathbf{x}, \mathbf{w}, \mathbf{y}) \end{array}$

Our model (omitting x):

 $\max_{\boldsymbol{\mathcal{W}}\in \mathcal{W}}\min_{\boldsymbol{\mathcal{Y}}} \ f(\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{Y}}) := J^{\star}$

Our model (omitting x): $\max_{w \in W} \min_{y} f(w, y) := J^{\star}$

- Let the dimension of w be m and the dimension of y be n
- A policy q(w) that maps from \mathbb{R}^m to \mathbb{R}^n is *worst-case optimal* if

 $\max_{\boldsymbol{w}\in\mathcal{W}}f\big(\boldsymbol{w},q(\boldsymbol{w})\big)\leqslant J^{\star}.$

Our model (omitting x): $\max_{w \in W} \min_{y} f(w, y) := J^{\star}$

• Let the dimension of w be m and the dimension of y be n

• A policy q(w) that maps from \mathbb{R}^m to \mathbb{R}^n is *worst-case optimal* if

 $\max_{\boldsymbol{w}\in\mathcal{W}}f\big(\boldsymbol{w},q(\boldsymbol{w})\big)\leqslant J^{\star}.$

Questions

Is the particular class of policies $\ensuremath{\mathfrak{Q}}$ worst-case optimal? That is,

$$\min_{q\in\Omega} \max_{w\in\mathcal{W}} f(w, q(w)) = J^*?$$

If not, what is the performance of the best policy in Ω relative to J^* ?

Key Assumptions in This Talk

Assumption 1

- Both W and Q are convex sets, and $ext(W) = \{w^1, \dots, w^K\}$.
- The function f(w, q(w)) is quasi-convex on W for each fixed q ∈ Q; that is, for each λ ∈ [0, 1], w, w' ∈ W, we have

 $f(\lambda \boldsymbol{w} + (1-\lambda)\boldsymbol{w}', q(\lambda \boldsymbol{w} + (1-\lambda)\boldsymbol{w}')) \leqslant \max\{f(\boldsymbol{w}, q(\boldsymbol{w})), f(\boldsymbol{w}', q(\boldsymbol{w}'))\}.$

Some interval and the function f(w, q(w)) is convex on Ω for each fixed w ∈ W; that is, for each λ ∈ [0, 1], q, q' ∈ Ω we have

 $f(\boldsymbol{w},\lambda q(\boldsymbol{w}) + (1-\lambda)q'(\boldsymbol{w})) \leq \lambda f(\boldsymbol{w},q(\boldsymbol{w})) + (1-\lambda)f(\boldsymbol{w},q'(\boldsymbol{w})).$

Examples Satisfying Assumption 1

(Two-stage) adjustable robust linear optimization:

$$\begin{split} \min_{\mathbf{x}\in\mathcal{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \max_{\mathbf{w}\in\mathcal{W}} \min_{\mathbf{y}} \, f(\mathbf{x},\mathbf{w},\mathbf{y}), & \text{where } \mathcal{X}, \, \mathcal{W} \text{ are linear polytopes} \\ \text{where } f(\mathbf{x},\mathbf{w},\mathbf{y}) = \begin{cases} \mathbf{d}^{\mathsf{T}}\mathbf{y} & \text{if } A\mathbf{x} + B\mathbf{y} \geqslant C\mathbf{w}, \\ +\infty & \text{otherwise.} \end{cases} \end{split}$$

Assumption 1 is satisfied when Ω is the set of linear decision rules.

Multi-stage robust inventory management:

$$\begin{split} \min_{x} \min_{y_1} \left(c_1(y_1, x) + \max_{d_1 \in \mathcal{D}_1} \left(h_1(I_2, x) + \ldots + \min_{y_T} \left(c_T(y_T, x) + \max_{d_T \in \mathcal{D}_T} h_T(I_{T+1}, x) \right) \ldots \right) \right) \\ \text{s.t. } I_{t+1} = I_t + y_t - d_t, \forall t \in \{1, 2, \ldots, T\}. \end{split}$$

Examples Satisfying Assumption 1

(Two-stage) adjustable robust optimization with linear-fractional objective:

 $\min_{\mathbf{x}\in\mathcal{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \max_{\mathbf{w}\in\mathcal{W}} \min_{\mathbf{y}} f(\mathbf{x}, \mathbf{w}, \mathbf{y}), \quad \text{where } \mathcal{X}, \ \mathcal{W} \text{ are linear polytopes}$ $\text{where } f(\mathbf{x}, \mathbf{w}, \mathbf{y}) = \begin{cases} \frac{\mathbf{d}^{\mathsf{T}}\mathbf{y} + \mathbf{f}^{\mathsf{T}}\mathbf{w} + \alpha}{g^{\mathsf{T}}\mathbf{w} + \beta} & \text{if } A\mathbf{x} + B\mathbf{y} \ge C\mathbf{w}, \\ +\infty & \text{otherwise.} \end{cases}$

Assumption 1 is satisfied when Ω is the set of linear decision rules.

Multi-stage robust inventory management:

$$\begin{split} \min_{x} \min_{y_1} \left(c_1(y_1, x) + \max_{d_1 \in \mathcal{D}_1} \left(h_1(I_2, x) + \ldots + \min_{y_T} \left(c_T(y_T, x) + \max_{d_T \in \mathcal{D}_T} h_T(I_{T+1}, x) \right) \ldots \right) \right) \\ \text{s.t. } I_{t+1} = I_t + y_t - d_t, \forall t \in \{1, 2, \ldots, T\}. \end{split}$$

Examples Satisfying Assumption 1

(Two-stage) adjustable robust optimization with linear-fractional objective:

 $\min_{\mathbf{x}\in\mathcal{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \max_{\mathbf{w}\in\mathcal{W}} \min_{\mathbf{y}} f(\mathbf{x}, \mathbf{w}, \mathbf{y}), \quad \text{where } \mathcal{X}, \ \mathcal{W} \text{ are linear polytopes}$ $\left(\frac{\mathbf{d}^{\mathsf{T}}\mathbf{y} + \mathbf{f}^{\mathsf{T}}\mathbf{w} + \alpha}{\mathbf{u}^{\mathsf{T}}\mathbf{u} + \alpha} \quad \text{if } A\mathbf{x} + B\mathbf{y} \ge C\mathbf{w}, \right)$

where
$$f(\mathbf{x}, \mathbf{w}, \mathbf{y}) = \begin{cases} g^{\dagger} \mathbf{w} + \beta \\ +\infty \end{cases}$$
 otherwise.

Assumption 1 is satisfied when Ω is the set of linear decision rules.

Multi-stage robust inventory management:

$$\begin{split} \underset{x}{\text{min}\min} & \underset{y_1}{\text{min}} \left(c_1(y_1, x) + \underset{d_1 \in \mathcal{D}_1}{\text{max}} \left(h_1(I_2, x) + \ldots + \underset{y_T}{\text{min}} \left(c_T(y_T, x) + \underset{d_T \in \mathcal{D}_T}{\text{max}} h_T(I_{T+1}, x) \right) \ldots \right) \right) \\ & \text{s.t. } I_{t+1} = I_t + y_t - d_t, \forall t \in \{1, 2, \ldots, T\}. \end{split}$$

Table of Content

Model and Basic Setup

2 Characterizing the Performances of Decision Rules

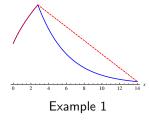
Optimality Conditions in Robust Models
Application to Discrete Convex Functions

Definition (Concave Envelope)

Given g: W → ℝ, the concave envelope of g, conc(g): W → ℝ, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.

Definition (Concave Envelope)

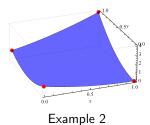
Given g: W → ℝ, the concave envelope of g, conc(g): W → ℝ, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.



Concave envelope of a 1D function

Definition (Concave Envelope)

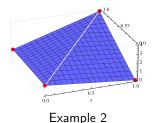
Given g: W → ℝ, the concave envelope of g, conc(g): W → ℝ, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.



Concave envelope of a 2D function

Definition (Concave Envelope)

Given g: W → ℝ, the concave envelope of g, conc(g): W → ℝ, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.

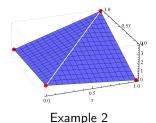


Concave envelope of a 2D function

Definition (Concave Envelope)

- Given g: W → R, the concave envelope of g, conc(g): W → R, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.
- Given a function g, define $g^{ext(W)} : W \to \mathbb{R}$ as the function such that

$$g^{\text{ext}(\mathcal{W})}(\boldsymbol{w}) = \begin{cases} g(\boldsymbol{w}) & \text{if } \boldsymbol{w} \in \text{ext}(\mathcal{W}), \\ -\infty & \text{otherwise.} \end{cases}$$

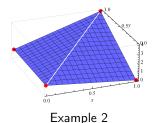


When g is convex, conc(g) coincides with $conc(g^{ext(W)})$

Definition (Concave Envelope)

- Given g: W → R, the concave envelope of g, conc(g): W → R, is the smallest concave function h satisfying h(w) ≥ g(w), ∀w ∈ W.
- Given a function g, define $g^{ext(W)} : W \to \mathbb{R}$ as the function such that

$$g^{\text{ext}(\mathcal{W})}(\boldsymbol{w}) = \begin{cases} g(\boldsymbol{w}) & \text{if } \boldsymbol{w} \in \text{ext}(\mathcal{W}), \\ -\infty & \text{otherwise.} \end{cases}$$



When g is quasi-convex, $\mathsf{conc}(g^{\mathsf{ext}(\mathcal{W})})$ preserves the maximum

Proposition 1

For each policy $q \in \Omega$, define $f_q(\cdot)$ to be the function such that $f_q(w) = f(w, q(w))$. Under Assumption 1, we have

$$\min_{q \in \Omega} \max_{w \in W} f(w, q(w)) = \max_{w \in W} \min_{q \in \Omega} \operatorname{conc}(f_q^{\operatorname{ext}(W)})(w).$$
(1)

Proposition 1

For each policy $q \in \Omega$, define $f_q(\cdot)$ to be the function such that $f_q(w) = f(w, q(w))$. Under Assumption 1, we have

 $\min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{w}, q(\boldsymbol{w})) = \max_{\boldsymbol{w} \in \mathcal{W}} \min_{q \in \Omega} \operatorname{conc}(f_q^{\mathsf{ext}(\mathcal{W})})(\boldsymbol{w}).$ (1)

Proof. $\min_{q \in \Omega} \max_{w \in W} f(w, q(w))$ $= \min_{q \in \Omega} \max_{w \in ext(W)} f(w, q(w)),$ (quasiconvexity)

Proposition 1

For each policy $q \in \Omega$, define $f_q(\cdot)$ to be the function such that $f_q(w) = f(w, q(w))$. Under Assumption 1, we have

 $\min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{w}, q(\boldsymbol{w})) = \max_{\boldsymbol{w} \in \mathcal{W}} \min_{q \in \Omega} \operatorname{conc}(f_q^{\operatorname{ext}(\mathcal{W})})(\boldsymbol{w}).$ (1)

$$\min_{\mathsf{q}\in\mathfrak{Q}}\max_{\boldsymbol{w}\in\mathcal{W}}\mathsf{f}\big(\boldsymbol{w},\mathsf{q}(\boldsymbol{w})\big)$$

$$= \min_{q \in \Omega} \max_{\boldsymbol{w} \in ext(W)} f(\boldsymbol{w}, q(\boldsymbol{w})), \qquad (quasiconvexity)$$

$$= \min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f_q^{\text{ext}(\mathcal{W})}(\boldsymbol{w}), \qquad (\text{definition of } f_q^{\text{ext}(\mathcal{W})})$$

Proposition 1

For each policy $q \in \Omega$, define $f_q(\cdot)$ to be the function such that $f_q(w) = f(w, q(w))$. Under Assumption 1, we have

 $\min_{q \in \Omega} \max_{w \in W} f(w, q(w)) = \max_{w \in W} \min_{q \in \Omega} \operatorname{conc}(f_q^{\mathsf{ext}(W)})(w).$ (1)

Proof.

$$\min_{\mathsf{q}\in \mathfrak{Q}} \max_{\boldsymbol{w}\in \mathcal{W}} \mathsf{f}(\boldsymbol{w},\mathsf{q}(\boldsymbol{w}))$$

- $= \min_{q \in \mathcal{Q}} \max_{\boldsymbol{w} \in ext(\mathcal{W})} f(\boldsymbol{w}, q(\boldsymbol{w})), \qquad (quasiconvexity)$
- $= \min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f_q^{\text{ext}(\mathcal{W})}(\boldsymbol{w}), \qquad (\text{definition of } f_q^{\text{ext}(\mathcal{W})})$
- $= \min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} \operatorname{conc}(f_q^{\operatorname{ext}(\mathcal{W})})(\boldsymbol{w}), \text{ (property of conc. env.)}$

Proposition 1

For each policy $q \in \Omega$, define $f_q(\cdot)$ to be the function such that $f_q(w) = f(w, q(w))$. Under Assumption 1, we have

 $\min_{q \in \Omega} \max_{w \in W} f(w, q(w)) = \max_{w \in W} \min_{q \in \Omega} \operatorname{conc}(f_q^{\mathsf{ext}(W)})(w).$ (1)

Proof.	
--------	--

$$\min_{\mathsf{q}\in\mathfrak{Q}}\max_{\boldsymbol{w}\in\mathcal{W}}\mathsf{f}\big(\boldsymbol{w},\mathsf{q}(\boldsymbol{w})\big)$$

- $= \min_{q \in \mathcal{Q}} \max_{\boldsymbol{w} \in ext(\mathcal{W})} f(\boldsymbol{w}, q(\boldsymbol{w})), \qquad (quasiconvexity)$
- $= \min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f_q^{\text{ext}(\mathcal{W})}(\boldsymbol{w}), \qquad (\text{definition of } f_q^{\text{ext}(\mathcal{W})})$
- $= \min_{q \in \mathcal{Q}} \max_{\boldsymbol{w} \in \mathcal{W}} \operatorname{conc}(f_q^{\text{ext}(\mathcal{W})})(\boldsymbol{w}), \text{ (property of conc. env.)}$

$$= \max_{\boldsymbol{w} \in \mathcal{W}} \min_{q \in \mathcal{Q}} \operatorname{conc}(f_q^{\operatorname{ext}(\mathcal{W})})(\boldsymbol{w}).$$
 (Sion's minimax)

Table of Content

1 Model and Basic Setup

2 Characterizing the Performances of Decision Rules

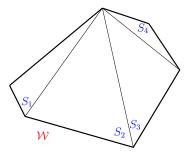
- 3
- Optimality Conditions in Robust ModelsApplication to Discrete Convex Functions

Concave Envelope Optimality Condition

Concave Envelope Optimality Condition

There is a worst-case optimal policy in \mathfrak{Q} if there exists a finite collection of convex sets $\{S_i\}_{i\in I}$ such that $\cup_{i\in I}S_i=\mathcal{W}$ and policies $\{q_i\in \mathfrak{Q}\}_{i\in I}$ so that for each $i\in I$:

 $\operatorname{conc}(f_{q_i}^{\operatorname{ext}(\mathcal{W})})(\boldsymbol{w}) \leqslant J^*, \forall \boldsymbol{w} \in S_i.$



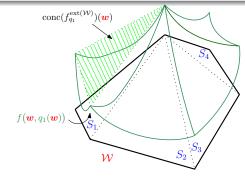
Graphical Illustration

Concave Envelope Optimality Condition

Concave Envelope Optimality Condition

There is a worst-case optimal policy in \mathfrak{Q} if there exists a finite collection of convex sets $\{S_i\}_{i\in I}$ such that $\cup_{i\in I}S_i=\mathcal{W}$ and policies $\{q_i\in \mathfrak{Q}\}_{i\in I}$ so that for each $i\in I$:

 $\operatorname{conc}(f_{q_i}^{\operatorname{ext}(\mathcal{W})})(w) \leqslant J^*, \forall w \in S_i.$



Graphical Illustration

Applying the Optimality Condition

Applying the Optimality Condition

Under Assumption 1, when can we precisely characterize the concave envelope from $\mathsf{ext}(\mathcal{W})?$

- \bullet When the objective values at $\mathsf{ext}(\mathcal{W})$ exhibits discrete convexity structures
- When the objective is linear (often occurs in dynamic robust LPs)

Definition

Function $g: \mathbb{Z}^n \to \mathbb{R}$ is supermodular if

 $g(\mathsf{max}(x',x'')) + g(\mathsf{min}(x',x'')) \geqslant g(x') + g(x''), \ \forall \, x',x'' \in \mathbb{Z}^n.$

Definition

Function $g: \mathbb{Z}^n \to \mathbb{R}$ is supermodular if

 $g(\mathsf{max}(x',x'')) + g(\mathsf{min}(x',x'')) \geqslant g(x') + g(x''), \ \forall \, x',x'' \in \mathbb{Z}^n.$

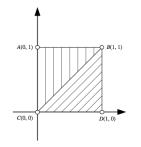
Kuhn triangulation: If ext(W) is a sub-lattice of $\{0,1\}^n$, then W can be partitioned into simplicies for the following form:

 $\Delta_{\pi} := \{ w \, | \, 0 \leqslant w_{\pi(1)} \leqslant \ldots \leqslant w_{\pi(n)} \leqslant 1 \}, \ \pi \text{ permutation of } [n]$

Definition

Function $g : \mathbb{Z}^n \to \mathbb{R}$ is supermodular if

 $g(\mathsf{max}(x',x'')) + g(\mathsf{min}(x',x'')) \geqslant g(x') + g(x''), \, \forall \, x',x'' \in \mathbb{Z}^n.$



Kuhn triangulation for $\mathcal{W} = [0, 1]^2$

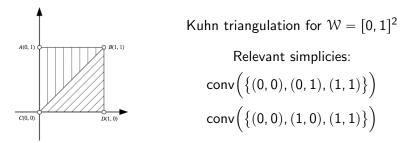
Relevant simplicies:

$$conv(\{(0,0),(0,1),(1,1)\})$$
$$conv(\{(0,0),(1,0),(1,1)\})$$

Definition

Function $g: \mathbb{Z}^n \to \mathbb{R}$ is supermodular if

 $g(\mathsf{max}(x',x'')) + g(\mathsf{min}(x',x'')) \geqslant g(x') + g(x''), \ \forall \, x',x'' \in \mathbb{Z}^n.$

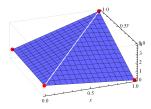


If g is supermodular, conc(g) (over W) is a piece-wise linear interpolation on the extreme points of the Kuhn triangulation [Lovász, 1983].

Definition

Function $g: \mathbb{Z}^n \to \mathbb{R}$ is supermodular if

 $g(\mathsf{max}(x',x'')) + g(\mathsf{min}(x',x'')) \geqslant g(x') + g(x''), \, \forall \, x',x'' \in \mathbb{Z}^n.$



Kuhn triangulation for $\mathcal{W} = [0, 1]^2$

Relevant simplicies:

$$conv(\{(0,0),(0,1),(1,1)\})$$
$$conv(\{(0,0),(1,0),(1,1)\})$$

If g is supermodular, conc(g) (over W) is a piece-wise linear interpolation on the extreme points of the Kuhn triangulation [Lovász, 1983].

Optimality with Supermodularity

Corollary (Worst-case Optimality with Supermodular Objective)

There exists a wost-case optimal policy $q \in \mathbb{Q}$ if

- Assumption 1 is satisfied.
- 2 The set ext(W) is an integer sublattice of $\{0, 1\}^n$.
- So For each simplex S_i in the Kuhn triangulation, there exists $q_i \in \Omega$ where $f(w, q_i(w)) \leq J^*$ for each $w \in ext(S_i)$ and $f(w, q_i(w))$ is supermodular on W.

Generalizes Theorem 1 of lancu et al. [2013]:

- More general function (quasi-convex instead of convex in w)
- Relax the condition on the objective function under the Bellman optimal response
- More general class of policies (no longer restricted to linear decision rules)

Optimality with Supermodularity

Corollary (Worst-case Optimality with Supermodular Objective)

There exists a wost-case optimal policy $q \in \mathbb{Q}$ if

- Assumption 1 is satisfied.
- 2 The set ext(W) is an integer sublattice of $\{0, 1\}^n$.
- For each simplex S_i in the Kuhn triangulation, there exists $q_i \in \Omega$ where $f(w, q_i(w)) \leq J^*$ for each $w \in ext(S_i)$ and $f(w, q_i(w))$ is supermodular on W.

Generalizes Theorem 1 of lancu et al. [2013]:

- More general function (quasi-convex instead of convex in w)
- Relax the condition on the objective function under the Bellman optimal response
- More general class of policies (no longer restricted to linear decision rules)

Optimality with L¹-concavity

Corollary (Worst-case Optimality with L^{\$}-concave Objective)

There exists a wost-case optimal policy $q\in \mathbb{Q}$ if

- Assumption 1 is satisfied.
- ${\it O} \ \, \text{ext}({\it W}) \subset \mathbb{Z}^n \ \, \text{forms an } L^{\natural}\text{-convex set, and} \ \, \{\Delta_{\pi^i,z^i}\}_{i\in I} \ \, \text{subdivides } {\it W}.$
- So For each i, there exists q_i ∈ Ω where f(w, q_i(w)) ≤ J* for each w ∈ ext(Δ_{πⁱ,zⁱ}) and f(w, q_i(w)) is L^β-concave on ext(W).

Optimality with L^{\natural} -concavity

Corollary (Worst-case Optimality with L^{\$}-concave Objective)

There exists a wost-case optimal policy $q\in \mathbb{Q}$ if

- Assumption 1 is satisfied.
- ${\it O} \ \, \text{ext}({\it W}) \subset \mathbb{Z}^n \ \, \text{forms an } L^{\natural}\text{-convex set, and} \ \, \{\Delta_{\pi^i,z^i}\}_{i\in I} \ \, \text{subdivides } {\it W}.$
- For each i, there exists $q_i \in \Omega$ where $f(w, q_i(w)) \leq J^*$ for each $w \in ext(\Delta_{\pi^i, z^i})$ and $f(w, q_i(w))$ is L^{\natural} -concave on ext(W).
 - More general uncertainty set compared to the previous corollary (at the cost of more restrictive objective function)

Another Optimality Condition

Theorem 1

Under Assumption 1, the following are equivalent:

- There exists a wost-case optimal policy $q \in Q$.

$$\mathsf{conc}(f_{q_{\mathfrak{i}}}^{\mathsf{ext}(\mathcal{W})})(\boldsymbol{w}) \leqslant J^*\text{, }\forall \boldsymbol{w} \in S_{\mathfrak{i}}.$$

Solution There exists ŵ ∈ W, a finite collection of convex sets {S_i}_{i∈I}, policies {q_i ∈ Ω}_{i∈I}, and vectors {g_i}_{i∈I} such that:

$$\begin{split} \hat{\boldsymbol{w}} \in \boldsymbol{S}_{i}, \forall i \in \boldsymbol{I}, \text{ and } \boldsymbol{\mathcal{W}} - \hat{\boldsymbol{w}} \subset \text{cone}(\cup_{i \in \boldsymbol{I}} \boldsymbol{S}_{i}), \\ f(\hat{\boldsymbol{w}}, \boldsymbol{q}_{i}(\hat{\boldsymbol{w}})) \leqslant \boldsymbol{J}^{*}, \forall i \in \boldsymbol{I}, \\ f(\boldsymbol{w}, \boldsymbol{q}_{i}(\boldsymbol{w})) \leqslant (\boldsymbol{w} - \hat{\boldsymbol{w}})\boldsymbol{g}_{i} + f(\hat{\boldsymbol{w}}, \boldsymbol{q}_{i}(\hat{\boldsymbol{w}})), \forall i \in \boldsymbol{I}, \boldsymbol{w} \in \text{ext}(\boldsymbol{\mathcal{W}}), \\ \boldsymbol{s}^{\mathsf{T}}\boldsymbol{g}_{i} \leqslant \boldsymbol{0}, \forall \boldsymbol{s} \in \boldsymbol{S}_{i}. \end{split}$$

Connetion to Integerality Gap of an Integer Program

Recall that $ext(\mathcal{W}) = \{w^1, \dots, w^K\}$, consider the optimization problem:

$$\label{eq:starseq} \begin{array}{l} \underset{t,\lambda}{\text{max } t} \\ \text{s.t. } t \leqslant \sum_{j=1}^{K} \lambda_j f(\boldsymbol{w}^j, q(\boldsymbol{w}^j)), \ \forall \ q \in \mathcal{Q}, \\ \\ \sum_{j=1}^{K} \lambda_j = 1, \ \lambda_j \in \{0,1\}, \ \forall 1 \leqslant j \leqslant K. \end{array} \tag{IP}$$

Corollary

Suppose that Assumption 1 holds and ${\mathfrak Q}$ contains all static decision rules. Then

 $\min_{q \in \Omega} \max_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{w}, q(\boldsymbol{w})) - J^* \leq \textit{Integrality Gap of (IP)}.$

Conclusions

- A general theory for studying the performance of simple decision rules in dynamic robust optimization
- Characterization of policy performances through concave envelopes
 - The approach using minimax in dynamic robust optimization problems deserve more attention in the literature
- Optimality of (affine) policies using concave envelopes and discrete convexity
- Optimality and sub-optimality guarantees of static policies for two-stage robust linear programs

Conclusions

- A general theory for studying the performance of simple decision rules in dynamic robust optimization
- Characterization of policy performances through concave envelopes
 - The approach using minimax in dynamic robust optimization problems deserve more attention in the literature
- Optimality of (affine) policies using concave envelopes and discrete convexity
- Optimality and sub-optimality guarantees of static policies for two-stage robust linear programs

THANK YOU!

References I

- A. Ardestani and E. Delage. Robust optimization of sums of piecewise linear functions with application to inventory problems. Operations research, 64(2):474–494, 2016.
- A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable Robust Solutions of Uncertain Linear Programs. *Mathematical Programming*, 99(2):351–376, 2004. ISSN 0025-5610. doi: http://dx.doi.org/10.1007/s10107-003-0454-y.
- A. Ben-Tal, S. Boyd, and A. Nemirovski. Control of Uncertainty-Affected Discrete Time Linear Systems via Convex Programming. Working paper, 2005.
- A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University Press, 2009.
- D. Bertsimas and C. Caramanis. Finite adaptability in multistage linear optimization. IEEE Transactions on Automatic Control, 55(12):2751–2766, 2010.
- D. Bertsimas and V. Goyal. On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Mathematics of Operations Research, 35(2):284–305, 2010.
- D. Bertsimas and V. Goyal. On the power and limitations of affine policies in two-stage adaptive optimization. *Mathematical programming*, 134(2):491–531, 2012.
- D. Bertsimas, D. lancu, and P. Parrilo. Optimality of Affine Policies in Robust Optimization. Submitted for publication, 2009. URL http://arxiv.org/abs/0904.3986.
- D. Bertsimas, V. Goyal, and X. A. Sun. A geometric characterization of the power of finite adaptability in multistage stochastic and adaptive optimization. *Mathematics of Operations Research*, 36(1):24–54, 2011a.
- D. Bertsimas, D. A. Iancu, and P. A. Parrilo. A hierarchy of near-optimal policies for multistage adaptive optimization. IEEE Transactions on Automatic Control, 56(12):2809–2824, 2011b.
- D. Bertsimas, V. Goyal, and B. Y. Lu. A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization. *Mathematical Programming*, 150(2):281–319, 2015.
- A. Charnes, W. W. Cooper, and G. H. Symonds. Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. *Management Science*, 4(3):235–263, 1958.

References II

- X. Chen and Y. Zhang. Uncertain linear programs: Extended affinely adjustable robust counterparts. Operations Research, 57 (6):1469–1482, 2009.
- X. Chen, M. Sim, P. Sun, and J. Zhang. A linear decision-based approximation approach to stochastic programming. Operations Research, 56(2):344–357, 2008.
- S. J. Gartska and R. J.-B. Wets. On Decision Rules in Stochastic Programming. Mathematical Programming, 7(1):117–143, 1974. ISSN 0025-5610. doi: 10.1007/BF01585511.
- J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations. Operations research, 58(4-part-1): 902–917, 2010.
- G. A. Hanasusanto, D. Kuhn, and W. Wiesemann. K-adaptability in two-stage robust binary programming. Operations Research, 63(4):877–891, 2015.
- D. A. Iancu, M. Sharma, and M. Sviridenko. Supermodularity and affine policies in dynamic robust optimization. Operations Research, 61(4):941–956, 2013.
- D. Kuhn, W. Wiesemann, and A. Georghiou. Primal and dual linear decision rules in stochastic and robust optimization. *Mathematical Programming*, 130(1):177–209, 2011.
- J. Löfberg. Approximations of Closed-loop Minimax MPC. Proceedings of the 42nd IEEE Conference on Decision and Control, 2:1438–1442 Vol.2, December 2003. ISSN 0191-2216. doi: 10.1109/CDC.2003.1272813.
- L. Lovász. Submodular functions and convexity. In Mathematical Programming The State of the Art, pages 235–257. Springer, 1983.
- A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems. In Continuous optimization, pages 111–146. Springer, 2005.
- D. Simchi-Levi, N. Trichakis, and P. Y. Zhang. Designing response supply chain against bioattacks. 2016.
- J. Skaf and S. Boyd. Design of Affine Controllers Via Convex Optimization. Submitted to IEEE Transactions on Automatic Control, 2008. URL http://www.stanford.edu/~boyd/papers/affine_contr.html.