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Cells Perform Interesting Sensing Tasks 2

Fluorescently-labeled swimming Escherichia coli cells showing 
their flagellar bundles (video from Howard C. Berg Lab) 

http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php Reproduced from Adler, J. Science  26 Dec 1969:  Vol. 166, Issue 3913, pp. 1588-1597



The Cell as a Chemosensation Device

External concentration   c


Cell 
estimate ĉ


Flagellum  

binding rate 

signal  

unbinding rate 

Receptor protein 
methylation level  
internal representation of 
concentration 

Crucial for adaptation

↔

Lan, G., & Tu, Y. (2016). Information processing in bacteria: memory, computation, and statistical physics: a key issues review. Reports on Progress in Physics, 79(5), 052601.

➤ How do cells measure external concentrations and infer information about their environment? 

➤ Surface receptors:  ligand binds to receptor  intracellular response  behavioral response 

➤ History of study by physicists interested in the fundamental limits on sensing ability 

➤  Often modeled with continuous-time Markov chains

→ →

Adler, Julius.   Chemotaxis in Escherichia coli.   In Sensory 
Receptors, Cold Spring Harbor Symp. Quant. Biol. 30, (1965).
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➤ Used diffusive transport and low Reynolds number mechanics to develop theories about the 
physical limits of bacterial chemoreception in various ideal cases 

➤ 2-state single receptor model, estimation based on fraction of time bound

Berg-Purcell Limit (1977)

Edward Purcell 

Howard Berg 

uncertainty ≡ ⟨(δc)2⟩
c2

⟨(δc)2⟩
c2 = 2

4Dsc(1 − p)T = 2
N

Berg, H. C., & Purcell, E. M. (1977). Physics of chemoreception. Biophysical journal, 20(2), 193–219.
How to surpass?  Violate assumptions made

 : Expected number of 
binding events in time T 
N

Integrating sphere Perfect absorption Single receptor

rate of particle 
capture

probability 
receptor 

unoccupied 

a
c 4Dsc



Surpassing the Berg-Purcell Limit

➤ Endres and Wingreen (2009):  Maximum likelihood and the single receptor  
➤ Applied Maximum likelihood estimation to a single, two-state receptor binding/unbinding time series 
➤ Showed you can do better than the Berg-Purcell bound with:

1.  Change observable

Endres, R. G. & Wingreen, N. S. (2009). Maximum Likelihood and the Single Receptor. Phys Rev Lett. 2009 Oct 9;103(15):15810.

cML = N
Tu k+

⟨(δcML)2⟩
c2 = 1

N
Intuition: only the unbound 
intervals contain information 
about c
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Surpassing the Berg-Purcell Limit

➤ Lang et al (2014): What about complex networks that consume energy? What is 
the relationship between the estimation capability and the energy consumption?  
➤ For larger Markov networks constrained to be rings, showed:

⟨(δ ̂c)2⟩
c2 = 1

N [1 + ⟨(δτS)2⟩
τS ] τS : lifetime in signaling states

Figures reproduced from:  Lang, A. H., Fisher, C. K., Mora, T., & Mehta, P. (2014). Thermodynamics of Statistical Inference by Cells. Physical Review Letters, 113(14), 148103. 

observed numerically:  accuracy limited by entropy production

2.  Drive sensing network out of equilibrium

6

“uncertainty”:



We are interested in: 

How the observability of the process affects the estimation uncertainty 

Tradeoffs between energy, estimation accuracy, and speed.  

We derive two bounds on the uncertainty by violating the Berg-Purcell assumptions 
in more general cases
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0.  Introduce some mathematical concepts and notations 

1.  Cramer-Rao bound for an observation of a general Markov trajectory 
   

2.  Bound on coarse-grained observations of Markov process 

- Stochastic thermodynamics 
- Large deviation theory 

3.  Numerical studies 

This Talk

“ideal observer”

“simple observer” 

1 

0 

⟹ ???

Nonsignaling states    

Signaling states 

Nonsignaling state   

Signaling states 

⟹ ???
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Probability density over states (p) is evolves according to the master equation: 

Bracketed quantity is the mean current flowing from i to j: 

Flux between two states:      ,      

In steady state:                                               

ϕij = piQij jp
ij = ϕij − ϕji

ϕπ
ij ≡πiQij , jπ

ij = ϕπ
ij − ϕπ

ji

Brief Review of Markov Chains

➤ Model the sensing device (receptor) as continuous-time Markov chain 
➤ System has discrete states → nodes on graph 
➤ Allowed transitions between states → edges  

➤ Transitions between states i and j described by transition rate Qij

π : steady state distribution

dpj(t)
dt

= ∑
i

[pi(t)Qij − pj(t)Qji]

jp
ij(t) = pi(t)Qij − pj(t)Qji

dπ
dt

= 0

0 

1 

2 3 

4 

ϕ01 = p0Q01

ϕ10

QijQji

9



10

Probability density over states (p) is evolves according to the master equation: 

Bracketed quantity is the mean current flowing from i to j: 

Flux between two states:      ,      

In steady state:                                               

ϕij = piQij jp
ij = ϕij − ϕji

ϕπ
ij ≡πiQij , jπ

ij = ϕπ
ij − ϕπ

ji

Brief Review of Markov Chains

➤ Model the sensing device (receptor) as continuous-time Markov chain 
➤ System has discrete states → nodes on graph 
➤ Allowed transitions between states → edges  

➤ Transitions between states i and j described by transition rate Qij

π : steady state distribution

dpj(t)
dt

= ∑
i

[pi(t)Qij − pj(t)Qji]

jp
ij(t) = pi(t)Qij − pj(t)Qji

dπ
dt

= 0

0 

1 

2 3 

4 

ϕ01 = p0Q01

ϕ10

QijQji



11

Probability density over states (p) is evolves according to the master equation: 

Bracketed quantity is the mean current flowing from i to j: 

Flux between two states:      ,      

In steady state:                                               

ϕij = piQij jp
ij = ϕij − ϕji

ϕπ
ij ≡πiQij , jπ

ij = ϕπ
ij − ϕπ

ji

Brief Review of Markov Chains

➤ Model the sensing device (receptor) as continuous-time Markov chain 
➤ System has discrete states → nodes on graph 
➤ Allowed transitions between states → edges  

➤ Transitions between states i and j described by transition rate Qij

π : steady state distribution

dpj(t)
dt

= ∑
i

[pi(t)Qij − pj(t)Qji]

jp
ij(t) = pi(t)Qij − pj(t)Qji

dπ
dt

= 0

0 

1 

2 3 

4 

ϕ01 = p0Q01

ϕ10

QijQji



12

➤ A general sensing problem: 

Signal is transmitted through a physical channel modeled as a continuous time Markov process 

Ideal ‘observer’ records system’s entire state trajectory and transition times for a finite amount of time 

           What is the best possible estimate the observer can make of the signal c ?

1.  Ideal Observer:  Observation of a Markov Trajectory

Qij : transition rates



131.  Ideal Observer:  Observation of a Markov Trajectory

➤ Calculate the Fisher Information for the observed trajectory with respect to 
the signal c 

➤ Cramér-Rao bound gives fundamental limit on the precision with which the 
signal can be estimated based on the observations 

Plan:  Write the probability of a trajectory in discrete time, calculate Fisher 
Information matrix, then take time steps → 0 

Probability of a trajectory from a state x0 at t = 0 to state xn at t =n!t:

ℙ(x0 . . . xn ) = πx0
Mx0x1

Mx1x2
…Mxn − 1xn

M : discrete time transition matrix

Q01(c)  

Q12(c)  

Qij(c)  

0

1 

2 

i 

j 

ĉ  
M = eQΔt = I + QΔt + . . .

Qij : transition rates



141.  Ideal Observer:  Observation of a Markov Trajectory

➤ Calculate the Fisher Information for the observed trajectory with respect to 
the signal c 

➤ Cramér-Rao bound gives fundamental limit on the precision with which the 
signal can be estimated based on the observations 

Plan:  Write the probability of a trajectory in discrete time, calculate Fisher 
Information matrix, then take time steps → 0 
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0

1 

2 

i 

j 
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151.  Ideal Observer:  Observation of a Markov Trajectory

Fisher Information:  

After substituting   and taking !t → 0 with fixed T = n!t, we find:  

with 

M = I + QΔt

→ Jc = ∑
x0,…,xn

(πx0
Mx0x1

…Mxn − 1xn
)[ ∂

∂c
log(πi0Mx0x1

…Mxn − 1xn
)]

2

Jc = J0
c + T∑

i, j
i ≠ j

πiQij [∂c log Qij]2

J0
c = ∑

x0

πx0[∂c log πx0]
2 Qij : transition rates

πi : steady state density

“single shot” Fisher information

i,j index all states 

ℙ(x0 . . . xn )



The Cramér-Rao bound  the variance of an unbiased estimator of c is bounded by F.I. 

which implies: 

⟹

Jc = J0
c + T

c2 ∑
i ∈ .
j ∈ /

πiQij

Make some assumptions which are well suited for cellular sensing problem 
➤ States are divided into two groups, signaling (S ) and non-signaling (N )  
➤ “Binding transitions” (N  S ) are linearly related to signal c 

Fisher Information simplifies to

→

1.  Ideal Observer:  Observation of a Markov Trajectory 16

Avg. Binding rate 
Rπ

F.I. of single 
observation

solid edges ⟹ transition rates ~ c

Nonsignaling states  N  

Signaling states S

Qij(c)  Rπ

Avg. 
binding 
rate

Jc = T Rπ

c2

⟨(δc)2⟩ ≥ 1
Jc

⟨(δc)2⟩
c2 ≥ 1

Jc c2 = 1
T Rπ = 1

N
.   : expected 

number of binding 
events

N

So as T → large, we find:
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The Cramér-Rao bound  the variance of an unbiased estimator of c is bounded by F.I. 

which implies: 

⟹
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Make some assumptions which are well suited for cellular sensing problem 
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➤ “Binding transitions” (N  S ) are linearly related to signal c 

Fisher Information simplifies to

→

1.  Ideal Observer:  Observation of a Markov Trajectory 18

Avg. Binding rate 
Rπ

F.I. of single 
observation

solid edges ⟹ transition rates ~ c

Nonsignaling states  N  

Signaling states S

Qij(c)  Rπ

Avg. 
binding 
rate

Jc = T Rπ

c2

⟨(δ ̂c)2⟩ ≥ 1
Jc

⟨(δ ̂c)2⟩
c2 ≥ 1

Jc c2 = 1
T Rπ = 1

N
.   : expected 

number of binding 
events

N Generalizes Endres & Wingreen 
no advantage to > 2 states

So as T → large, we find:



➤ What if we make more ‘realistic’ assumptions on the observability of the Markov process? 
➤ Lang 2014 numerically observed that larger networks with the observability restricted to non-signaling/signaling 

can approach the Cramer-Rao result only when driven out of equilibrium 

What Next? 19

Three-state process 

Q01 ∝ c 

Q02 ∝ c 


Q21

Q12


Q10

Q20


1 2 

Non-signaling states  

Signaling states 

0 

Two-state process 

Q01 ∝ c 
Q10


1 

Non-signaling state  

Signaling state 

0 

Non-signaling states  

Signaling states 

Many-state process 



202.  Coarse-Grained Observation

q = 1
T

N

∑
i= 1

τi
. ̂cc

Nonsignaling states  N  

Signaling states S

Qij(c)  

time 

 N  

 S 

…


➤ Coarse-grained scenario: cell is not keeping track of the microscopic receptor transitions, rather 
estimation is based on fraction of time receptor spends in subset of states (same as Berg and Purcell) 

➤ Assume network of arbitrary structure, but estimate is based on the density in the ‘signaling states’ 
➤ Is there an advantage to driving this sensor out of equilibrium?  

q = ∑
i∈ .

pi

empirical density in 
signaling states
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For more than two states, two ways to have 

⟹ detailed balance, or ‘equilibrium’ 

                         
                                                                  OR 

     ⟹ ‘nonequilibrium steady state’:  Non-zero current loops which sum to zero 

An ergodic Markov chain will relax to steady state distribution with  
dπ
dt

= 0

π :
dπj

dt
= 0 ∀j ⟹

dπj

dt
= ∑

i
[πi(t)Qij − πj(t)Qji] = 0

dπi/dt = 0

∑
i

[πi(t)Qij − πj(t)Qji] = 0

jπ
ij = πi(t)Qij − πj(t)Qji = 0 2324567242

jπ
ij = πi(t)Qij − πj(t)Qji ≠ 0 89:267242

ϕπ
ij ϕπ

ji

ϕπ
ij

ϕπ
ji

ϕπ
ij

ϕπ
ji
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23Stochastic Thermodynamics 

System 

Environment 

➤ Local detailed balance:  energy change in system due to a transition in state 
space is balanced by corresponding change in energy of thermodynamic reservoir 

                            is the change in free energy of the system 
due to a transition from i to j 
W is a work function driving the system out of equilibrium 

                                                          

The mean entropy production rate of the system and its environment in a 
nonequilibrium steady " is:

Qij

Qji
= exp[ − ΔFij + Wij]

ΔFij = Fj − Fi

Σπ = ∑
i< j

[πiQij − pjQji] log
πiQij

πjQji

Measure of the time-reversal 
asymmetry of the process 

Note:  Σπ ≥0

jπ
ij

See:  Seifert, U. (2019). From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 10(1), 171–192.

πj

πi
=

Qij

Qji
= exp[− ΔFij]

equilibrium:



24Stochastic Thermodynamics 

System 

Environment 

➤ Local detailed balance:  energy change in system due to a transition in state 
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=
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25Stochastic Thermodynamics 

System 

Environment 

➤ Local detailed balance:  energy change in system due to a transition in state 
space is balanced by corresponding change in energy of thermodynamic reservoir 

                            is the change in free energy of the system 
due to a transition from i to j 
W is a work function driving the system out of equilibrium 

                                                          

The mean entropy production rate of the system and its environment in a 
nonequilibrium steady " is:

Qij

Qji
= exp[ − ΔFij + Wij]

ΔFij = Fj − Fi

Σπ = ∑
i< j

[πiQij − pjQji] log
πiQij

πjQji

Is there a trade-off between 
entropy production and 

measurement precision of the 
network?

Measure of the time-reversal 
asymmetry of the process 

Note:  Σπ ≥0

jπ
ij

See:  Seifert, U. (2019). From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 10(1), 171–192.

πj

πi
=

Qij

Qji
= exp[− ΔFij]

equilibrium:



26Large Deviation Theory Approach

➤ In 2016, Gingrich et. al., used large deviation theory for Markov process 
currents to prove the previously conjectured thermodynamic uncertainty 
relation [1, 2]: 

where  is the entropy production rate required   

➤ We follow the same sort of program—bound the uncertainty of the 
concentration estimate under the coarse-grained measurement assumption 

                                                                                         

Σπ

ϵ2
j = ⟨(δj)2⟩

jπ 2 ≥ 2
TΣπ

⟨(δ ̂c)2⟩
c2 ≥???

[1] Barato, A. C., & Seifert, U. (2015). Thermodynamic Uncertainty Relation for Biomolecular Processes. Physical Review Letters, 114(15), 158101. 
[2] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England. (2016)  Dissipation bounds all steady state current fluctuations.  Phys. Rev. Lett. 116, 120601 . 

solid edges ⟹ transition rates ~ c

Nonsignaling states  N  

Signaling states S

Qij(c)  



Empirical density:   

Empirical current:   

As ,   and   converge to their mean values, the steady state 
probabilities and currents:  

       and      

Large, finite T:    

pT
i = 1

T ∫
T

0
dt δx(t),i

jT
ij = [# transitions i → j] − [# transitions j → i]

T

T → ∞ pT
i jT

ij

lim
T→∞

pT
i = πi lim

T→∞
jT
ij = jπ

ij = πiQij − πjQji

P(pT = p, jT = j) ∼e− TI(p,j)

Large Deviation Theory for Markov Chains 27

 is a large deviation rate function 
with minimum at  and 

I(p, j)
p = π j = jπ

pT
i

i jT
ij

j

vectors

i
j
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Large Deviation Theory for Markov Chains 28

 is a large deviation rate function 
with minimum at  and 

I(p, j)
p = π j = jπ

pT
i

i jT
ij

j

vectors

i
j



“Level 2.5” large deviation theory:

Large Deviation Theory for Markov Chains 29

I(pT, jT) = ∑
i< j

[jT
ij (>4?8@A7

jT
ij

ap
ij

− >4?8@A7
jp
ij

ap
ij

) − jT 2
ij + ap 2

ij − jp 2
ij + ap 2

ij ] .

See S.I. for a derivation

jp
ij = pT

i Qij − pT
j Qji

aij = 2 pT
i Qij pT

j Qji

I(pT, jT) = ∑
i < j

Ψ( jT
ij , jp

ij , ap
ij)

Maes, C., & Netočný, K. (2008). Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. EPL (Europhysics Letters), 82(3), 30003. 
Bertini, L; Faggionato, A; Gabrielli, D. Large deviations of the empirical flow for continuous time Markov chains. Ann. Inst. H. Poincaré Probab. Statist. 51 (2015), no. 3, 867–900

pT
i

jT
ij

i
j
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We want to study   

                       and  

Can bound as:  ,  as well as  with intelligent guesses 
for  and  (see S.I.) 

We find: 

which implies

I(q) = inf
p,j

I(p, j)

3>4(q) = 1
TI′�′�(qπ)

I(q) ≤ I(p*, j*) I′�′�(q)
p* j*

Uncertainty Bound for Density in Subset of States

q = 1
T

N

∑
i= 1

τi
.

Nonsignaling states  N  

Signaling states S

Qij(c)  

time 

 N  

 S 

…


empirical density in 
signaling states

Nonsignaling states  N  

Signaling states S

Qij(c)  

time 

 N  

 S 

…

I′�′�(qπ) ≤ Σπ + 4Rπ

8[qπ(1 − qπ)]2 .

Next:  apply this relation to our cell 
sensing problem by relating q to c

where ,   q = ∑i∈ . pi ∑i pi = 1
∑j jij = 0 ∀i

3>4(q) ≥
8 [qπ(1 − qπ)]2

T [Σπ + 4Rπ]
.

Rπ

Avg. 
binding 
rate
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Given some empirical density , what signal  would make this typical?  

                                                                                        solution is estimate  

q c

̂c

Relationship With Concentration Estimate

3>4( ̂c)
c2 = [c

dqπ

dc ]
− 2

3>4(q)

qπ(c) = q

q = 1
T

N

∑
i= 1

τi
. ̂c

c
Nonsignaling states  N  

Signaling states S

Qij(c)  

time 

 N  

 S 

…


empirical density in 
signaling states

Nonsignaling states  N  

Signaling states S

Qij(c)  

time 

 N  

 S 

…
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Given some empirical density , what signal  would make this typical?  

                                                                                        solution is estimate  

q c

̂c

Relationship With Concentration Estimate

3>4( ̂c)
c2 = [c

dqπ
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− 2

3>4(q)

what is this?

qπ(c) = q

q = 1
T

N
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➤ As transition rates  are varied with , steady state dist.  changes, 
determines  

➤  What is  ?    

➤ For networks with only one non-signaling state (c.f. Lang et. al., Berg 
Purcell), the Jacobian takes a simple form:

Qij(c) c π
qπ(c) = ∑i∈ . πi(c)

dqπ

dc

Relationship With Concentration Estimate

c
dqπ

dc
= qπ(1 − qπ)

dπk

dc
= ∑

i≠ k
πi

dQij

dc
(Tik − Tjk)πk

⟹ qπ(c) = 1
1 + (Kd /c)

use                                                                  [1, 2]

 : dissociation constantKd

[1] G. Cho and C. Meyer, “Markov chain sensitivity measured by mean first passage times,” Linear Algebra Appl. 316 (2000)no. 1-3, 21–28 
       [2]  Lahiri, S., & Ganguli, S. (n.d.). A memory frontier for complex synapses: Supplementary material.
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➤ Using this Jacobian, we can convert the variance of density  to the variance of the signal  estimate 

 bound on the signal estimation in terms of the total entropy production and the number of binding events 

q c

→

Bound for the Concentration Estimate

3>4( ̂c)
c2 ≥ 8

TΣπ + 4N
agrees with Berg-Purcell  

when  = 0 (detailed balance)

ϵ2
̂c ≥ 2

N
Σπ

3>4( ̂c)
c2 = [c

dqπ

dc ]
− 2

3>4(q)c
dqπ

dc
= qπ(1 − qπ) 3>4(q) ≥

8 [qπ(1 − qπ)]2

T [Σπ + 4Rπ]
.

Nonsignaling state  N  

Signaling states S

Qij(c)  
time 

 N  

 S 

N = TRπ

Exp # of 
binding 
events



➤ We derived two theoretical bounds on the uncertainty of a sensor modeled as a continuous-time 
Markov process, in different limits of what is observable about the process 
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3>4( ̂c)
c2 ≥ 8

TΣπ + 4N
3>4( ̂c)

c2 ≥ 1
N
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➤ We can find an exact expression for the coarse-grained observer uncertainty by 
solving the contraction  to leading order in   

➤ Can apply this result to uniform ring networks to find an analytic expression for 
uncertainty as a function of energy dissipation through one cycle (see S.I.)

I(p, j) → I(q) (q − qπ)

Other Helpful Results 37

Subhaneil Lahiri 
Staff Scientist, Ganguli Lab 

ϵ2
̂c = 3>4( ̂c)

c2 = 2
N

Tu n bin d

Tho ld

For any  or  states:/ . ϵ2
̂c = 3>4( ̂c)

c2 = 2
N

Rπ[∑ijk π/
i π.

j π.
k (Tik − Tjk)]

[∑ijk ϕ/.
ij π.

k (Tik − Tjk)]2

Use to find optimal networks
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➤ Compare bounds with numerical studies of continuous time Markov processes 
➤ Direct simulation 
➤ Optimization 

Numerical Studies

⟹ N × ϵ2
̂c ≥ 8

Σπ /Rπ + 4

N = RπT

⟹ N × ϵ2
̂c ≥1

Σπ /Rπ

N × ϵ2
̂c Infeasible

Feasible

‘Energy consumed per binding event’

Cramer-Rao bound

Coarse-grained boundBerg-Purcell

Cramer-Rao bound 
“ideal observer”

Coarse-grained bound 
“simple observer”
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We can optimize the exact expression for  (in terms of first passage times) by varying 
transition rates 

ϵ2
c

Numerical Studies Verify Bounds

/
optimized networks 
agree with uniform 
ring solution in high 
energy limit

ring networks are 
suboptimal in low 
energy limit



Optimized Networks as a Function of Energy/Binding 40

Increasing ‘energy budget’ ~ flux (average transitions per time)

~ density

https://github.com/ganguli-lab/Energy_Accuracy_Tradeoff_Cellular_Sensing

/

https://github.com/ganguli-lab/Energy_Accuracy_Tradeoff_Cellular_Sensing
https://github.com/ganguli-lab/Energy_Accuracy_Tradeoff_Cellular_Sensing
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put a cool video here
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