Determining a Lorentzian metric from the source-to-solution map for the relativistic Boltzmann equation

Tracey Balehowsky

April 16, 2019

Department of Mathematics and Statistics University of Helsinki

- 1. Recovering a Lorentzian metric from particle collisions
- 2. Results for wave signals
- 3. Result for particle signals
- 4. Main result proof sketch
- 5. Summary

Recovering a Lorentzian metric from particle collisions

Question: Can you determine the shape of regions of spacetime from sending signals and measuring the resulting signals from interactions in the unknown region?

Known and unknown domains V and W lie in a time-oriented Lorentzian spacetime (M, g) with dim $(M) \ge 3$.

- Lorentzian:
 - g has signature $(-++\cdots+)$.
 - e.g. 4D Minkowski: $g = -dt^2 + dx^2 + dy^2 + dz^2$.
- Time oriented: tangent vectors *X* ≠ 0 to *M* classified causally:
 - Timelike: g(X, X) < 0.
 - Lightlike: g(X, X) = 0.
 - Spatial: g(X, X) > 0.

Relativistic setting

• Curves $\mu : [a, b] \rightarrow M$ classified causally:

- Timelike: $g(\dot{\mu}(t), \dot{\mu}(t)) < 0$
- Lightlike: $g(\dot{\mu}(t), \dot{\mu}(t)) = 0$
- Spatial: $g(\dot{\mu}(t),\dot{\mu}(t)) > 0$

Setting

- (*M*, *g*) is time oriented: classify time/lightlike vectors/curves/regions as future (+) or past (-).
- Causal future/past of x ∈ M: J[±](x) = {y ∈ M :
 ∃ lightlike or timelike geodesic from x to y}.
- Chronological future of x ∈ M:
 I[±](x) = {y ∈ M : ∃ timelike geodesic from x to y}.
- Future/past light cone of $x \in M$: $L^{\pm}(x) = J^{\pm}(x) \setminus I^{\pm}(x)$.

Global hyperbolicity:

- No closed causal paths in (M, g).
- $x, y \in M$, x < y, $J^+(x) \cap J^-(y)$ is compact.
- Implies $M = \mathbb{R} \times N$, $(\{t\} \times N, g|_{\{t\} \times N})$ Riemannian.

Setting

Goal: Interactions occur in (M, g). Send and measure signals on $(V, g|_V)$. Use this to recover g on unknown domain $W \subset M$.

Results for wave signals

Wave signals

- Belishev-Kurylev (1992): N has boundary, g|_{{t}×N} independent of t, knowledge of Dirichlet-to-Neumann map for □_gu = 0 determines g. Tataru (1995): extended to g analytically depends on t.
- Kurylev-Lassas-Uhlmann (2017): If dim(M) = 4, V ⊂ M a known open neighbourhood of a timelike path µ: [−1, 1] → M, then the data

 $(V,g|_V)$ and $L_V: f \mapsto u|_V$

where $\Box_g u + au^2 = f$, $u|_{t<0} = 0$, $f \in C_0^6(V)$, $||f||_{C_0^6(V)} < \epsilon$, determines $W = I^-(\mu(1)) \cap I^+(\mu(-1))$ and $g|_W$ up to conformal factor.

Kurylev-Lassas-Uhlmann (2017)

- The result of K-L-U used the nonlinearity au² as a tool with which to gain information.
- The nonlinearity dictates the interaction of the waves.
- Used microlocal techniques to show the interaction of 4 waves produced a point source spherical wave.
- Showed that you can determine the earliest time which you observe such a wave in V.

Using similar techniques:

- Wang-Zhou (2016), Lassas-Uhlmann-Wang (2016): Classes of semilinear wave equations.
- Lassas-Uhlmann-Wang (2017). Einstein-Maxwell equations.
- Kurylev-Lassas-Oksanen-Uhlmann (2018). Linear wave coupled with Einstein equation.

Result for particle signals

Question: Can we determine a regions of spacetime from sending sources of particles and measuring the emitted light from the particle collisions?

Particle kinematics

- In the absence of forces, particles should travel along timelike/lightlike geodesics.
- Phase space: for $U \subset M$,

 $\mathcal{P}_m(U) := \{(x, p) \in TU : g(p, p) = -m^2, p \text{ future-directed}\}$ $\overline{\mathcal{P}}(U) := \bigcup_{m \ge 0} \mathcal{P}_m(U).$

■ Particles: u : P
(U) → (0,∞). View as average ensemble of possible particle states.

Liouville-Vlasov equation:

$$\mathcal{X}u(x,p) = 0$$
 on $\overline{\mathcal{P}}(U)$.

where $\mathcal{X} =$ Geodesic vector field.

Relativistic Boltzmann equation:

$$\mathcal{X}u(x,p) = \mathcal{A}[u,u](x,p) + f(x,p)$$
 on $\overline{\mathcal{P}}(U)$

Collision operator:

$$\mathcal{A}[u,v](x,p) = \int_{\Sigma_{x,p}} \mathcal{A}(x,p,q,p',q')u(x,p')v(x,p'')dV(p',q')$$
$$-\int_{\Sigma_{x,p}} \mathcal{A}(x,p,q,p',q')u(x,p)v(x,\tilde{p})dV(p',q')$$

- $A: TM^4 \to [0,\infty)$ is the shock cross-section.
- Look at collisions conserving momentum: $\Sigma_{x,p} = \{(x, p, q, p', q') \in TM^4 : p + q = p' + q'\}.$

Relativistic Boltzmann Equation

Gain term:

$$\mathcal{A}_{gain}[u,v](x,p) = \int_{\Sigma_{x,p}} \mathcal{A}(x,p,q,p',q')u(x,p')v(x,p'')dV(p',q').$$

Loss term:

$$\mathcal{A}_{loss}[u,v](x,p) = u(x,p) \int_{\Sigma_{x,p}} A(x,p,q,p',q') v(x,\tilde{p}) dV(p',q').$$

 $\mathcal{X}u(x,p) = \mathcal{A}[u,u](x,p) + f(x,p)$ describes behaviour of

- plasmas.
- particles such as electrons, protons, photons,
- Bose-Einstein condensates.
- quasiparticles.

ect.

Our setting

- Data: send and measure particles from a known open set V ⊂ M.
- **Goal:** Use the information to determine unknown region $W \subset M$ and $g|_W$.

Consider

Data encoded in the source-to-solution map

 $\Phi_V: C^{\infty}_c(J^+(V)) \to \mathcal{D}'(L^+(V)), \quad f \mapsto u|_V,$

where u(x,p) = 0 for $x \in [0,\infty) \times N$, and $\mathcal{X}u = \mathcal{A}[u,u] + f$ on $\overline{\mathcal{P}}(0,\infty) \times N$. Local existence of solutions to Boltzmann problem $\implies \Phi_V$ well-defined.

- Existence results for Boltzmann Cauchy problem are known for certain admissible kernels of A.
- No clear idea of what is a "good" collision operator.
- K. Bichtler (1967): for globally hyperbolic spacetimes and certain bounds on A(x, p, q, p', q') and exponentially decaying data.
- For $||\mathcal{A}[u, v]||_B \le ||u||_B ||v||_B$:
 - D. Bancel (1973). Globally hyperbolic spacetimes.
 - H Andréasson (2005).

Admissible collision kernels

We say A is an admissible collision kernel if

$$1 A \in C^{\infty} \left(\bigcup_{(x,p)} \Sigma_{(x,p)} \right).$$

2 There is a uniform C > 0 such that

$$\int_{\Sigma_{x,p}} A(x,p,q,p',q') dV(x,p;q,p',q') \leq C,$$

for every $(x, p) \in \overline{\mathcal{P}}(M)$.

- **3** $A \ge 0$ and $A(x, 0, \cdot, \cdot, \cdot) = 0$.
- 4 supp $(x \mapsto A(x, \cdot, \cdot, \cdot, \cdot))$ is compact.
- **5** \exists lightlike and future-directed $p \in T_x M$ with $A(x, p, p' + q' p, p', q) > 0, p', q' \in T_x M$ with $||p'||_g > 0$ and $||q'||_g > 0$.

Proposition (B, Kujanpää, Lassas, Liimatainen)

- K be a compact set in $\overline{\mathcal{P}}((0,\infty) \times N)$.
- $A: \bigcup_{(x,p)} \Sigma_{(x,p)} \to \mathbb{R}$ be an admissible kernel.

Then, there is an open set $\Omega \subset C_K^k(\overline{\mathcal{P}})$ with $0 \in \Omega$, such that if $f \in \Omega$,

$$\mathcal{X}u(x,p) - \mathcal{A}[u,u](x,p) = f(x,p) \quad on \quad \overline{\mathcal{P}}((0,\infty) \times N)$$

 $u(x,p) = 0 \quad on \quad \overline{\mathcal{P}}((-\infty,0] \times N)$

has a unique solution $u \in C(\overline{\mathcal{P}})$ with $||u||_{C^0(\overline{\mathcal{P}})} \leq C_K ||f||_{C^0(\overline{\mathcal{P}})}$ for some constant $C_K > 0$.

Theorem setup

- $\blacksquare (M = \mathbb{R} \times N, g) \text{ is a geodesically complete, globally hyperbolic, } C^{\infty}\text{-smooth, Lorentzian manifold.}$
- **2** $\mu: [-1,1] \to (0,\infty) \times N$ given smooth timelike curve.
- 3 Set $x^{\pm} := \mu(\pm 1)$.
- **4** There is an open neighbourhood $V \subset (0, \infty) \times N$ of μ such that $(V, g|_V)$ is known.
- **5** $\Phi_V : f \mapsto u|_V$ the source to solution operator for the Boltzmann equation, defined for f a neighbourhood of $0 \in C_c^{\infty}(J^+(V))$.

Main result

Theorem (B, Kujanpää, Lassas, Liimatainen)

For a given admissible scattering kernel A, the data $(V, g|_V)$ and the map Φ_V determines the metric g up to conformal class on the region $W := I^-(x^+) \cap I^+(x^-)$.

Main result proof sketch

(Hörmander 18.2.8). Let $K \subset TM$ be a codimension ksubmanifold. We say that $u \in \mathcal{D}'(TM, \Omega^{\frac{1}{2}})$ is a **conormal distribution** to K of order $m \in \mathbb{R}$, denoted $I^m(K)$ if locally for

■
$$y \in \mathbb{R}^{2n+2}$$
 written $y = (y', y'')$, dual variable $\xi = (\xi', \xi'')$,
■ $K = \{y' = 0\}$,

we have

• $u(x) = \int_{\mathbb{R}^k} e^{i\langle y',\xi'\rangle} a(y'',\xi') d\xi',$ with symbol $\sigma(u) := a \in S^{m+\frac{n+1}{2}-\frac{k}{2}}(\mathbb{R}^{2n+2-k} \times \mathbb{R}^k).$ If u ∈ I^m(K), then σ(u) ∈ D'(N*K, Ω^{1/2}), where
 N*K := {(y, ξ) ∈ T*TM : y ∈ K, ⟨ξ,η⟩ = 0, ∀η ∈ T_yK}
 is the conormal bundle of K.

In particular, $WF(u) \subset N^*K$.

Proof sketch

- Let $w_0 \in W := I^+(x^+) \cap I^-(x^-)$.
- Choose $\hat{x} \in V$.
- Let γ be the geodesic from \hat{x} to w_0 .
- We construct submanifolds $M_1 = \{(\hat{x}, \dot{\gamma}(0))\}, M_2 \subset \overline{\mathcal{P}}(V)$ with flowouts

$$\Lambda_j = \{(x,p) \in \mathit{TM} \, : \, (x,p) = \dot{\gamma}_{(y,q)}(s), \, s \in \mathbb{R}, \, (y,q) \in \mathit{M}_j\} \subset \mathit{TM}$$

and projections $K_j \subset M$ satisfying

- $\bullet \ \Lambda_1 \cap \Lambda_2 = \emptyset$
- $K_1 \cap K_2 = \emptyset$.
- Construct sources $f_{j,\eta} \in I^m(N^*M_j)$, j = 1, 2 which behave like delta distributions supported on M_j as $\eta \to 0$.

Consider the interaction

$$\mathcal{X} u_{\epsilon_1,\epsilon_2} = \mathcal{A}[u_{\epsilon_1,\epsilon_2}, u_{\epsilon_1,\epsilon_2}] + f_1 \epsilon_1 + f_2 \epsilon_2.$$

• We write $u_{\epsilon_1,\epsilon_2} := 0 + v_1\epsilon_1 + v_2\epsilon_2 + v_3\epsilon_1\epsilon_2 + R(\epsilon_1,\epsilon_2)$, where

$$\mathcal{X}v_j = f_j, \quad \mathcal{X}v_3 = \mathcal{A}[v_1, v_2] + \mathcal{A}[v_2, v_1].$$

We show that Φ determines the source-to-solution map Φ^{2L} for the problem Xv₃ = A[v₁, v₂] + A[v₂, v₁]:

$$\Phi''(0; f_1, f_2) := \lim_{\epsilon \to 0} \frac{\Phi'(\epsilon f_2; f_1) - \Phi'(0; f_1)}{\epsilon} = \Phi^{2L}(0).$$

- Consider the light-like signals received in V.
- Analyze the wavefront set of

$$v_3 = \lim_{\eta \to 0} \mathcal{X}^{-1} \left(\mathcal{A}[\mathcal{X}^{-1}f_{1,\eta}, \mathcal{X}^{-1}f_{2,\eta}] + \mathcal{A}[\mathcal{X}^{-1}f_{2,\eta}, \mathcal{X}^{-1}f_{1,\eta}] \right).$$

- We show the projection of $WF(v_3) = \bigcup_{b=0}^{B} T_{w_b}M$ for points $w_b \in W$.
- In particular, we determine the first observation of light from w_0 to \hat{x} .
- Kurylev-Lassas-Uhlmann (2017): This determines (*W*, *g*|_{*W*}) up to conformal factor.

Summary

 Question: Can you determine regions of spacetime from sending particle signals and measuring the resulting light signals from interactions in the unknown region?

Yes!

- Showed you can recover the structure of a causal diamond W from knowledge of the structure near the observer and the source-to-solution map for particle kinematics.
- Key: Nonlinear collision operator was the crucial element used to captured information about local structure of W.

Thanks!

- Brain scan: Wikimedia Commons/Sean Novak. (https://en.wikipedia. org/wiki/Magnetic_resonance_imaging_of_the_brain)
- Seismic: Grace Elton.

(https://www.thinglink.com/scene/727582035165577217)

- VLT: ESO/A. Ghizzi Panizza (www.albertoghizzipanizza.com)
- Guide laser: ESO/G. Hüdepohl
- NASA / WMAP Science Team (

http://map.gsfc.nasa.gov/media/121238/ilc_9yr_moll4096.png