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The general N body problem

Outline

@ General N-body problem
@ Brief background.
© Ground state energy and excited energy.
© Dynamic classification: sharp result N=2 and partial results
for N >3
@ Restricted 3body problem: Hill’s type lunar problem.
@ Derivation of the equations of motion
@ Dynamic classification

@ Conclusions and Perspectives
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The general N body problem

N-body problem

@ The N-body problem is a system of ODEs:

m;im;(X; — X;)
|X; — xj|ot2

m,-)'(',- = 8)(,. U(X) = —CMZ
J#i

i=1....

@ Each body has mass m;, position x; € R3, and velocity X;.
@ The self-potential

m,m]
Z | X |a ’ @ > 0
i<j /

e o = 1: Newtonian gravitation;

e « > 2: “strong force”: Lennard-Jones potential which
models interaction between a pair of neutral atoms or
molecules Upy(r) = -4 + %, A B> 0.
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The general N body problem

Conservation of N-body problem

@ The N-body problem enjoys conservation of energy

N
: 1 :
E(x,x):=3 ; mi| i[> — U(x) (1)
@ Angular momentum
N
A(X,X) = Z miX; X ).(,' (2)
i=1
@ Linear momentum
N
M(X,X) := Y " mx; (3)

Usually fix center of mass: SN, mix; = 0
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The general N body problem

Global existence and singularity

@ U is a real-analytic function on (R3)N \ A:

Aj={x=(x1,xn) € (R%)N]x; = x},
A=|]a;
i<j

@ Given x(0) € (R3)N\ A, x(0) € (R®)N, there exists a
unique solution x(t) defined on [0, o), where ¢ is maximal.

@ If o < o0, (1) is singular at o;

@ If o = oo, X(t) exists globally.
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The general N body problem

Singularity of the N-body problem

Theorem (Painlevé, 1895)
If x(t) experiences a singularity at t = o, then

d(x(t),A) -0, ast—o.

o if x(t) approaches a finite pointin A, ¢ is collision
singularity;

@ otherwise, o is non-collision singularity.
a =1, N =5, first non-collision singularity example by Xia
(1992)

@ When « > 2, only collision singularity.

Y. Deng, S. Ibrahim A PDE approach to the N-body Problem



The general N body problem

Saari’s Improbability Theorem 0 < o < 2

Theorem (Saari, 1971-1973)

The set of initial conditions for Newtonian N-body problem
leading to collisions has Lebesgue measure zero in the phase
space.

@ Fleischer and Knauf (2018) extended Saari’s improbability
theoremto 0 < a < 2.

@ Saari and Xia (1996): it is very likely that the total
singularity set has zero Lebesgue measure.
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The general N body problem

Saari’s Improbability Theorem 0 < o < 2

Theorem (Saari, 1971-1973)

The set of initial conditions for Newtonian N-body problem
leading to collisions has Lebesgue measure zero in the phase
space.

@ Fleischer and Knauf (2018) extended Saari’s improbability
theoremto 0 < a < 2.

@ Saari and Xia (1996): it is very likely that the total
singularity set has zero Lebesgue measure.

@ « > 2, collision set has positive Lebesgue measure.
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The general N body problem

Global existence and singularity

@ Our goal: characterize the set of initial conditions yielding
global solutions or singular solutions under some energy
threshold constraints.

@ The idea was motivated from PDE.
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The general N body problem

Motivation from PDE

@ Nonlinear dispersive equations, e.g. Klein-Gordon, NLS.
@ scattering, blow-up, solitary waves
@ Global dynamics from initial data: energy below ground
state, by the sign of a threshold functional K:
e K(initial data) > 0 = scattering of the solution;
e K(initial data) < 0 = finite time blow-up of the solution.
@ Extensions to slightly above ground state. Below first
excited energy, etc.

@ Kenig-Merle, Payne-Sattinger, Shatah, Duyckaerts-Merle,
Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag,
Akahori-lbrahim-Kikuchi-Nawa and many others...
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The general N body problem

Ground state for N-body problem

@ The Lagrange-Jacobi identity for /(x) := S=N | my|x;/2,

ZIx(0) = 4E(x.%) ~ (5~ 1)U)]

Definition (Ground state energy)

Let V(x,X) := E(x,X) — (/2 — 1)U(X),

E* = inf{E(x, X)|V(x,X) = 0}.

@ whena>2, E*=0

@ when all bodies are at infinity with zero velocity = the
ground state.
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The general N body problem

Singularity below the ground state for o > 2

e If E = E(x(0),x(0)) < E* =0, then

d2
— <
2 l(X() <4E <0

= I(t) < 2Ef2 + 1(0)t + 1(0)

@ When « > 2, every solution below the ground state energy
is singular.

@ We want to go beyond the zero energy.
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The general N body problem

Relative equilibrium

@ A solution x(t) = (x1(t),--- , xn(t)) of the N-body problem
is called a relative equilibrium if there exists O(t) € SO(3)
such that

xi(t) = O(t)x;(0),

foralli=1,--- N.
@ normal form of O(t) is

cos(wt)  sin(wt) 0) 5
, J

exp(wdt) = | —sin(wt) cos(wt) 0
0 0 1

I

|
ol o
co =
ooo
N————
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The general N body problem

Relative equilibrium and Central configuration

@ A R.E. with frequency w and initial configuration q satisfies

V(5 (@) + U(@)) = 0. (4)

o Effective potential

w2
Uer(x) := (S5 10x) + U(x)).

@ Critical points of U, are known as central configurations.
o Let
Ko, (X) = =X - VUeir(X) = w?I(X) — aU(X).
here,

K, (x) = —dd)\(Ueff()\x))’)\:1-
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The general N body problem

Excited energy

@ The energy of a w-relative equilibrium is

o.)2
E.(q) = 5 I(a) — U(a).

Definition (Excited energy)

E*(w) :=inf{E,(X) : K,(x) = 0}.

@ When a > 2, E*(w) is strictly positive.
@ E*(w) is achieved by central configuration.
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The general N body problem

Dichotomy below the excited energy

Theorem (Dichotomy below the excited energy)

For o > 2, let x(t) be a solution of the N-body problem, if there
exists t* > 0 so that for t > t*,

@ x(t) stays in Kt (w), then x(t) exists globally;
@ x(t) stays in K~ (w), then x(t) has a singularity.
Moreover, all singularities are collision singularities.

KH(w) = {(x,X) : E(X,X) < E*(w), K,(x) > 0},
K~ (w) = {(x,X) : E(x,X) < E*(w), K,(x) < 0}.

@ The problem is that K, is not sign-definite, and it may
change the sign infinitely many times.

Y. Deng, S. Ibrahim A PDE approach to the N-body Problem



The general N body problem

Dichotomy for the 2-body problem

Theorem (Dichotomy for the 2-body problem)

Letmy +mo =1, and mix; + moxo =0,

K (w) = {(x,%) : E(x,X) < E"(w), [A(X,X)| > A*(w), K. (x) > 0}
K™ (w) = {(%, %) : E(x,X) < E*(w), |A(X,X)| > A"(w), Ku,(X) < 0}

then K*(w) are invariant. Solutions in K*(w) exist globally and
solutions in K~ (w) experiences a singularity.

21 1 2 a=2 _2a
o E*((,U) = m1 mzazf‘)‘(é — E)(a2+awa+2)a72
() A*(w) =my mgaﬂ%w%
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The two-body problem and Kepler problem

Let x = x; — Xo, the Kepler problem for o > 2
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Refinement of characterization for N > 3

) )| #
K ={(x,x) € K : |A(X,X)| > wl(x), K,,(x) > 0}
KT ={(x,x) € £:|A(X,X)| > wl(x), K,(x) < 0}
K ={(x,X) € K : |A(X,X)| <wl(x), K,(x) >0}
Ky ={(x,x) € K: |AX,X)| < wl(x), K,(x) < 0}
Al — wl
REACs

B
o

Y. Deng, S. Ibrahim A PDE approach to the N-body Problem



The general N body problem

Theorem (Refinement of characterization for N > 3)

(a) K7 is empty.
(b) Ifx(t) starts in K, and enters K7, then it stays in K] and
experiences a collision singularity.
(c) Ifx(t) starts in IC; , and never enters K}, then it stays in
K3 UK;.
(c1) If there exists time t;, so that X(t) stays in K, after t;, then
it experiences a collision;
(c2) If there exists time t;, so that x(t) stays in K3 after t, then it
exists globally;
(c3) If there are infinitely many transitions between K3 and K, ,
then it exists globally.
(d) Ifx(t) starts in K3 (resp. Ky'), and stays in KJ (resp. K7),
then it exists globally (resp. experiences a collision).
(e) Ifx(t) starts in K5 (resp. K '), and enters K, , then see

(b)(©)
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Non-invariance of K*(w) for N > 3: Example 1

Example (Example for the non-invariance of X (w))

K (w) = {(x,X) : E(x,X) < E*(w), K,(x) > 0},

2

w > mjm;

Ko(X) = 7 > o mimprz — o> o
i<j i<j Y

Homothetic motion: take an equilateral triangle configuration x°
with initial velocity X° = 0 and (v/3|x?|)>t> > ¥ for j = 1,2, 3.
((x°,0) € £F(w)).

By the attracting forces of the 3 bodies, all of which point to the
center of mass (the origin), the 3 bodies will encounter a total
collision in finite time.
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The general N body problem

Non-invariance of K*(w) for N > 3: Example 2

Example (Example for the non-invariance of £~ (w))

Similarly, take an equilateral triangle configuration x° and initial
velocity x° = vx°, where v > 0. We can choose
(x%,%%) € £~ (w) and E(x°,x%) > 0. Since

3
E(x.) = 5 3" ik + Ux), ®)
i=1

is conserved and U(x) < 0, the three bodies will keep going
away (|x| # 0) and never come back, thus enter the set K (w).
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The restricted 3body problem: Hill’s type lunar problem

Defining the Hill’s lunar problem

” o« ” ”

@ A model for “earth”, “moon”, “sun

@ Consider a uniform rotating frame with frequency one with
reference to a fixed inertial frame.

@ Use Jacobi coordinates and make appropriate
assumptions on the masses and the distances, one gets
the Hill's Lunar Problem. (cf. Hill (1878), Meyer-Schmidt
(1982) )
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The restricted 3body problem: Hill’s type lunar problem

Defining the Hill’s lunar problem: Cntd.

The planar Hill's equation with homogenous gravitational
potential is given by

{x—zy =V )

where

2 2
V(x,y):—o‘;r x2—0‘;, r=1\/x2+y2, a>0 (7)

is known as the effective potential.
@ (x,y) can be thought of as the position of the moon.
@ First integral: the energy

E(xy )=y 42+ Vxy).  ®
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The restricted 3body problem: Hill’s type lunar problem

Contour plot of V(x, y)

o

VA . N\

-2t

Figure: The contour plot of V(x, y) with o = 1. V(x, y) has two critical
points Ly := (—a=2,0) and Ly := (a7, 0).
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The restricted 3body problem: Hill’s type lunar problem

Defining the ground state

Let / := J(x2 + y?) be the moment of inertia. Then

3:21 = X2+ y2 4 2(xy — xy) — xVy — yV,. (9)
Let
K(x,y,x,y) = )'(2+y2—|—2(xy—)'(y)—xvx—yvy, (10)
and
W(x,y) = —xVy — yV, :(a+2)x2—0‘;2, (11)
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The restricted 3body problem: Hill’s type lunar problem

Defining the ground state

Consider the following variational problem in R*:
inf{E(X,y,X,y)|W(x,y) = 0}. (12)

Lemma

When o > 2, we have

inf{E|W = 0} = inf{E|K = 0, W = 0}
= inf{E|K >0, W < 0}
= E(L;,0) := E*

Let Q= (aﬁz, 0,0,0), define £Q to be the ground states.
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The restricted 3body problem: Hill’s type lunar problem

Dichotomy below the ground state

Define £ = {I' = (x,y,x,y)|E(I') < E*} and set

K. ={l e K|W() > 0}
K_ ={r e K|W(r) <0}

Theorem (Dichotomy below the ground state)

For the Hill’'s lunar problem with o > 2 the sets K, and K_ are
invariant. Solutions in K. exist globally and solutions in Ko are
singular.
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The restricted 3body problem: Hill’s type lunar problem

2 ] ) 1 2 -2 = o 1 2

Figure: Level curves of Figure: V = E* (blue) and W =0
V(x,y) < E* (orange)
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The restricted 3body problem: Hill’s type lunar problem

Numerical simulations for different o

a = 1.000, Ec = -5.000 a = 3.000, E. = -6.800

2.0 2.0
-g.OO -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 -%.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00
X X

Red indicate the fate is collision. Both energies are below E*.
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The restricted 3body problem: Hill’s type lunar problem

Trichotomy at the ground state energy threshold

Let

K. =1{Ie(x,y,%x y)|E(T) = E*, W(T) > 0}

K_={Texy,x,y)|ET=E",W({I)<O0} (14)

The sets K. and K_ are invariant. Moreover,

@ Solutions in K. exist for all time.

@ Solutions in K_ either have a finite time collision or
approach the ground state as t — ~c.
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The restricted 3body problem: Hill’s type lunar problem

Above the ground state

Symplectic coordinates g = (x, y) and
p = (px.py) = (X — y,y + x), the Hamiltonian, i.e. the energy is

E(. Y, Pe.By) = 3[(0x+ ¥PP + (By — %P+ V(x.9).

The Hill's equations (6) in Symplectic canonical form is

. 0E . oE
==, p=-—". 1

q\ (0 b
<p>—JVE, J_<—/2 0).
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The restricted 3body problem: Hill’s type lunar problem

@ The eigenvalues of the linearized operator A := JV2E(Q)
are +k, +iw, decompose R* = EY P ES P E°.

k:\1@\/\/36+36a+290z2+1Oa3+a4+(a2+3a—2),

and

w_\1@\/\/36—1—3604—1—290424—10043—1-0%‘—(a2+3a—2).
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The restricted 3body problem: Hill’s type lunar problem

Ideas

@ Solutions on the center-stable manifold remain close to
+Q, “trapped orbits”

@ Solutions do not remain close to the ground state for all
positive times are ejected from any small neighborhood of
it after some positive time, “non-trapped”

@ Distance function WRT ground states, eigenmode
dominance

@ Ejection Lemma

© Variational estimates

© One-pass Theorem
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The restricted 3body problem: Hill’s type lunar problem

Decomposition near the ground state

Write v = Q + X, where X is the perturbation, decompose X

as follows:
X = A ()4 + A (D)= + (1), (16)
where
§+ € Euag— € ES77(t) € Eca Q(V(t)v’s—l-) = Q(’Y(t)7§—) =0.
(17)

One has A1 = +£Q(X, {5) and we can derive the differential
equations for AL (t).

dit

2L = KAL) + QN € ), (18)
V(1) = A (1) + AN, ). (19)
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The restricted 3body problem: Hill’s type lunar problem

Linearized energy norm

The function ~(t) in the decomposition satisfies

Q(v, Ay) ~ [v[2.

X = SO2(0+2(0) ¢ 200 A). (@0)

We have [X(1)| ~ |X(1)|e.
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The restricted 3body problem: Hill’s type lunar problem

Distance function with respect to ground states

There exists g > 0 with the following property: for any solution
1 = +(Q+ X) and any time t € Imax(1) for which [ X(t)|g < 44,

Let x be a smooth function on R such that x(r) = 1 for |r| < 1
and x(r) = 0 for |r| > 2. We define

da(¥ (1)) == \/IX(t)\ZE + x(IX(t)[e/26g)C((1)),
where

k

Cu(1)) = E(w(1) — E(Q) + 5 (A (1) + A-(1)* = IX(D)[E-

Y. Deng, S. Ibrahim A PDE approach to the N-body Problem



The restricted 3body problem: Hill’s type lunar problem

Distance function, eigenmode dominance

Lemma

Assume that there exists an interval | on which

supse,da(¥ (1)) < de.

Then, all of the following hold for all t € I:
(i) 3IX(OIF < da(v(t))? < §I1XIZ,
(") ( Y(1)? = E(¥(1)) — E(Q) + 2kX(1),
(i) Gda(¥(1)? = 4K2A1 (D)A2(t) + 2k M ()QN(X), &4 +€-).

(iv) /fE(qp) < E* + Ydq(¥(1))? holds for all t € I, then
da(v(t)) ~ |A(8)| forall t € I.
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The restricted 3body problem: Hill’s type lunar problem

Ejection Lemma

Lemma (Ejection Lemma)

There exists constants 0 < dx < ég and A,, By, C, with the
property: If (t) is a local solution to (15) on [0, T| satisfying

Ro = da(w(0)) < ox, E(W)<E'+R,  (22)

then we can extend v (t) as long as dg(v(t)) < dx.
Furthermore, if there exists some {y € (0, T) such that

d0(¢(t)) > R()’ V0 <t <, (23)

and let
Tx :=inf{t € [0, o] : do(¥(1)) = dx}
where Tx =t if do(¥(t)) < 6x on [0, ], then for all t € [0, Tx] :
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The restricted 3body problem: Hill’s type lunar problem

Ejection Lemma: Cntd

Lemma (Ejection Lemma: Cntd)
(i) ARy < da(v(1)) < B.e"Ry,
(i) [X(8)] ~ s\ (t) ~ sha(t) ~ €K Ry,
(ii)) [A=(O] + [v(8)] £ Ro + da(¥(t))?,
where s = 1 or —1. Moreover, dq(v(t)) is increasing on the
regiont € [0, Tx].
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The restricted 3body problem: Hill’s type lunar problem

Variational estimates

Lemma

For the strong force o > 2, for any § > 0, there exist
€(9), k(6) > 0 such that for any T € R* satisfying

E(N) < E* 4+ ¢€(5), dg(I') >0, (24)
one has either
W) < —k(9) and K(T) < —k(9),

or

W(r) > x(9).
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Variational estimates

.
V>E*+c
4
X"~ “r =~
rs S e N
’ \ ! \
’I \ 'I \l
1 *,
o+ | at 1 V<E'c H ) 1
v B ! \ Q H
\ 7 \ ’
‘\ ,I \\ Vi
. N N 7
-1
V>E*+c
W=0 W=0
2 b )
-2 -1 0 1 2

Figure: The black curve is the zero velocity curve for E(I') = E* + ¢,
i.e. V(x,y) = E* + c. When ¢ = ¢(d) is small enough, the value of
W/ is uniforml provided dq(l') > 6.
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The restricted 3body problem: Hill’s type lunar problem

One-pass Theorem

Conjecture (One-pass theorem)

There exists constants ., R. with the property: for any
e € (0,e], R € (V2¢, R,] and any solution ) of the HLP (15) on
an interval [0, Tyax) satisfying

E(y) <E"+e  do(¥(0)) <R,

define Tiqap 1= sup{t > 0|dq(¢(t)) < R}, then
Q if Tiap = Tinax, then v is “trapped”;
Q if Tiap < Tinax, then do(¢(t)) > R for all t € (Tap, Tmax)-
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The restricted 3body problem: Hill’s type lunar problem

One-pass Theorem

Conjecture (One-pass theorem)

There exists constants ., R. with the property: for any
e € (0,e], R € (V2¢, R,] and any solution ) of the HLP (15) on
an interval [0, Tyax) satisfying

E(y) <E"+e  do(¥(0)) <R,

define Tiqap 1= sup{t > 0|dq(¢(t)) < R}, then
Q if Tiap = Tinax, then v is “trapped”;
Q if Tiap < Tinax, then do(¢(t)) > R for all t € (Tap, Tmax)-

e global existence
e finite time collision
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The restricted 3body problem: Hill’s type lunar problem

Thank you for listening!
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