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§ TARGET

In this lecture we analyse metastability for the lattice gas in

two and three dimensions subject to Kawasaki dynamics.

Particles live in a finite box, hop between nearest-neighbour

sites, feel an attractive interaction when they sit next to

each other, and are created, respectively, annihilated at the

boundary of the box in a way that reflects the presence of

an infinite gas reservoir.

We are interested in how the system nucleates,

i.e., how the box fills up when it is initially empty.
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Kawasaki dynamics is a conservative dynamics: particles

are conserved in the interior of the box. Consequently,

during the growing and the shrinking of droplets, particles

must travel between the droplet and the boundary of the

box, which causes several complications.

It turns out that, in the metastable regime of interest, particles

move along the border of a droplet more rapidly than they arrive

from the boundary of the box. This property leads to a shape of

the critical droplet that is more complicated.



§ KAWASAKI DYNAMICS

1. Let Λ ⊂ Z2 be a large square box, centered at the origin.

Let

∂−Λ = {x ∈ Λ: ∃ y /∈ Λ: ‖y − x‖ = 1}

be the internal boundary of Λ, and put Λ− = Λ \ ∂−Λ.

2. A configuration is denoted by η ∈ Ω = {0,1}Λ, where

η(x) = 0 indicates the absence and η(x) = 1 the presence

of a particle at x.



0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 1 0 0

A lattice-gas configuration.



3. Each configuration η ∈ Ω has an energy given by the
Hamiltonian

H(η) = −U
∑

x,y∈Λ−
‖x−y‖=1

η(x)η(y) + ∆
∑
x∈Λ

η(x).

The interaction consists of a binding energy

−U < 0 and an activation energy ∆ > 0.

4. There are two types of allowed moves:

(1) particle hop:
0↔ 1 between pairs of neighbouring sites in Λ.

(2) particle creation or annihilation:
0→ 1 or 1→ 0 at single sites in ∂−Λ.



Kawasaki dynamics is the Metropolis dynamics driven by

H at inverse temperature β, i.e.,

η → η′ at rate exp
{
− β[H(η′)−H(η)]+

}
.

We may think of Z2\Λ as an infinite reservoir that

keeps the particle density inside Λ fixed at e−β∆.



§ METASTABLE REGIME

The metastable regime of interest turns out to be

∆ ∈ (U,2U), β →∞.

A key role is played by what we call the critical droplet size

`c =
⌈

U

2U −∆

⌉
,

where for convenience we assume that

U

2U −∆
/∈ N.



The energy of an `× ` droplet equals

H(`× `) = −U [2`(`− 1)] + ∆`2.
EXERCISE!

0

H(`× `)

`
U

2U−∆

`c =
⌈

U
2U−∆

⌉

An (`c − 1) × (`c − 1) droplet is subcritical while an `c × `c
droplet is supercritical.
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Add or remove a bar of length `.

Note:

The costs for adding or removing match when ` = U
2U−∆.



§ NUCLEATION

The nucleation proceeds in four steps:

(1) Creation of a canonical protocritical droplet: a quasi-

square with a single protuberance.

(2) Particles move along the border of the droplet: all the

other protocritical droplets are visited.

(3) A free particle moves from the boundary of the box to

the protocritical droplet.

(4) The free particle attaches itself to the protocritical

droplet.

After these four steps are completed, the dynamics is over

the hill and proceeds downwards in energy to fill up the

box.



§ PROTOCRITICAL DROPLETS

DEFINITION:

(a) Let �,� denote the configurations where Λ is empty,

respectively, full.

(b) Let Q = Q̄ ∪ Q̃ be the set of canonical protocritical

droplets defined by

– Q̄ is the set of configurations consisting of an (`c−1)×`c
quasi-square with a protuberance attached to one of

the longest sides.

– Q̃ is the set of configurations consisting of an (`c−1)×`c
quasi-square with a protuberance attached to one of

the shortest sides.



`c

`c − 1

An example of a canonical protocritical droplet.

EXERCISE!



(c) Let D = D̄ ∪ D̃ be the set of protocritical droplets

defined by

D = QU ,

the set of configurations that can be reached from Q via

a U-path, i.e., a path that begins and ends at the same

energy and does not exceed U in energy.

(d) Let Dfp be the set of critical droplets obtained from D
by adding a free particle anywhere in Λ−.

discrete isoperimetric inequalities



`c

`c − 1

An example of a canonical critical droplet.

EXERCISE!



The configurations in D arise from each other via motion of
particles along the border of the droplet: because ∆ > U all
protocritical droplets are explored before the free particle
arrives and attaches itself.

D̄ D̃

Q̄ Q̃

Dumb-bell shape: Q̄ and Q̃ are the gateways between D̄ and D̃.

EXERCISE!
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Nucleation for Kawasaki dynamics.



THEOREM: den Hollander, Nardi, Olivieri, Scoppola 2003

Bovier, den Hollander, Nardi 2006

E�(τ�) = [1 + o(1)]KeβΓ, β →∞,

with

Γ = H(Dfp)−H(�) = H(D) + ∆

= −U [(`c − 1)2 + `c(`c − 2) + 1] + ∆[`c(`c − 1) + 2]

and K = K(Λ) satisfying

lim
Λ→Z2

4π|Λ|
log |Λ|

K(Λ) =
1

N(`c)

with

N(`c) =
∑

k=1,2,3,4

(4
k

) [(`c + k − 2

2k − 1

)
+ 2

(`c + k − 3

2k − 1

)]

the cardinality of D modulo shifts.



The prefactor K can be expressed in terms of capacities

associated with two-dimensional simple random walk on Λ

in the presence of a protocritcal droplet.

No easily computable expression is available for K for finite

Λ, but a sharp asymptotics is available as Λ→ Z2.

discrete isoperimetric inequalities



§ EXTENSION TO THREE DIMENSIONS

We briefly indicate how to extend the main results from

two to three dimensions.

Let Λ ⊂ Z3 be a large cubic box, centred at the origin. The

metastable regime is

∆ ∈ (2U,3U), β →∞,

and we assume that

U

3U −∆
/∈ N,

2U

3U −∆
/∈ N.



DEFINITION:

(a) Let Q be the set of canonical protocritical droplets

consisting of:

• (mc − 1)× (mc − dc)×mc quasi-cube

• attached to one of the faces: (`c− 1)× `c quasi-square

• attached to one of the sides: single protuberance.

Here, dc ∈ {0,1} depends on the arithmetic properties of

U and ∆, while

`c =
⌈

U

3U −∆

⌉
, mc =

⌈
2U

3U −∆

⌉
,

denote the two-dimensional critical droplet size on a face,

respectively, the three-dimensional critical droplet size.



(b) Let D be the set of protocritical droplets consisting of

configurations that can be reached from Q via a 2U-path.

(c) Let Dfp be the set of critical droplets obtained from D
by adding a free particle anywhere in Λ−.

(d) Let

Γ = H
(
Dfp

)
= H

(
D
)

+ ∆ = H(Q) + ∆

= U [mc(mc − dc) +mc(mc − 1) + (mc − dc)(mc − 1)

+ 2`c + 3]

− (3U −∆)[mc(mc − dc)(mc − 1)

+ `c(`c − 1) + 2].



An example of a canonical critical droplet:

`c = 10, mc = 20, dc = 0.



The main theorem for the average metastable crossover

time carries over:

THEOREM: den Hollander, Nardi, Olivieri, Scoppola 2003

Bovier, den Hollander, Nardi 2006

E�(τ�) = [1 + o(1)]K eβΓ, β →∞.

Unfortunately, the geometry of the set of critical droplets

has not been fully identified. This is due to the fact that

the motion of particles along the border of the droplet is

much more complex in three than in two dimensions.

Consequently, only crude bounds are known for K.
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