

An Energy–Accuracy Tradeoff for Nonequilibrium Receptors

Sarah Harvey, Subhaneil Lahiri, Surya Ganguli Department of Applied Physics, Stanford University

BIRS workshop 20w5074: Mathematical Models in Biology: from Information Theory to Thermodynamics

Cells Perform Interesting Sensing Tasks

Fluorescently-labeled swimming Escherichia coli cells showing their flagellar bundles (video from Howard C. Berg Lab)

http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php

Fig. 1. Photomicrograph showing attraction of Escherichia coli bacteria to aspartate. The capillary tube (diameter, ~ 25 microns) contained aspartate at a concentration of $2 \times 10^{-3}M$. [Photomicrograph by Scott W. Ramsey; dark-field photography]

Reproduced from Adler, J. Science 26 Dec 1969: Vol. 166, Issue 3913, pp. 1588-1597

- How do cells measure external concentrations and infer information about their environment?
 - **Surface receptors:** ligand binds to receptor \rightarrow intracellular response \rightarrow behavioral response
 - History of study by physicists interested in the fundamental limits on sensing ability
 - Often modeled with continuous-time Markov chains

Lan, G., & Tu, Y. (2016). Information processing in bacteria: memory, computation, and statistical physics: a key issues review. Reports on Progress in Physics, 79(5), 052601.

Chemotaxis in Escherichia coli. Adler, Julius. Receptors, Cold Spring Harbor Symp. Quant. Biol. 30, (1965).

Receptor protein methylation level \leftrightarrow internal representation of concentration

Crucial for adaptation

In Sensory

- Used diffusive transport and low Reynolds number mechanics to develop theories about the physical limits of bacterial chemoreception in various ideal cases
- > 2-state single receptor model, estimation based on fraction of time bound

Perfect absorption Integrating sphere

uncertainty
$$\equiv \frac{\langle (\delta c)^2 \rangle}{c^2}$$

Berg, H. C., & Purcell, E. M. (1977). Physics of chemoreception. *Biophysical journal*, 20(2), 193–219.

Single receptor

Howard Berg

 \overline{N} : Expected number of binding events in time T

How to surpass? Violate assumptions made

1. Change observable

- Endres and Wingreen (2009): Maximum likelihood and the single receptor

 - > Applied Maximum likelihood estimation to a single, two-state receptor binding/unbinding time series Showed you can do better than the Berg-Purcell bound with:

$$c_{ML} = \frac{N}{T_u k_+}$$

Endres, R. G. & Wingreen, N. S. (2009). Maximum Likelihood and the Single Receptor. Phys Rev Lett. 2009 Oct 9;103(15):15810.

$$\frac{\langle (\delta c_{ML})^2 \rangle}{c^2} = \frac{1}{\overline{N}}$$

Intuition: only the unbound intervals contain information about *c*

Surpassing the Berg-Purcell Limit

2. Drive sensing network out of equilibrium

- Lang et al (2014): What about complex networks that consume energy? What is the relationship between the estimation capability and the energy consumption?
 - For larger Markov networks constrained to be rings, showed:

observed numerically: accuracy limited by entropy production

Figures reproduced from: Lang, A. H., Fisher, C. K., Mora, T., & Mehta, P. (2014). Thermodynamics of Statistical Inference by Cells. Physical Review Letters, 113(14), 148103.

$$\tau_S$$
 : lifetime in signaling states

We are interested in:

How the observability of the process affects the estimation uncertainty

Tradeoffs between energy, estimation accuracy, and speed.

We derive two bounds on the uncertainty by violating the Berg-Purcell assumptions in more general cases

- 0. Introduce some mathematical concepts and notations
- 1. Cramer-Rao bound for an observation of a general Markov trajectory

"ideal observer"

2. Bound on coarse-grained observations of Markov process

"simple observer"

- Stochastic thermodynamics

- Large deviation theory

3. Numerical studies

- Model the sensing device (receptor) as continuous-time Markov chain
 - > System has discrete states \rightarrow nodes on graph
 - ➤ Allowed transitions between states → edges
- > Transitions between states i and j described by transition rate Q_{ii}

Probability density over states (*p*) is evolves according to the master equation:

$$\frac{d\pi}{dt} = 0 \qquad \pi : \text{steady state distri}$$

Bracketed quantity is the mean current flowing from *i* to *j*: $j_{ii}^{p}(t) = p_{i}(t)Q_{ii} - p_{i}(t)Q_{ii}$

Flux between two states:
$$\phi_{ij} = p_i Q_{ij}$$
, $j_{ij}^p = \phi_{ij} - \phi_{ji}$ In steady state: $\phi_{ij}^{\pi} \equiv \pi_i Q_{ij}$, $j_{ij}^{\pi} = \phi_{ij}^{\pi} - \phi_{ji}^{\pi}$

ibution

- Model the sensing device (receptor) as continuous-time Markov chain
 - > System has discrete states \rightarrow nodes on graph
 - \blacktriangleright Allowed transitions between states \rightarrow edges
- > Transitions between states *i* and *j* described by transition rate Q_{ii}

Probability density over states (*p*) is evolves according to the master equation:

$$\frac{d\pi}{dt} = 0 \qquad \qquad \pi : \text{steady state distri}$$

Bracketed quantity is the mean current flowing from *i* to *j*:
$$j_{ij}^p(t) = p_i(t)Q_{ij} - p_j(t)Q_{ji}$$

Flux between two states: $\phi_{ij} = p_iQ_{ij}, \quad j_{ij}^p = \phi_{ij} - \phi_{ji}$
In steady state: $\phi_{ij}^{\pi} \equiv \pi_iQ_{ij}, \quad j_{ij}^{\pi} = \phi_{ij}^{\pi} - \phi_{ji}^{\pi}$

$$\frac{dp_j(t)}{dt} = \sum_i \left[p_i(t)Q_{ij} - p_j \right]_i$$

ibution

- Model the sensing device (receptor) as continuous-time Markov chain
 - ► System has discrete states → nodes on graph
 - \blacktriangleright Allowed transitions between states \rightarrow edges
- > Transitions between states i and j described by transition rate Q_{ii}

Probability density over states (*p*) is evolves according to the master equation:

$$\frac{d\pi}{dt} = 0 \qquad \qquad \pi : \text{steady state distri}$$

Bracketed quantity is the mean current flowing from *i* to *j*: $j_{ij}^{p}(t) = p_{i}(t)Q_{ij} - p_{j}(t)Q_{ji}$

Flux between two states:
$$\phi_{ij} = p_i Q_{ij}, \quad j_{ij}^p = \phi_{ij}$$

In steady state: $\phi_{ij}^{\pi} \equiv \pi_i Q_{ij}, \quad j_{ij}^{\pi} = \phi_{ij}^{\pi}$

- $\frac{1}{dt} = \sum \left[p_i(t)Q_{ij} p_j(t)Q_{ji} \right]$

- ibution

A general sensing problem:

 Q_{ii} : transition rates

What is the best possible estimate the observer can make of the signal c?

- Signal is transmitted through a physical channel modeled as a continuous time Markov process
- Ideal 'observer' records system's entire state trajectory and transition times for a finite amount of time

- Calculate the Fisher Information for the observed trajectory with respect to the signal *c*
- Cramér-Rao bound gives fundamental limit on the precision with which the signal can be estimated based on the observations

Plan: Write the probability of a trajectory in discrete time, calculate Fisher Information matrix, then take time steps $\rightarrow 0$

Probability of a trajectory from a state x_0 at t = 0 to state x_n at $t = n\Delta t$:

$$\mathbb{P}(x_0 \dots x_n) = \pi_{x_0} M_{x_0 x_1} M_{x_1 x_2} \dots M_{x_{n-1} x_n}$$

M : discrete time transition matrix

$$M = e^{Q\Delta t} = I + Q\Delta t + \dots$$

 Q_{ij} : transition rates

- Calculate the Fisher Information for the observed trajectory with respect to the signal *c*
- Cramér-Rao bound gives fundamental limit on the precision with which the signal can be estimated based on the observations

Plan: Write the probability of a trajectory in discrete time, calculate Fisher Information matrix, then take time steps $\rightarrow 0$

Probability of a trajectory from a state x_0 at t = 0 to state x_n at $t = n\Delta t$:

$$\mathbb{P}(x_0 \dots x_n) = \pi_{x_0} M_{x_0 x_1} M_{x_1 x_2} \dots M_{x_{n-1} x_n}$$

M : discrete time transition matrix

$$M = e^{Q\Delta t} = I + Q\Delta t + \dots$$

1. Ideal Observer: Observation of a Markov Trajectory

Fisher Information:

$$\rightarrow J_c = \sum_{x_0, \dots, x_n} (\pi_{x_0} M_{x_0 x_1} \dots M_{x_{n-1} x_n}) \left[\frac{\partial}{\partial c} \log(\pi_{i_0} M_{x_0 x_1} \dots M_{x_{n-1} x_n}) \right]^2$$

After substituting $M = I + Q\Delta t$ and taking $\Delta t \rightarrow 0$ with fixed $T = n\Delta t$, we find:

$$J_{c} = J_{c}^{0} + T \sum_{\substack{i,j \\ i \neq j}} \pi_{i} Q_{ij} \left[\partial_{c} \log Q_{ij} \right]^{2}$$

i,j index all states

with

$$J_c^0 = \sum \pi_{x_0} \left[\partial_c \log \pi_{x_0} \right]^2$$

 x_0

"single shot" Fisher information

 Q_{ij} : transition rates π_i : steady state density

Make some assumptions which are well suited for cellular sensing problem

- \blacktriangleright States are divided into two groups, signaling (*J*) and non-signaling (*N*)
- \blacktriangleright "Binding transitions" ($\mathcal{N} \rightarrow \mathcal{J}$) are linearly related to signal c

Fisher Information simplifies to

The Cramér-Rao bound \implies the variance of an unbiased estimator of c is bounded by F.I. $\langle (\delta c)^2 \rangle \geq \frac{1}{T}$ which implies:

$$\frac{\langle (\delta c)^2 \rangle}{c^2} \ge \frac{1}{J_c c^2} = \frac{1}{TR^{\pi}} = \frac{1}{TR^{\pi}}$$

$$J_c = \frac{TR^{\pi}}{c^2}$$

solid edges \Rightarrow transition rates $\sim c$

 \overline{N} : expected number of binding events

Avg.binding rate R^{π}

Make some assumptions which are well suited for cellular sensing problem

- > States are divided into two groups, signaling (\mathcal{J}) and non-signaling (\mathcal{N})
- \blacktriangleright "Binding transitions" ($\mathcal{N} \rightarrow \mathcal{J}$) are linearly related to signal c

Fisher Information simplifies to

$$J_{c} = J_{c}^{0} + \frac{T}{c^{2}} \sum_{i \in S} \pi_{i} Q_{ij} \text{ So as } T \rightarrow \text{larg}$$
F.I. of single $j \in \mathcal{N}$
observation
$$F.I. \text{ of single} \quad J \in \mathcal{N}$$
Avg. Binding rate
$$R^{\pi}$$

The Cramér-Rao bound \implies the variance of an unbiased estimator of c is bounded by F.I. $\langle (\delta c)^2 \rangle \geq \frac{1}{r}$ which implies:

$$\frac{\langle (\delta c)^2 \rangle}{c^2} \ge \frac{1}{J_c c^2} = \frac{1}{TR^{\pi}} = \frac{1}{TR^{\pi}}$$

(e, we find:

$$J_c = \frac{TR^{\pi}}{c^2}$$

solid edges \Rightarrow transition rates $\sim c$

 \overline{N} : expected number of binding events

Make some assumptions which are well suited for cellular sensing problem

- \blacktriangleright States are divided into two groups, signaling (*J*) and non-signaling (*N*)
- \blacktriangleright "Binding transitions" ($\mathcal{N} \rightarrow \mathcal{J}$) are linearly related to signal c

Fisher Information simplifies to

$$J_{c} = J_{c}^{0} + \frac{T}{c^{2}} \sum_{\substack{i \in S \\ j \in \mathcal{N} \\ observation}} \pi_{i}Q_{ij} \quad \text{So as } T \rightarrow \text{larg}$$
F.I. of single $j \in \mathcal{N}$
Avg. Binding rate
$$R^{\pi}$$

The Cramér-Rao bound \implies the variance of an unbiased estimator of c is bounded by F.I. $\langle (\delta \hat{c})^2 \rangle \geq \frac{1}{I}$ which implies:

$$\frac{\langle (\delta \hat{c})^2 \rangle}{c^2} \ge \frac{1}{J_c c^2} = \frac{1}{T R^{\pi}} = \frac{1}{T R^{\pi}}$$

(e, we find:

$$J_c = \frac{TR^{\pi}}{c^2}$$

solid edges \Rightarrow transition rates $\sim c$

 \overline{N} : expected number of binding events

Generalizes Endres & Wingreen no advantage to > 2 states

What Next?

> What if we make more 'realistic' assumptions on the observability of the Markov process?

can approach the Cramer-Rao result only when driven out of equilibrium

> Lang 2014 numerically observed that larger networks with the observability restricted to non-signaling/signaling

- Coarse-grained scenario: cell is not keeping track of the microscopic receptor transitions, rather
- Is there an advantage to driving this sensor out of equilibrium?

estimation is based on fraction of time receptor spends in subset of states (same as Berg and Purcell) > Assume network of arbitrary structure, but estimate is based on the density in the 'signaling states' q =

$$\pi : \frac{d\pi_j}{dt} = 0 \quad \forall j \qquad \Longrightarrow \frac{d\pi_j}{dt} = \sum_i \left[\pi_i(t)Q_{ij} - \pi_j(t)Q_{ji}\right] = 0$$

For more than two states, two ways to have $d\pi_i/dt = 0$

 \Rightarrow 'nonequilibrium steady state': Non-zero current loops which sum to zero

An ergodic Markov chain will relax to steady state distribution with $\frac{d\pi}{dr} = 0$

$$Q_{ij} - \pi_j(t)Q_{ji} = 0$$

 $j_{ii}^{\pi} = \pi_i(t)Q_{ij} - \pi_i(t)Q_{ji} \neq 0$ somewhere

An ergodic Markov chain will relax to steady state

$$\pi : \frac{d\pi_j}{dt} = 0 \quad \forall j \qquad \Longrightarrow \frac{d\pi_j}{dt} = \sum_i \left[\pi_i(t)Q_{ij} - \pi_j(t)Q_{ji} \right] = 0$$

For more than two states, two ways to have $d\pi_i/dt = 0$

 \Rightarrow detailed balance, or 'equilibrium'

$$\sum_{i} \left[\pi_{i}(t)Q_{ij} - \pi_{j}(t)Q_{ji} \right] = 0$$

$$j_{ij}^{\pi} = \pi_{i}(t)Q_{ij} - \pi_{j}(t)Q_{ji} \neq 0 \text{ somewhere}$$

distribution with
$$\frac{d\pi}{dt} = 0$$

$$j_{ij}^{\pi} = \pi_{i}(t)Q_{ij} - \pi_{j}(t)Q_{ji} = 0 \text{ everywhere}$$

$$\underbrace{\phi_{ij}^{\pi}}_{\phi_{ij}^{\pi}} \quad \underbrace{\phi_{ji}^{\pi}}_{\phi_{ji}^{\pi}}$$
OR

⇒ 'nonequilibrium steady state': Non-zero current loops which sum to zero

Local detailed balance: energy change in system due to a transition in state space is balanced by corresponding change in energy of thermodynamic reservoir

$$\frac{Q_{ij}}{Q_{ji}} = \exp\left[-\Delta F_{ij} + W_{ij}\right]$$

 $\Delta F_{ij} = F_j - F_i$ is the change in free energy of the system due to a transition from i to j

W is a work function driving the system out of equilibrium

The mean entropy production rate of the system and its environment in a nonequilibrium steady π is:

$$\Sigma^{\pi} = \sum_{i < j} [\pi_i Q_{ij} - p_j Q_{ji}] \log_{i < j}$$

See: Seifert, U. (2019). From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 10(1), 171–192.

equilibrium:

$$\frac{\pi_j}{\pi_i} = \frac{Q_{ij}}{Q_{ji}} = \exp[-\Delta F_{ij}]$$

23

$$\pi_i Q_{ij}$$
$$\pi_j Q_{ji}$$

Measure of the time-reversal asymmetry of the process Note: $\Sigma^{\pi} \geq 0$

Local detailed balance: energy change in system due to a transition in state space is balanced by corresponding change in energy of thermodynamic reservoir

$$\frac{Q_{ij}}{Q_{ji}} = \exp\left[-\Delta F_{ij} + W_{ij}\right]$$

 $\Delta F_{ij} = F_j - F_i$ is the change in free energy of the system due to a transition from i to j

W is a work function driving the system out of equilibrium

The mean entropy production rate of the system and its environment in a nonequilibrium steady π is:

$$\Sigma^{\pi} = \sum_{i < j} [\pi_i Q_{ij} - p_j Q_{ji}] \log$$

See: Seifert, U. (2019). From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 10(1), 171–192.

equilibrium:

$$\frac{\pi_j}{\pi_i} = \frac{Q_{ij}}{Q_{ii}} = \exp[-\Delta F_{ij}]$$

24

 $\pi_j Q_{ji}$

Measure of the time-reversal asymmetry of the process

Note: $\Sigma^{\pi} \ge 0$

Local detailed balance: energy change in system due to a transition in state space is balanced by corresponding change in energy of thermodynamic reservoir

$$\frac{Q_{ij}}{Q_{ji}} = \exp\left[-\Delta F_{ij} + W_{ij}\right]$$

 $\Delta F_{ij} = F_j - F_i$ is the change in free energy of the system due to a transition from i to j

W is a work function driving the system out of equilibrium

The mean entropy production rate of the system and its environment in a nonequilibrium steady π is:

$$\Sigma^{\pi} = \sum_{i < j} [\pi_i Q_{ij} - p_j Q_{ji}] \log$$

See: Seifert, U. (2019). From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 10(1), 171–192.

equilibrium:

$$\frac{\pi_j}{\pi_i} = \frac{Q_{ij}}{Q_{ji}} = \exp[-\Delta F_{ij}]$$

Is there a trade-off between entropy production and measurement **precision** of the *network?*

$$\pi_i Q_{ij}$$

 $\pi_j Q_{ji}$

Measure of the time-reversal asymmetry of the process

Note: $\Sigma^{\pi} \geq 0$

In 2016, Gingrich et. al., used large deviation theory for Markov process currents to prove the previously conjectured thermodynamic uncertainty **relation** [1, 2]:

$$\epsilon_j^2 = \frac{\langle (\delta j)^2 \rangle}{j^{\pi \, 2}} \ge \frac{2}{T \Sigma^{\pi}}$$

where Σ^{π} is the entropy production rate required

We follow the same sort of program—bound the uncertainty of the concentration estimate under the coarse-grained measurement assumption

$$\frac{\langle (\delta \hat{c})^2 \rangle}{c^2} \ge ???$$

[1] Barato, A. C., & Seifert, U. (2015). Thermodynamic Uncertainty Relation for Biomolecular Processes. Physical Review Letters, 114(15), 158101. [2] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England. (2016) Dissipation bounds all steady state current fluctuations. Phys. Rev. Lett. 116, 120601.

solid edges \Rightarrow transition rates $\sim c$

Empirical density:
$$p_i^T = \frac{1}{T} \int_0^T dt \, \delta_{x(t),i}$$

Empirical current: $j_{ij}^T = \frac{[\text{\# transitions } i \rightarrow j] - [\text{\# transitions } j \rightarrow i]}{T}$

As $T \to \infty$, p_i^T and j_{ij}^T converge to their mean values, the steady state probabilities and currents:

$$\lim_{T \to \infty} p_i^T = \pi_i \quad \text{and} \quad \lim_{T \to \infty} j_{ij}^T = j_{ij}^{\pi}$$

Large, finite T: $P(p^T = p, j^T = j) \sim e^{-TI(p,j)}$

vectors

$$= \pi_i Q_{ij} - \pi_j Q_{ji}$$

I(p, j) is a large deviation rate function with minimum at $p=\pi$ and $j=j^\pi$

Empirical density:
$$p_i^T = \frac{1}{T} \int_0^T dt \, \delta_{x(t),i}$$

Empirical current: $j_{ij}^T = \frac{[\text{# transitions } i \rightarrow j] - [\text{# transitions } j \rightarrow i]}{T}$

As $T \to \infty$, p_i^T and j_{ij}^T converge to their mean values, the steady state probabilities and currents:

$$\lim_{T \to \infty} p_i^T = \pi_i \quad \text{and} \quad \lim_{T \to \infty} j_{ij}^T = j_{ij}^{\pi}$$

Large, finite T:
$$P(p^T = p, j^T = j) \sim e^{-TI(p,j)}$$

vectors

$$= \pi_i Q_{ij} - \pi_j Q_{ji}$$

I(p,j) is a large deviation rate function with minimum at $p=\pi$ and $j=j^{\pi}$

"Level 2.5" large deviation theory:

$$I(p^{T}, j^{T}) = \sum_{i < j} \left[j_{ij}^{T} \left(\operatorname{arcsinh} \frac{j_{ij}^{T}}{a_{ij}^{p}} - \operatorname{arcsinh} \frac{j_{ij}^{p}}{a_{ij}^{p}} \right) - \sqrt{j_{ij}^{T\,2} + a_{ij}^{p\,2}} - \sqrt{j_{ij}^{p\,2} + a_{ij}^{p\,2}} \right].$$

 $I(p^T, j^T) = \sum_{i < j} \Psi(j_{ij}^T, j_{ij}^p, a_{ij}^p)$

$$j_{ij}^{p} = p_i^{T} Q_{ij} - p_j^{T} Q_{ji}$$
$$a_{ij} = 2\sqrt{p_i^{T} Q_{ij} p_j^{T} Q_{ji}}$$

Maes, C., & Netočný, K. (2008). Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. EPL (Europhysics Letters), 82(3), 30003. Bertini, L; Faggionato, A; Gabrielli, D. Large deviations of the empirical flow for continuous time Markov chains. Ann. Inst. H. Poincaré Probab. Statist. 51 (2015), no. 3, 867–900

See S.I. for a derivation

Uncertainty Bound for Density in Subset of States

We want to study
$$I(q) = \inf_{p,j} I(p,j)$$
 where $q = \sum_{i \in S} p_i$, $\sum_i p_i = 1$
 $\sum_j j_{ij} = 0 \quad \forall i$
and $\operatorname{var}(q) = \frac{1}{TI''(q^{\pi})}$

Can bound as: $I(q) \leq I(p^*, j^*)$, as well as I''(q) with intelligent guesses for p^* and j^* (see S.I.)

We find:

 $I''(q^{\pi}) \leq \frac{\Sigma^{\pi} + 4R^{\pi}}{8[q^{\pi}(1 - q^{\pi})]^2}.$

which implies

 $\operatorname{var}(q) \geq \frac{\circ \left[q \right] \left(1 \right)}{T \left[\Sigma^{\pi} + q \right]}$

$$[\pi^{\pi})]^2$$

$$\left[\frac{\pi}{R^{\pi}} \right]^{2}$$

Next: apply this relation to our cell sensing problem by relating q to c

 \mathcal{N}

ſ

Avg. binding rate R^{π}

We want to study
$$I(q) = \inf_{p,j} I(p,j)$$
 where $q = \sum_{i \in S} p_i$, $\sum_i p_i = 1$
 $\sum_j j_{ij} = 0 \quad \forall i$
and $\operatorname{var}(q) = \frac{1}{TI''(q^{\pi})}$

Can bound as: $I(q) \leq I(p^*, j^*)$, as well as I''(q) with intelligent guesses for p^* and j^* (see S.I.)

We find:

$$I''(q^{\pi}) \leq \frac{\Sigma^{\pi} + 4R^{\pi}}{8[q^{\pi}(1 - q^{\pi})]^2} \,.$$

which implies

$$\operatorname{var}(q) \ge \frac{8 \left[q^{\pi} (1 - q^{\pi}) \right]^2}{T \left[\Sigma^{\pi} + 4R^{\pi} \right]}$$

Next: apply this relation to our cell sensing problem by relating q to c

ſ

empirical density in signaling states

Avg. binding rate R^{π}

Given some empirical density q, what signal c would make this typical?

$$\frac{\operatorname{var}(\hat{c})}{c^2} = \left[c\frac{dq^{\pi}}{dc}\right]$$

Given some empirical density q, what signal c would make this typical?

Nonsignaling states ${\mathscr N}$ $Q_{ij}(c)$ $q^{\pi}(c) = q$ solution is estimate \hat{c} Signaling states $\mathcal S$ \mathcal{N} var(q)ſ time what is this?

empirical density in signaling states

> As transition rates $Q_{ij}(c)$ are varied with c, steady state dist. π changes, determines $q^{\pi}(c) = \sum_{i \in S} \pi_i(c)$

> For networks with only one non-signaling state (c.f. Lang et. al., Berg Purcell), the Jacobian takes a simple form:

$$c \frac{dq^{\pi}}{dc} = q^{\pi}(1 - q^{\pi}) \implies q^{\pi}(c) = \frac{1}{1 + (K_d/c)}$$

[1] G. Cho and C. Meyer, "Markov chain sensitivity measured by mean first passage times," Linear Algebra Appl. 316 (2000) no. 1-3, 21–28 [2] Lahiri, S., & Ganguli, S. (n.d.). A memory frontier for complex synapses: Supplementary material.

mean first passage times

$$f_{ik} - \overline{T}_{ik} \pi_k$$
 [1, 2]

 K_d : dissociation constant

> As transition rates $Q_{ij}(c)$ are varied with c, steady state dist. π changes, determines $q^{\pi}(c) = \sum_{i \in S} \pi_i(c)$

For networks with only one non-signaling state (c.f. Lang et. al., Berg) Purcell), the Jacobian takes a simple form:

$$c \frac{dq^{\pi}}{dc} = q^{\pi}(1 - q^{\pi}) \implies q^{\pi}(c) = \frac{1}{1 + (K_d/c)}$$

[1] G. Cho and C. Meyer, "Markov chain sensitivity measured by mean first passage times," Linear Algebra Appl. 316 (2000) no. 1-3, 21–28 [2] Lahiri, S., & Ganguli, S. (n.d.). A memory frontier for complex synapses: Supplementary material.

mean first passage times

$$f_{ik} - \overline{T}_{ik} \pi_k$$
 [1, 2]

 K_d : dissociation constant

$$c\frac{dq^{\pi}}{dc} = q^{\pi}(1-q^{\pi}) \qquad \qquad \frac{\operatorname{var}(\hat{c})}{c^2} = \left[c\frac{dq^{\pi}}{dc}\right]^{-2}\operatorname{var}(q) \qquad \qquad \operatorname{var}(q) \ge \frac{8\left[q^{\pi}(1-q^{\pi})\right]^2}{T\left[\Sigma^{\pi}+4R^{\pi}\right]}$$

 \rightarrow bound on the signal estimation in terms of the total entropy production and the number of binding events

Using this Jacobian, we can convert the variance of density q to the variance of the signal c estimate

$$\geq \frac{8}{T\Sigma^{\pi} + 4\overline{N}}$$

agrees with Berg-Purcell
$$\epsilon_{\hat{c}}^2 \geq \frac{2}{\overline{N}}$$

when $\Sigma^{\pi} = 0$ (detailed balance)

Markov process, in different limits of what is observable about the process

We derived two theoretical bounds on the uncertainty of a sensor modeled as a continuous-time

We can find an exact expression for the coarse-grained observer uncertainty by solving the contraction $I(p, j) \rightarrow I(q)$ to leading order in $(q - q^{\pi})$

For any \mathcal{N} or \mathcal{S} states:

$$\epsilon_{\hat{c}}^{2} = \frac{\operatorname{var}(\hat{c})}{c^{2}} = \frac{2}{\overline{N}} \frac{R^{\pi} \left[\sum_{ijk} \pi_{i}^{\mathcal{N}} \pi_{j}^{\mathcal{S}} \pi_{k}^{\mathcal{S}} (\overline{T_{ik}} - \overline{T_{jk}})\right]}{\left[\sum_{ijk} \phi_{ij}^{\mathcal{N}} \pi_{k}^{\mathcal{S}} (\overline{T_{ik}} - \overline{T_{jk}})\right]^{2}}$$

Can apply this result to uniform ring networks to find an analytic expression for uncertainty as a function of energy dissipation through one cycle (see S.I.)

Use to find optimal networks

Subhaneil Lahiri Staff Scientist, Ganguli Lab

Numerical Studies

Compare bounds with numerical studies of continuous time Markov processes

Direct simulation

Optimization

$\overline{N} = R^{\pi}T$

 $\begin{array}{l} \text{Cramer-Rao bound} \\ \text{``ideal observer''} \end{array} \implies \overline{N} \times \epsilon_{\hat{c}}^2 \ge 1 \\ \\ \text{Coarse-grained bound} \\ \text{``simple observer''} \Longrightarrow \overline{N} \times \epsilon_{\hat{c}}^2 \ge \frac{8}{\Sigma^{\pi}/R^{\pi} + 4} \end{array}$

'Energy consumed per binding event'

• • • • • • •

We can optimize the exact expression for ϵ_c^2 (in terms of first passage times) by varying transition rates

Optimized Networks as a Function of Energy/Binding

— — flux (average transitions per time)

~ density

Summary

Markov process, in different limits of what is observable about the process

> We derived two theoretical bounds on the uncertainty of a sensor modeled as a continuous-time

Numerical optimization

Summary

Markov process, in different limits of what is observable about the process

> We derived two theoretical bounds on the uncertainty of a sensor modeled as a continuous-time

Numerical optimization

Acknowledgements

Thank you!

Subhaneil Lahiri Staff Scientist, Ganguli Lab

> Paper: https://arxiv.org/abs/2002.10567 Contact: harveys@stanford.edu

- Peter Thomas
- Andrew Eckford
- Michael Hinczewski

Funding:

- National Defense Science and Engineering Graduate Fellowship
- Stanford Graduate Fellowship

