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The Davey-Stewartson Equations

The Davey-Stewartson family of equations were initially introduced in the
study of water waves (they model the evolution of weakly nonlinear
surface water waves in 2+1 dimensions, travelling principally in one
direction). They also arise in the context of ferromagnetism, plasma
physics, and nonlinear optics.

LWP for the L2 critical case and GWP for small initial data (using
dispersive methods):

Ghidaglia and Saut (1990)

Linares and Ponce (1993)

Hayashi and Saut (1995)

In this talk we consider one special member of this family: defocusing DSII.
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The Defocusing DSII Equations
Defocusing DSII:

i∂tq + 2(∂̄2 + ∂2)q + q(g + g) = 0

∂̄g + ∂(|q|2) = 0

q(0, z) = q0(z).

(1)

This model is completely integrable and can be solved by the
Inverse-Scattering method.

Notation:

z = x1 + ix2; ∂̄ =
1

2
(
∂

∂x1
+ i

∂

∂x2
).

Perry (2014) - GWP for general q0 ∈ H1,1 using Inverse-Scattering
method

This talk: GWP for q0 in L2 (mass critical case), via a Plancherel
Theorem for the Scattering Transform.
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The Scattering Transform
Lax pair for defocusing DSII: Lt = [L,A], where

L :

{
∂̄m1 = qm2

(∂ + ik)m2 = qm1
(2)

and

A = ... (3)

Solve (2) with m1(z , k)→ 1,m2(z , k)→ 0 as |z | → ∞. Define the
Scattering Transform:

s(k) := Sq(k) = − i

π

∫
R2

ek(z)q(z)m1(z , k)dz . (4)

where ek(z) = e i(zk+zk) and dz = dx1dx2. Then

∂

∂t
s(t, k) = 2i(k2 + k

2
)s(t, k). (5)
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Using the Scattering Transform

The Inverse-Scattering Transform:

Is(z) = − i

π

∫
R2

ez(k)s(k)m1(z , k)dk. (6)

Can we solve the Cauchy problem for DSII with q0 in L2 as follows ?
s0(k) = Sq0(k)

s(t, k) = e2i(k2+k
2
)ts0(k)

q(t, z) = I
(
s(t, k)

)
(z).

(7)

q0(z)
nonlin //

S
��

q(t, z)

s0(k)
linear // s(t, k).

I

OO
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Nonlinear Plancherel Identity

Beals and Coifman (1998) proved that for q in Schwartz class s is in
Schwartz class and the whole procedure is rigorous. Moreover they showed:∫

R2

|s(k)|2dk =

∫
R2

|q(z)|2dz .

Open Problem: true for all q in L2 ?

R. Brown (2001) - q in L2 with small norm

P. Perry (2014) - q in weighted Sobolev space H1,1

K. Astala, D. Faraco and K. Rogers (2015) - q in weighted Sobolev
space Hε,ε, ε > 0

R. Brown, K. Ott and P. Perry (2016) - q ∈ Hα,β iff s ∈ Hβ,α,
α, β > 0
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Plancherel Theorem

Theorem (N-Regev-Tataru)

The nonlinear scattering transform S : q 7→ s is a C 1 diffeomorphism
S : L2 → L2, satisfying:

1 The Plancherel Identity: ‖Sq‖L2 = ‖q‖L2

2 The pointwise bound: |Sq(k)| ≤ C (‖q‖L2)Mq̂(k) for a.e. k

3 Locally uniform bi-Lipschitz continuity:

1

C
‖Sq1 − Sq2‖L2 ≤ ‖q1 − q2‖L2 ≤ C‖Sq1 − Sq2‖L2

where

C = C (‖q1‖L2)C (‖q2‖L2).

4 Inversion Theorem: S−1 = S.
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A bit about the Proof
Making the substitution

m± = m1 ± e−km
2,

we need to solve {
∂
∂zm± = ±e−kqm±
m± → 1 as |z | → ∞.

In integral form,

m± − 1 = (∂̄ ∓ e−kq·)−1∂̄−1(e−kq).

1 For q ∈ L2, we need new bounds on ∂̄−1(e−kq) which allow us to
capture the large k decay without assuming any smoothness on q.

2 We need bounds on (∂̄ ∓ e−kq·)−1 which depend only on the L2 norm
of q.
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New Estimate on Fractional Integrals

Lemma

For q ∈ L2(C),

‖∂̄−1(e−kq)‖L4 . ‖q‖
1
2

L2

(
Mq̂(k)

) 1
2
.

M is the Hardy-Littlewood Maximal function

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)|dy .

which yields a bounded operator on Lp for 1 < p ≤ ∞.

Theorem

For 0 < α < n, f ∈ Lp(Rn), 1 < p ≤ 2

∣∣(−∆)−
α
2 f (x)

∣∣ ≤ cn,α
(
Mf̂ (0)

)α
n
(
Mf (x)

)1−α
n
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Sketch of Proof - Fractional Integrals

Proof.

Using Littlewood-Paley decomposition,

(−∆)−
α
2 f (x) =

1

(2π)n

j0∑
j=−∞

∫
Rn

ψj(ξ)
e ix ·ξ

|ξ|α
f̂ (ξ)dξ +

∞∑
j0+1

...

with ψj(ξ) = ψ(ξ/2j) supported in 2j−1 < |ξ| < 2j+1. For j ≤ j0 use∫
|ξ|<r
|f̂ (ξ)|dξ ≤ cnr

nMf̂ (0)

... ∣∣(−∆)−
α
2 f (x)

∣∣ . 2j0(n−α)Mf̂ (0) + 2−j0αMf (x)

optimize over j0.
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Key Theorem - bounds in terms of ‖q‖L2

Theorem

Let q ∈ L2. Then for each f ∈ Ḣ−
1
2 there exists a unique solution u ∈ Ḣ

1
2

of

Lqu := ∂̄u + qu = f (8)

with
‖u‖

Ḣ
1
2
≤ C (‖q‖L2)‖f ‖

Ḣ− 1
2
. (9)

In particular, for f ∈ L
4
3 the same holds, with ‖u‖L4 ≤ C (‖q‖L2)‖f ‖

L
4
3

.

Idea of the proof: use Induction on Energy and Profile Decompositions to
study the static problem.
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Construction of the Jost Solutions for q ∈ L2

As a result of the new estimates on fractional integrals and the Key
Theorem, we can now establish

Theorem (Jost Solutions)

Suppose q ∈ L2, then for almost every k there exist unique Jost solutions
m±(z , k) with m±(·, k)− 1 ∈ L4 and moreover

‖m(·, k)± − 1‖L4 ≤ C (‖q‖L2)
(
Mq̂(k)

) 1
2

‖m± − 1‖L4
zL

4
k
≤ C (‖q‖L2).

‖∂̄m1(·, k)‖
L

4
3
≤ C (‖q‖L2)

(
Mq̂(k)

) 1
2 .
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Scattering Transform as a ΨDO

Recall

s(k) = q̂(k)− i

π

∫
R2

ek(z)q(z)(m1(z , k)− 1)dz .

Replace q by the Fourier transform of some function in L2. Then the
above becomes a pseudo-differential operator with symbol m1 − 1. We’d
like to prove it is a bounded operator on L2.
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Theorem

Let 0 ≤ α < n. Suppose a(x , ξ) satisfies∫
Rn

∫
Rn

∣∣a(x , ξ)
∣∣ 2n
n−α dxdξ <∞ and ‖(−∆ξ)

α
2 a(x , ξ)‖

L
2n

n+α
ξ

∈ L
2n

n−α
x .

Then the pseudo-differential operator

a(x ,D)f (x) :=
1

(2π)n

∫
Rn

e ix ·ξa(x , ξ)f̂ (ξ)dξ (10)

is bounded on L2. Moreover, we have the pointwise bound

|a(x ,D)f (x)| ≤ cα,n(Mf (x))α/n‖(−∆ξ)
α
2 a(x , ·)‖

L
2n

n+α
‖f ‖1−α

n

L2 (11)

for a.e. x.

This completes the sketch of the proof of the Plancherel Theorem.
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GWP for Defocusing DSII on L2

Theorem

Given q0 ∈ L2, there exists a unique solution to the Cauchy Problem for
defocusing DSII such that:

1 Regularity:
q(t, z) ∈ C (R, L2

z(C)) ∩ L4
t,z(R× C).

2 Uniform bounds: ‖q(t, ·)‖L2 = ‖q0‖L2 for all t ∈ R and∫
R

∫
R2

|q(t, z)|4dzdt ≤ C (‖q0‖L2).

3 Stability: if q1(t, ·) and q2(t, ·) are two solutions corresponding to
initial data q1(0, ·) and q2(0, ·) with ‖qj(0, ·)‖L2 ≤ R then

‖q1(t, ·)− q2(t, ·)‖L2 ≤ C (R)‖q1(0, ·)− q2(0, ·)‖L2 for all t ∈ R.
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Proof that q(t, z) ∈ L4
t,z(R× C)

s(t, k) = e2i(k2+k
2
)ts0(k)

|q(t, z)| = |S−1
(
s(t, ·)

)
(z)|

≤ C (‖q0‖L2)M š(t, z)

where

š(t, z) =

∫
ez(k)e2i(k2+k

2
)ts0(k)dk := U(t)(š0)(z)

is linear flow starting from š0 for which we have the Strichartz estimate

‖š‖L4
t,z

. ‖š0‖L2 = ‖s0‖L2 = ‖q0‖L2 .
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Time-domain Scattering

The Scattering Transform also yields the large time behaviour of the
solutions to the DSII equation. Recall the definition of the wave operators,
in the sense of nonlinear scattering theory.

Definition

Let q0 ∈ L2(R2) and let q(t, z) be the solution to the Cauchy problem for
defocusing DSII. Define W+q0 = q+ if there exists a unique q+ ∈ L2(R2)
such that

lim
t→∞

‖q(t, ·)− U(t)q+‖L2(R2) = 0.

Similarly W−q0 = q− if

lim
t→−∞

‖q(t, ·)− U(t)q−‖L2(R2) = 0.
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Wave operators and asymptotic completeness for
defocusing DSII

Theorem

a) The Wave operators W± for the defocusing DSII equation are well
defined on every q0 ∈ L2(R2) and

W±q0 = ˇSq0.

b) The Wave operators W± are surjective, in fact norm-preserving
diffeomorphisms of L2.

Perry (2014) established the same large time asymptotic behaviour in the
L∞ norm, for initial data in H1,1 ∩ L1.

An interesting consequence of the Theorem is that the temporal scattering
operator W+(W−)−1 for the defocusing DSII equation (i.e. the operator
which sends q− to q+) is equal to the identity.
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The Calderón Inverse Conductivity Problem
Let Ω be a simply connected domain in R2 ' C ∇ · (σ∇u) = 0 in Ω

u
∣∣∣
∂Ω

= g .
(12)

The Dirichlet-to-Neumann map is defined as

Λσf := σ
∂u

∂ν

∣∣∣
∂Ω
.

A.P. Calderón (1980) posed the problem: does Λσ uniquely determine σ?

N. (1996) - Unique reconstruction for σ ∈W 2,p(Ω) for some p > 1

R. Brown. G. Uhlman (1997) - σ ∈W 1,p(Ω), for some p > 2.

K. Astala, L. Päivärinta (2006) - σ ∈ L∞

K. Astala, M. Lassas, L. Päivärinta (2016) - Larger class of
conductivities which includes some unbounded ones.

C.Carstea J.-N. Wang log σ ∈ L2(Ω) with small norm (2018)
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The Calderón Inverse Conductivity Problem

Theorem

Suppose σ > 0 is such that ∇ log σ ∈ L2(Ω) and σ = 1 on ∂Ω, then we
can reconstruct σ from knowledge of Λσ.

Outline of the proof:

Let v = σ
1
2∂u then for u real valued, ∂̄v = qv where q = −1

2∂ log σ ∈ L2.

s(k) =
1

2πi

∫
R2

ek(z)q(z)
(
m+(·, k) + m−(·, k)

)
=

1

2πi

∫
Ω
∂
(
m+(·, k)−m−(·, k)

)
=

1

4πi

∫
∂Ω
ν
(
m+(·, k)−m−(·, k)

)
Proof consists in showing that Λσ determines the traces of m±(·, k) on ∂Ω.
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Thank You!
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