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Eigenfunction asymptotics

On a compact, Riemannian manifold (M, g) consider u

−∆gu = λ2u

How does u behave as λ→∞?

Can u display concentrations?
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Why to do we care?

Laplacian eigenfunctions are useful building blocks. One important way
they come up is as the stationary states of a quantum system.

ψ(t, x) = e iEtu(x)

satisfies Schrödinger’s equation with E = λ2.

E is interpreted as the energy of the system

Concentration of u implies concentration of ψ

Concentration of ψ is interpreted as a high probability that the
system is found in the concentration region.
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Measuring Concentration

There are many ways to measure eigenfunction concentration. We will
focus on Lp estimates

Point

High L∞ norm

Sharp change in Lp norm when
p <∞

Tube

Lower L∞ norm

Change in Lp norm more gentle
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Lp Estimates for Eigenfunctions

Let X be some subset (not necessarily of full dimension) of M. Seek
estimates of the form

||u||Lp(X ) . f (n, p, λ) ||u||L2(M)

For what f is the inequality valid?

Are there sharp examples?

Does f depend on the geometry of X?

What about concentration of q(x , hD)u where q(x , hD) is the
quantisation of a dynamical quantity.
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Heuristic - Concentration/Dynamics

Heuristically think of eigenfunction as being made of of wave packets
tracking the classical flow.

Packets are localised both physically and in momentum

Concentration in a region is related to time packets spend there

Heuristic breaks down in time due to dispersion
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Lp concentration on manifolds

Sogge 1988
||χλu||Lp(M) . λδ(n,p) ||u||L2

χλ a spectral cluster operator.

Two different regimes for sharp
results.

On the sphere sharp for actual
eigenfunctions.

Can be extended to semiclassical
results for quasimodes
(Koch-Tataru-Zworski 2007).
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Improvements with negative curvature

Bérard (1977)

||u||L∞ .
λ

n−1
2

log1/2(λ)
||u||L2

Hassell-Tacy (2015)

||u||Lp .
λδ(n,p)

log1/2(λ)
||u||L2 p > pc =

2n

n − 1

Blair-Sogge (2017)

||u||Lpc .
λδ(n,pc )

(log(λ))ε0
||u||L2

M. Tacy (Univesity of Otago) 8 / 30



Lp estimates on submanifolds

||u||Lp(X ) . λδ(n,p,k) ||u||L2(M)

Hypersurfaces Low dimensional submanifolds

Established by Burq-Gerard-Tvetkov 2005 for eigenfunctions of ∆ and by
Tacy 2010 for semiclassical quaismodes.
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Concentration of dynamical quantities

Classical flow defined by {
ẋ(t) = ∂ξp(x , ξ)

ξ̇(t) = −∂xp(x , ξ)

The function p(x , ξ) is the classical energy function. Other observables
q(x , ξ) evolve under

q̇(x , ξ) = {p(x , ξ), q(x , ξ)}

Quantum analogue, semiclassical pseudo

q(x , hD)u =
1

(2πh)n

∫
e

i
h
〈x−y ,ξ〉q(x , ξ)u(y)dξdy
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Concentration of normal velocity

Let H be a hypersurface in M, normal ν.

Normal velocity ν(x , ξ) = ∂ξνp(x , ξ)

Quantisation of normal velocity ν(x , hD)u

Normal velocity is large but packets
spend only a short time near the
surface.

Packets spend a long time near the
surface (high concentration) but the
normal velocity is small so ν(x , hD)u
decays.
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Theorem (T 17)

Suppose u is an approximate solution to p(x , hD)u = 0 then

||ν(x , hD)u||L2(H) . ||u||L2(M) .

and ∣∣∣∣∣∣ν1/2(x , hD)u
∣∣∣∣∣∣
L2(H)

. ||u||L2(M)

where ν1/2(X , hD) is the quatisation of a suitable regularisation of
ν1/2(x , ξ).

Can allow error up to OL2(h).

Estimate only require p(x , ξ) is smooth, other semiclassical estimates
require Laplace like condition.
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Flat Models

Gain insight into behaviour by considering approximate eigenfunctions on
Rn. Rescale the problem, setting h = λ−1 look for u so that

(−h2∆− 1)u = OL2(h)

Exploit constant coefficients to use the (scaled) Fourier transform

Fhf =
1

(2πh)n/2

∫
e

i
h
〈x ,ξ〉f (x)dx

hDxi → ξi

||Fhf ||L2 = ||u||L2
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Solving on the Fourier side

We require
(|ξ|2 − 1)Fhu = O(h)

Must place the support of Fhu
close to |ξ| = 1

By spreading Fhu as much as
possible can make u large at a
point

On the other hand to spread u
out we concentrate Fhu.
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Point and tube revisited

Spread Fhu evenly throughout
annular region

Concentrate Fhu around one point

What about intermediate spread?
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Family of examples

Let

χh
α(r , ω) =

{
1 if |r − 1| < h, |ω − ω0| < hα,

0 otherwise.

Then set

f hα (r , ω) = h−1/2−α(n−1)/2χ(r , ω).

Note that f hα is L2 normalised.

T h
α(x) = F−1

h [f hα ](x)
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T h
α(x) =

h−1/2−α(n−1)/2−n/2e
i
h
x1

(2π)n/2

∫
Rn

e
i
h

(x1(ξ1−1)+〈x ′,ξ′〉)χα(ξ) dξ.

If |x1| < εh1−2α and |x ′| < εh1−α the factor

e
i
h

(x1(ξ1−1)+〈x ′,ξ′〉)

does not oscillate so in this region

|T h
α(x)| > ch−(n−1)/2+α(n−1)/2
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Connections to spherical harmonics

For each α we can produce an exact eigenfunction on the sphere Sn−1

which has the same size properties as T h
α . Build them out of highest

weight harmonics.

φ(x) = j
n−1

4 (x1 + ix2)j

is a solution to the spherical Laplacian eigenfunction equation with
j(j + n − 1) = λ2 = h−2.

Further if x = (x1, x2, x̄) then

|φ(x)|2 = j
n−1

2 (1− |x̄ |2)j = j
n−1

2 e j log(1−|x̄ |2)

Resembles the tube
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Rotations of highest weight harmonics

Can think of T h
α as a sum of

T h
1/2 with the principal

direction rotated.

So produce a function uα where

uα =
∑
j

φ(Rj(x))

where Rj is a rotation. Since u has same concentration properties as T h
α

we can use the flat model examples to test for saturation and know how to
produce an exact eigenfunction example.
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Uses of the family T h
α

Checking sharpness for linear estimates, what kind of cross sections
do we expect?

Analysing bilinear estimates for sharpness. Here we estimate

||uv ||Lp ≤ G (λ, µ) ||u||L2 ||v ||L2

where u and v are eigenfunctions with eigenvalues λ2 and µ2. Can
find all sharp examples by considering combinations of the T h

α .

Understanding the effect of geometry on Lp estimates. Negative
curvature improves the estimates in a logarithmic fashion. These
examples allow us to see exactly what sort of concentrations need to
be considered.
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Inverse problems?

Consider the hypersurface estimates. If we know ||u||L2(H) what can we say
about u? If H is a hyperplane in Rn

||u||L2(H) = RH(|u|2)

where RH is the Radon transform evaluated at H. Therefore we could in
fact reproduce |u(x)|2 via

|u(x)|2 = cn(−∆)
n−1

2 R? ◦ R[|u|2]

What if we only know estimates for ||u||L2(H can we hope to say anything

about |u(x)|2 or ||u||Lp(M).
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Why do we want to do this anyway?

Eigenfunctions (and quasimodes) oscillate very rapidly. Taking L2 norms

allows us to take advantage of that. Consider e
i
h
〈x ,ξ〉 and e

i
h
〈x ,η〉 where

ξ, η ∈ Sn−1 and |ξ − η| > ε. ∫
H
e

i
h
〈x ,ξ−η〉dx

If
|(ξ − η)− ν · (ξ − η)ν| > c

we can integrate by parts in the hypersurface variables to show the
contribution is O(h∞).

Even if
|(ξ − η)− ν · (ξ − η)ν| > chα α < 1

can still get O(h∞) decay.

Means we can restrict our attention to contributions to
∫
H |u(x)|2

that are bilinear combinations with ξ − η being exactly in direction ν.
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What do the flat models tell us?

The α = 0 case.
Produces the highest L∞ norm, a peak h−

n−1
2 concentrated on an O(h)

set.

Therefore
c1 ≤

∣∣∣∣∣∣T h
0

∣∣∣∣∣∣
L2(H)

≤ c2

So this concentration is ‘invisible’ to hypersurfaces.
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The α > 0 cases

Depends how H is aligned.

Let ν be the unit norm of H.

Let ξ be the long direction of T h
α .

〈ν, ξ〉 6= 0 〈ν, ξ〉 = 0

Greater concentration on H when 〈ν, ξ〉 = 0
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The case 〈ν, ξ〉 6= 0

|T h
α | ∼ h−

n−1
2

+α(n−1)
2

and is supported on a region of measure approximately h(1−α)(n−1)

c1 ≤
∣∣∣∣∣∣T h

α

∣∣∣∣∣∣
L2(H)

≤ c2

So similar to the α = 0 case these hypersurfaces don’t ‘see’ the
concentration.
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The case 〈ν, ξ〉 = 0

|T h
α | ∼ h−

n−1
2

+α(n−1)
2

and is supported on a region of measure approximately h(1−α)(n−1)+1−2α

c1h
−α

2 ≤
∣∣∣∣∣∣T h

α

∣∣∣∣∣∣
L2(H)

≤ c2h
−α

2

So these hypersurfaces do ‘see’ the concentration.
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What does this tell us about Lp estimates?

Estimates for high p, that is p ≥ 2(n+1)
n−1 saturated by the α = 0 cases.

So we can’t recover information about these from ||u||L2(H).

Reversing the information from the examples suggests that if there is
a hypersurface with

c1h
−α

2 ≤ ||u||L2(H) ≤ h−
α
2

then
c1h
−µ(n,p,α) ≤ ||u||Lp ≤ c2h

−µ(n,p,α)

µ(n, p, α) = (n − 1)

(
1

2
− 1

p

)
+ α

(
n − 1

2
− n

p

)
Difficult to prove without a stability condition.
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Stability

Need to have control on near hypersurfaces as well.

This allows us to create a thickened region around the hypersurface

Fix a point x0 and associate the set of hypersurfaces through x with
Sn−1

Then condition is that there is some x0 so that

{H | x0 ∈ H, ||u||L2 ∼ h−
α
2 } ⊂ Sn−1

contains a ball of radius hα
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Connection with Kakeya tubes

Sogge and Blair-Sogge show that growth in Lp for p < pc depends on
growth in Kakeya tubes.

In two dimensions these Kakeya tubes are just thickened
hypersurfaces and are associated with the α = 1/2 case of T h

α .

Similar sorts of ideas, also based on bilinear estimates and exploiting
the relationship between dimension and p value.
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Where next?

Could we work with a weaker stability condition. For instance one
that only gave a lower bound on the measure of

{H | x0 ∈ H, ||u||L2 ∼ h−
α
2 }

rather than requiring it to contain a ball.

Can we get the other direction. That is can we say that the ||u||Lp
ONLY grows if the ||u||L2(H) grows for some collection of H.

If we can obtain such a result for a range of p can we apply it to
situations where we expect better Lp norms.
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