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Adaptation

„The only constant in life is change.“

Bacillus subtilis

Information about the niche.
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„The only constant in life is change.“

Information 
about environmental

conditions.

Environmental conditions change.

Adaptation
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Cellular stateEnvironment

Adaptation

Motile cell SporeSessile cell

b
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Signal Transduction in Bacteria

e.g. Lac repressor

One component systems

Membrane Membrane

e.g. chemotaxis CheA-CheY, EnvZ/OmpR

Two component systems

Histidine kinase

Response regulator

Response 
regulator
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Binding 
Modulator

One component systems Two component systems

Enzymatic
Modulator

Signal Transduction in Bacteria
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Binding 
Modulator

One component systems Two component systems

Enzymatic
Modulator

Auto-inducer signaling
(Quorum sensing)

Auto-inducer
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Quorum Sensing

Auto-
inducer

Cell
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Quorum Sensing

more cells – more signal
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Quorum Sensing

„The quorum“ –
a minimal  behavioral unit
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Quorum Sensing

„The quorum response“
11



(Almost) 50 Years of Quorum Sensing

Bioluminescence is
regulated by cell density.

First observations
1964 Tomasz & Hotchkins (G+)
1970 Neaslon et al. (G-)
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The Quorum Response Spectrum

Production
of exofactors

Host-microbe
interactions

Biofilms

Cell differentiation

• Cost of production
• Benefit depedent on enzyme accumulation
=> Density-dependent fitness function
See work by Lingchong You

Horizontal gene transfer
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Quorum Sensing in Synthetic Biology Applications

Tamsir et al.,  Nature 2011

Multi-cellular Computing

Prindle et al., Nature 2012

Advanced Biosensors

Synthetic Ecology

Brenner et al.,  Trends in Biotechnology, 2008

V.fischeri (Bassler, 2002)

LuxIR-type of QS Circuitry
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Diversity of Quorum Sensing Architectures

V.fischeri (Bassler et al., 2002) V.harveyi (Bassler et al., 2002)

S.aureus (Lyon et al., 2004)

no

yes

Signal
Modification

inside outside
Receptor
Location

B. subtilis (Bischofs et al.,  2009)

passive

active

Transport

Network structure 
↔ 

Network function
Bastian Drees
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Adopting a modular view on QSS 

Feedback (often but not all cases)

Basic componentsBasic components
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Diversity of Encoding Architectures

99 networks (85%) are capable
of encoding information about cell density into SM concentration. 

Drees at al., BPJ 2014
17



Adopting a Modular View on QSS

Encoding relationship Decoding relationship
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Defining a Performance Criterion

Cell Density

Ac
tiv

at
ed

Elasticity coefficient Relative noise (CV)

Relation to mutual information:
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Quantifying Performance

nISS nESS

QS architectures have distinct sensitivity and
noise charachteristics.

QSS achieve optimal performance at a
certain cell density input. 

nISS

nESS
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The optimal sensory performance
is matched to the „quorum“  

R = 0.96

mISS
nESS
mESS

nISS

nISS

nESS
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Performance Trade-offs

Encoder with
fixed parameters

Maximal
Resolving Power

Decoder – Encoder 
Matching

(optimize receptor
affinities Ks)

Architectural Simplicity
(better noise characteristics)

nISS

Architectural Complexity
(better sensitivity characteristics)

nESS

Trade-off
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Resolving power of the encoder

mISS
nISS

ESSmISS ESS nISS

Resolving power with a „matched“ decoder.



Conclusions

R = 0.96

mISS
nESS
mESS

nISS

nISS

nESS

Design Principle for Synthetic Biology
Low cell density sensing may require other QSS 
architectures than the simple LuxIR-type system.

Evolution of QSS target genes: 
Does the QSS architecture constrain the
evolution of QSS target genes?

It‘s really hard to find parameters to
model QSS … 
Calculations based on guestimates …..23



Traditional Quorum Sensing Research
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The QS Paradigm

Homogeneous
population

Synchronized
response

Cell density
sensing
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Complex adaptive traits

Heterogeneous
population

Division of labor
J. van Gestel et al., 
Plos Biology, 2015

Motile cells

Sessile cells

Bet hedging
Reviewed in: Veening et al., 
Annu. Rev. Microbiol. 2008

Dividing cells

Sporulating cells

26Population-based quantitative trait
Ackermann, Nature Reviews Microbiology (2015)

Distribution of different phenotypes



Molecular
Level

Population 
Level

Complex
Adaptive Traits

(CATs)understand

controlengineer

Organizing Principles

Molecular
Determinants &

Mechanisms

Our mission



Image Processing

Liluashvili V. et al., 2015

Timelapse microscopy

Fluorescence timelapse microscopy 

Trauth & Bischofs, 2014

Fluorescence reporter

Genetic engineering

Hydrogels

Microfluidics
Group of D. Kohlheyer

Marika Ziesack Charlotte Kaspar Svenja SchwindtStephanie Trauth Group of K. Rohr
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Mutlu et al., Nat. Commun. (2018)

Alper Mutlu

mCherry
PrapA-phrA

Heterochronic population response

Mutlu et al., ISME J (2020)



Going beyond the QS paradigm

Homogeneous
population

Synchronized
response

Cell density
sensing

Heterogeneous
population

Heterochronic
response?
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Communication in B. subtilis

Neiditch et al., 
Ann. Rev. Genetics (2017)

Rap-Phr-Systems

Rap-Phr-Systems are commonly referred as quorum sensing systems.
However, there is little experimental evidence for a cell-density dependent type of regulation.

Alternative ideas: 
The system could control the timing of a cellular response (a delay circuit).

Observation: Heterogeneous phr gene expression (only subpopulation produces the signal).
Could the system facilitate composition sensing?

31



The pump-probe model

32

Population model
• Heterogeneous population:

Signal produced by a subpopulation of cells
present at frequency f

• Signal uptake by all cells.
• Exponentially growing population

(same growth rate & well-mixed)

• Different starting cell densities (OD)

Signal producer Signal uptake

Signal transduction model
• Signal uptake with Michaelis-Menten pump 

kinetics
• Signal degradation (and dilution by cell

growth)
• Output is a function of the intracellular

signal concentration using a Hill function

The Pump-Probe Model

Phenomenological (ODE-type) model

Assumptions

ATP-hydrolysis

Signal transduction: fast



One network architecture – different control functions

Control functions depend on network parameters and operating conditions

not (well) defined

Saturated signal import
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39

Fluorescence (Förster) resonance energy transfer (FRET)

Babel et al., Nat. Commun. 2020

34

Förster radius: 
R0 ~ nm

Tool for studying
protein-protein interactions

in vivo 

(relatively) short-ranged interaction

k!=1/τ" ∗
𝑅#
𝑅

$

Energy transfer rate:

R: Distance between chromophores
τ": Fluorescence lifetime of the donor

A new tool for quantitative studies of
PhrA-signaling in bacterial cells
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Acceptor-photobleaching experiments

Babel et al., Nat. Commun. 2020

FRET efficiency:

Population-average measurement
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No cross-talk with other Raps

Bleed-through controls

Molecular crowding controls

FRET controls

Reporter controls

FRET specifically reports on PhrA

40

Validation by 3-cube FRET

Not affected by phosphorelay signaling

PhrA signaling is active.



PhrA processing is well described by the pump-probe model

transport
volumes
concentrations
Degradation rates
cell number
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Cells accumulate PhrA and trigger a response at µM-levels

Intracellular
FRET-response 

Dynamics of
recovery

THE PROBE

PhrA is „integrated“ over a relatively long time.

Large signal amplification upon extra- to intracellular conversion.

Intracellular FRET response is triggered in the µM-regime.

8

Model:

43

Data
Fit



Dose-dependent signal processing

CELL DENSITY 
EFFECT

CONCENTRATION 
EFFECT

CELL DENSITY 
EFFECT

DOSE-DEPENDENT 
EFFECT
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Dose-dependent signal processing

DOSE-DEPENDENT 
EFFECT

2.4*104 PhrA/per cell.

40
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Composition Sensing

Phenotypic
diversity

Genetic
diversity



PP Systems: Frequency-dependent regulation

Frequency dependent investments into mating in yeast (Banderas et al., 2016)
Conjugation in Enterococcus faecalis, Banderas et al. , BioArXiv 2019.  
See also upcoming work by Avigdor Eldar on phages (Tel Aviv University).
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Conguative
Plasmids

(Pro)Phages

ICE elements

Transfer of genetic material
Ratio of donor and recipient.



Future work
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The Enzymatic Modulator Model

Babel & Bischofs, BMC Systems Biology (2016)

Molecular Parameters

Relative 
affinity

Cellular Parameters („Context“)

steady state
output

Network motifMolecular view

Binding
Allostery

Enzymatic
Allostery

Model: Signal processing is shaped by molecular and cellular factors.
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Signal processing by single cells
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E-FRET Imaging (Zal & Gascoigne, 2004) abcd: correction factors

G: calibration factor

Homogenous response



Signal processing by engineered receptors

Baker et al., 2011
Parashar et al., 2011
Gallego et al., 2013
Parashar et al., 2013 46

Allosteric residue

Allosteric residue

!

Catalytic residue



Summary
One sensory function – different architectures
The architecture of QSS could constrain the operating regime for cell density
sensing.

One architecture – different sensory functions
Pump-probe networks could implement versatile control functions, including
the ability for composition sensing and frequency-dependent regulation.

FRET is a powerful way to quantitatively interrogate signal processing in 
bacteria by montoring protein-protein interactions in the cell.
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