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Tseitin formulas

vvyyypy

Let G(V, E) be an undirected graph.

f:V — {0,1} is a charging function.

Edge e € E — variable x.
T(G,f) = A\, Parity(v), where
Parity(v) =

( S xe = f(v) mod 2).

e is incident to v

T(G,f) is represented in CNF.

x3| X1 X2
(=
x1+x=1
X1 +x3+x3=0
xp+x4=1
X3 = 1
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Tseitin formulas

» Let G(V, E) be an undirected graph. a a
» f:V — {0,1} is a charging function.
» Edge e € E ~ variable xe. X3 | X1 x2
> T(G,f) = A,e, Parity(v), where G

Parity(v) = 0 X4

_ x1+x =1

<e is inc%c:ent to VXe B f(V) mod 2> . x1+x3+x3=0

» T(G,f) is represented in CNF. xtx =1

X3 = 1
» [Urquhart, 1987] T(G,f) is satisfiable <= for every

connected component U C V, > ., f(v) =0.
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Resolution and its subsystems

» Resolution refutation of a CNF formula ¢

. CVx,DV—x
> Resolution rule =—=75—

» A refutation of ¢ is a sequence of clauses C;, G, ..., Cs such
that
> for every i, C; is either a clause of ¢ or is obtained by the
resolution rule from previous.
> (, is an empty clause.
> Regular resolution: for any path in the proof-graph no
variable is used twice in a resolution rule.

> Tree-like resolution: the proof-graph is a tree.

5(¢) < 5reg(¢) < ST(¢)

» Resolution width The width of a clause is the number of
literals in it. The width of a refutation is the maximal width
of a clause in it. w(¢) is the minimal posible width of
resolution refutation of ¢.
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Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
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» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Sree(T(G, f) =20T(CMpoly(|V]), where w(e) is a
resolution width of ¢.
> Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

> Stronger conjecture. S(T(G, f)) = 22w(T(G.F)

> It is false for star graph S,,
S(T(Sn, )= 0O(n), while w(T (S, f)) = n.
» Perhaps, the conjecture is true for
constant-degree graphs.
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Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
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(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.
> (Galesi et. al., 2019) Let S be the size of the shortest d-depth

Frege proof of T(G,f). Then S > 26" for o < lgg'ffg”n.

> For resolution this method gives S(T(G, f)) > 2tw(6)’.
» Tree-like resolution
> Sr(T(G,f)) > 2%w(6) (size-width relation)
> St(T(G,f)) < 29tw(6)loeV]) (Beame, Beck, Impagliazzo,
2013, I., Oparin, 2013)
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1-BP

» f:{0,1}" — X is represented by a
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» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
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» f:{0,1}" — X is represented by a
DAG with the unique source.

» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

» Given an assignment £ a branching
program returns the label of the
sink at the end of the path
corresponding to &.

» Read-once branching program (1-BP): in every path every
variable appears at most once.

» In 1-BP: v v, and v is labeled with x. If u computes f, and
v computes f,, then f, = f,|x=a.
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SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.

» Theorem (folklore). ¢ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Search.

» For an unsatisfiable formula T(G, f):

> Searchr(c r): given an assignment, find a falsified clause of
T(G, ).

» SearchVertex(G, f): given an assignment, find a vertex of G
with violated parity condition.

» Simple observation
1-BP(Searchy(c r)) > 1-BP(SearchVertex(G, f)).

» \We are going to prove that
1-BP(T(G, f')) < 1-BP(SearchVertex(G, f))©Uog V).
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» SearchVertex(G, f) and Searchy(g ) are equivalent for

decision trees.
» For 1-BP:

Unrestricted degrees. Gp:
1. 1-BP(SearchVertex(G,, f)) = O(n),
while Searchrg, r) = 252n)

2. Logarithmic degrees. K ,:
1-BP(SearchVertex(Kiog n, f)) = O(n), while
1-BP(Searchr(k,,,.f) = 292(Iog” n) by size-width relation.
3. Constant degrees. We conjecture that for O(1)-degree
graphs two problems are polynomially equivalent. But this
conjecture implies stronger inequality
Sreg(T(G, £)) > 29tw(C)),
> Xorification: S(¢®) > 2%w(®),
» For Tseitin formulas xorification = doubling of edges.
» It improves bound on Searchrg, re but 1-BP for
SearchVertex increases in at most a constant. 10/19



Structure of a 1-BP computing a satisfiable T(G, f)

(V. E)

Xg = 0 .\%(e 1

' T(H, f)lyea = T(H — e f +
(V.E\e) (V,E\e) a(l,+1,)), where e = (u, v).
“ If e is a bridge, then for some

xe =0 a € {0,1}, T(H, f)|x.=a is unsat-
isfiable.

el Xe=1
£ N
0-sink . '
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Structure of a 1-BP computing SearchVertex

» Let D be a minimum-size 1-BP computing

(V. E) L~'7‘-/ SearchVertex(G, f). Let s be a node of D
Xe =0 e =1 computing SearchVertex(H, g) labeled by
" 3§ Xe. Then the children of s compute

u v u v SearchVertex(H — e, go) and

SearchVertex(H — e, g1).
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Structure of a 1-BP computing SearchVertex

» Let D be a minimum-size 1-BP computing

(V. E) L~'7‘-/ SearchVertex(G, f). Let s be a node of D
Xe =0 e =1 computing SearchVertex(H, g) labeled by
" 3§ Xe. Then the children of s compute

u v u v SearchVertex(H — e, go) and

SearchVertex(H — e, g1).

» Structural lemma. If e is a bridge of H and
H— e = C; U G for two connected

= components C; and G, then the children of
s compute SearchVertex(Cy, go) and
Xe =0 7 Xe=1 " SearchVertex(G,, g1).
+ N\
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Transformation

SearchVertex(G, f) T(G,f")
e & v
Xe = Xe =1 xe=0 Xe=1
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Transformation
SearchVertex(G, f)

u_v
Xe=0/" Txe=1
¥ A
u v u v

(V.E\e)  (V,E\e)

o0

xe=0 7 x.=1
" Y
U v

T(G, ")

u_v
xXe=0/" "xe=1
¥ A
u v u v

(V.E\e) (V,E\e)

xe=0

T Xe=1
e N
0-sink ‘ '

Let D be a 1-BP computing SearchVertex(G, f). By induction
(from sinks) for every node s € D computing SearchVertex(H, c)
and every w € V/(H), we construct a node s computing

T(H,c+1y).
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Transformation

0

u v
e
Xe =0 Xe =1
Y
0-sink o
C1 y C2
T(CIUC2)f):T(Claf)/\T(C2)f)

T(Cl, f) A\ T(Cg, f)

(G, f) 1(G, f)

T'g

r

| 2

| 2

Nontrivial case: e is a bridge.

By induction hypothesis we have
node s; computing T(Cy, f) and
sy computing T(Cq, ) but we
need a node computing

T(Cl U G, f) =

T(Cl, f) VAN T(Cg, f)

Make a copy of subprogram of
s1 where all edges to 1-sink
redirected to sp.

The necessity to copy one of the
subdiagrams results in a
quasipolynomial

(S - SOUelVD)) blowup.
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Number of acc. paths passing a node of 1-BP

» Let s computes T(Gp, ¢2), where
Gy = (V, E2). Hence, there are exactly
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In minimal OBDD all paths starts with
E1, hence all sat. assignments of
T(G1, c1) can be realized. Hence there
are exactly 4T(Gy, c1) paths from the
source to s.
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Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

» Let D be a minimal 1-BP computing T(G, ¢).

» Let a5 be the number of accepting paths passing s.
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» For an accepting path p we denote by vy(p) = Zsep -
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corresponding p*.
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For D' we define a. and +/(p). a. depends only on the
distance from the source. Hence, 7/(p) does not depend on
accepting path. We know that v(p*) > +/(p*).
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For D' we define a. and +/(p). a. depends only on the
distance from the source. Hence, 7/(p) does not depend on
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OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2|EI=IV[+cc(G)

» Fix a spanning forest, take arbitrary values to all edges out of
it. The value of edges from the spanning forest will be
uniquely determined.
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The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G, ).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2 ) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.
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>

>
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The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ce(G)
Consider a node s of a minimal OBDD D computing T(G, f).

The number of nodes on level £ equals
i#T(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(G1,A)IT(G2,f2) )

Bob plays the following game: Gy = G, G, is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Gy. Bob calculates a value o = cc(Gy) 4 cc(Gp). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — .
The component width of G (compw(G)) is the minimum
possible Bob’s payout.

> Proposition. |E|200mPv(C) >

¢ o o OBDD(T(G, f)) > 200mpw(C)
» Theorem. pw(G) +1 >
° ° compw(G) > 1(tw(G) — 1).
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Open problems

> Is it possible to prove that Sp(T(G, c)) > 2tw(6))?

» Is it possible to prove a similar lower bound for unrestricted
resolution?

> Is it possible to separate Searchr(c ) and SearchVertexg
for constant degree graphs?
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