Almost tight lower bounds on regular resolution
refutations of Tseitin Formulas for all
constant-degree graphs

1 1 1

Artur Riazanov
Petr Smirnov?

Dmitry ltsykson Danil Sagunov

ISteklov institute of Mathematics at St. Petersburg
2 St. Petersburg State University

Proof Complexity Workshop
Banff International Research Station
January 23, 2020

1/19

Tseitin formulas

vvyyypy

Let G(V, E) be an undirected graph.

f:V — {0,1} is a charging function.

Edge e € E — variable x.
T(G,f) = A\, Parity(v), where
Parity(v) =

(S xe = f(v) mod 2).

e is incident to v

T(G,f) is represented in CNF.

x3| X1 X2
(=
x1+x=1
X1 +x3+x3=0
xp+x4=1
X3 = 1

2/19

Tseitin formulas

» Let G(V, E) be an undirected graph. a a
» f:V — {0,1} is a charging function.
» Edge e € E ~ variable xe. X3 | X1 x2
> T(G,f) = A,e, Parity(v), where G

Parity(v) = 0 X4

_ x1+x =1

<e is inc%c:ent to VXe B f(V) mod 2> . x1+x3+x3=0

» T(G,f) is represented in CNF. xtx =1

X3 = 1
» [Urquhart, 1987] T(G,f) is satisfiable <= for every

connected component U C V, > ., f(v) =0.

2/19

Resolution and its subsystems

» Resolution refutation of a CNF formula ¢

. CVx,DV—x
> Resolution rule =—=75—

» A refutation of ¢ is a sequence of clauses C;, G, ..., Cs such
that
> for every i, C; is either a clause of ¢ or is obtained by the
resolution rule from previous.
> (, is an empty clause.
> Regular resolution: for any path in the proof-graph no
variable is used twice in a resolution rule.

> Tree-like resolution: the proof-graph is a tree.

5(¢) < 5reg(¢) < ST(¢)

» Resolution width The width of a clause is the number of
literals in it. The width of a refutation is the maximal width
of a clause in it. w(¢) is the minimal posible width of
resolution refutation of ¢.

3/19

Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).

4/19

Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Seg(T(G, f) = 20(T(EMpoly(|V|), where w(¢) is a
resolution width of ¢.

4/19

Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Sree(T(G, f) =20T(CMpoly(|V]), where w(e) is a
resolution width of ¢.
> Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

4/19

Tseitin formulas and resolution

» Lower bounds for particular graphs

> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).

> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Sree(T(G, f) =20T(CMpoly(|V]), where w(e) is a
resolution width of ¢.
> Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

> Stronger conjecture. S(T(G, f)) = 22w(T(G.F)

4/19

Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Sree(T(G, f) =20T(CMpoly(|V]), where w(e) is a
resolution width of ¢.
> Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

> Stronger conjecture. S(T(G, f)) = 22w(T(G.F)

> It is false for star graph S,,
S(T(Sn,)= 0O(n), while w(T (S, f)) = n.

4/19

Tseitin formulas and resolution

» Lower bounds for particular graphs
> See(T(H,, f)) = n*() where B, is n x n grid (Tseitin, 1968).
> S(T(M,,f)) = 2% (Dantchev, Riis, 2001)
> S(T(G,f)) = 2% for an expander G with n vertices
(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
» Upper bound (Alekhnovich, Razborov, 2011)
> Sree(T(G, f) =20T(CMpoly(|V]), where w(e) is a
resolution width of ¢.
> Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

> Stronger conjecture. S(T(G, f)) = 22w(T(G.F)

> It is false for star graph S,,
S(T(Sn,)= 0O(n), while w(T (S, f)) = n.
» Perhaps, the conjecture is true for
constant-degree graphs.

4/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.

> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges
» Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges
» Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.
> (Hastad, 2017) Let S be the size of the shortest d-depth Frege

proof of T(B,,, f). Then § > 27" for d < Cl&n

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges
» Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.
> (Galesi et. al., 2019) Let S be the size of the shortest d-depth

Frege proof of T(G,f). Then S > 26" for o < lgg'ffg”n.

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges
» Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.
> (Galesi et. al., 2019) Let S be the size of the shortest d-depth

Frege proof of T(G,f). Then S > 26" for o < lgg'ffg”n.

> For resolution this method gives S(T(G, f)) > 2tw(6)’.

5/19

Constant degree graphs

> (Galesi et al. 2018) w(T(G,f)) = O(tw(G)) for O(1)-degree
graphs.
> The inequality S(T(G, f)) > 2%t(6) is known for following
O(1)-degree graphs:
> (Size-width relation): graphs with large treewidth:
tw(G) = Q(n)
> (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
> (xorification): graphs with doubled edges
» Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t X t,
where t = Q (tw(G)?).
> Known for § = 1/10. Necessary: § < 1.
> (Galesi et. al., 2019) Let S be the size of the shortest d-depth

Frege proof of T(G,f). Then S > 26" for o < lgg'ffg”n.

> For resolution this method gives S(T(G, f)) > 2tw(6)’.
» Tree-like resolution
> Sr(T(G,f)) > 2%w(6) (size-width relation)
> St(T(G,f)) < 29tw(6)loeV]) (Beame, Beck, Impagliazzo,
2013, I., Oparin, 2013)

5/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

2. 1-BP(T(G, f')) > 22tw(C)

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

> If S7(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f) of size S.

2. 1-BP(T(G, f')) > 22tw(C)

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

> If S7(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f) of size S.

» Remark: it is not true for decision trees. Let P, be a path with
doubled edges. Then S7(T(Pa, f)) = O(n?) but any decision
tree computing satisfiable T(P,, f) has size at least 2".

2. 1-BP(T(G, f')) > 22tw(C)

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

> If S7(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f) of size S.

» Remark: it is not true for decision trees. Let P, be a path with
doubled edges. Then S7(T(Pa, f)) = O(n?) but any decision
tree computing satisfiable T(P,, f) has size at least 2".
2. 1-BP(T(G, f')) > 22(tw(G))
» Previouse result: (Glinskih, 1., 2019)
20(tw(Q)log [VI) > 1. BP(T(G, f')) > 22tw(&)") \where § is a
constant from Grid Minor Theorem.

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

> If S7(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f) of size S.

» Remark: it is not true for decision trees. Let P, be a path with
doubled edges. Then S7(T(Pa, f)) = O(n?) but any decision
tree computing satisfiable T(P,, f) has size at least 2".
2. 1-BP(T(G, f')) > 22(tw(G))
» Previouse result: (Glinskih, 1., 2019)
20(tw(Q)log [VI) > 1. BP(T(G, f')) > 22tw(&)") \where § is a
constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs G,(Vi, E,) such that
1-BP(T(G,, ¢)) > 22tw(Gn)log |Val) and tw(G,) = nib).

6/19

Our results
Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),

Plan of the proof

1. If Speg(T(G,f)) = S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, ') of size G5O(log|V])

> If S7(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f) of size S.

» Remark: it is not true for decision trees. Let P, be a path with
doubled edges. Then S7(T(Pa, f)) = O(n?) but any decision
tree computing satisfiable T(P,, f) has size at least 2".
2. 1-BP(T(G, f')) > 22(tw(G))
» Previouse result: (Glinskih, 1., 2019)
20(tw(Q)log [VI) > 1. BP(T(G, f')) > 22tw(&)") \where § is a
constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs G,(Vi, E,) such that
1-BP(T(G,, ¢)) > 22tw(Gn)log |Val) and tw(G,) = nib).
> ST(T(Gp, c)) > 2%tw(Gn)log[Val) | 5 (T(G,, c)) = 20(tw(Gn)),

6/19

Our results

Main theorem. S, (T (G, f) > 28Utw(6)/log|VI),
Plan of the proof

1. If Syeg(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f’) of size SOU°eIVI),

2. 1-BP(T(G, f')) > 2(tw(C)

7/19

1-BP

» f:{0,1}" — X is represented by a
DAG with the unique source.

» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

8/19

1-BP

» f:{0,1}" — X is represented by a
DAG with the unique source.

» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

» Given an assignment £ a branching
program returns the label of the
sink at the end of the path
corresponding to &.

8/19

1-BP

» f:{0,1}" — X is represented by a
DAG with the unique source.

» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

» Given an assignment £ a branching
program returns the label of the
sink at the end of the path
corresponding to &.

» Read-once branching program (1-BP): in every path every
variable appears at most once.

8/19

1-BP

» f:{0,1}" — X is represented by a
DAG with the unique source.

» Sinks are labeled with distinct
elements of X. Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

» Given an assignment £ a branching
program returns the label of the
sink at the end of the path
corresponding to &.

» Read-once branching program (1-BP): in every path every
variable appears at most once.

» In 1-BP: v v, and v is labeled with x. If u computes f, and
v computes f,, then f, = f,|x=a.

8/19

SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.

9/19

SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.

» Theorem (folklore). ¢ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Search.

9/19

SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.
» Theorem (folklore). ¢ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Search.
» For an unsatisfiable formula T(G, f):
> Searchr(c r): given an assignment, find a falsified clause of
T(G, f).
» SearchVertex(G, f): given an assignment, find a vertex of G
with violated parity condition.

9/19

SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.
» Theorem (folklore). ¢ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Search.
» For an unsatisfiable formula T(G, f):
> Searchr(c r): given an assignment, find a falsified clause of
T(G, f).
» SearchVertex(G, f): given an assignment, find a vertex of G
with violated parity condition.
» Simple observation
1-BP(Searchy(c r)) > 1-BP(SearchVertex(G, f)).

9/19

SearchVertex

» Searchy: Let ¢ be an unsatisfiable CNF. Given an assignment
o, find a clause of ¢ falsified by o.

» Theorem (folklore). ¢ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Search.

» For an unsatisfiable formula T(G, f):

> Searchr(c r): given an assignment, find a falsified clause of
T(G,).

» SearchVertex(G, f): given an assignment, find a vertex of G
with violated parity condition.

» Simple observation
1-BP(Searchy(c r)) > 1-BP(SearchVertex(G, f)).

» \We are going to prove that
1-BP(T(G, f')) < 1-BP(SearchVertex(G, f))©Uog V).

9/19

SearchVertex(G, f) vs Searchr(g,)

» SearchVertex(G, f) and Searchy(g) are equivalent for
decision trees.

10/19

SearchVertex(G, f) vs Searchrg

» SearchVertex(G, f) and Searchy(g) are equivalent for

decision trees.
» For 1-BP:

Unrestricted degrees. Gp:
1. 1-BP(SearchVertex(G,, f)) = O(n),
while Searchrg, r) = 252n)

10/19

SearchVertex(G, f) vs Searchrg

» SearchVertex(G, f) and Searchy(g) are equivalent for

decision trees.
» For 1-BP:

Unrestricted degrees. Gp:
1. 1-BP(SearchVertex(G,, f)) = O(n),
while Searchrg, r) = 252n)

2. Logarithmic degrees. K ,:
1-BP(SearchVertex(Kiog n, f)) = O(n), while

1-BP(Searchr(k,,,.f) = 292(Iog” n) by size-width relation.

10/19

SearchVertex(G, f) vs Searchrg

» SearchVertex(G, f) and Searchy(g) are equivalent for

decision trees.
» For 1-BP:

Unrestricted degrees. Gp:
1. 1-BP(SearchVertex(G,, f)) = O(n),
while Searchrg, r) = 252n)

2. Logarithmic degrees. K ,:
1-BP(SearchVertex(Kiog n, f)) = O(n), while
1-BP(Searchr(k,,,.f) = 292(Iog” n) by size-width relation.
3. Constant degrees. We conjecture that for O(1)-degree
graphs two problems are polynomially equivalent. But this

conjecture implies stronger inequality
Sreg(T(G, £)) > 292(tw(C)),

10/19

SearchVertex(G, f) vs Searchrg

» SearchVertex(G, f) and Searchy(g) are equivalent for

decision trees.
» For 1-BP:

Unrestricted degrees. Gp:
1. 1-BP(SearchVertex(G,, f)) = O(n),
while Searchrg, r) = 252n)

2. Logarithmic degrees. K ,:
1-BP(SearchVertex(Kiog n, f)) = O(n), while
1-BP(Searchr(k,,,.f) = 292(Iog” n) by size-width relation.
3. Constant degrees. We conjecture that for O(1)-degree
graphs two problems are polynomially equivalent. But this
conjecture implies stronger inequality
Sreg(T(G, £)) > 29tw(C)),
> Xorification: S(¢®) > 2%w(®),
» For Tseitin formulas xorification = doubling of edges.
» It improves bound on Searchrg, re but 1-BP for
SearchVertex increases in at most a constant. 10/19

Structure of a 1-BP computing a satisfiable T(G, f)

(V. E)

Xg = 0 .\%(e 1

' T(H, f)lyea = T(H — e f +
(V.E\e) (V,E\e) a(l,+1,)), where e = (u, v).
“ If e is a bridge, then for some

xe =0 a € {0,1}, T(H, f)|x.=a is unsat-
isfiable.

el Xe=1
£ N
0-sink . '

11/19

Structure of a 1-BP computing SearchVertex

» Let D be a minimum-size 1-BP computing

(V. E) L~'7‘-/ SearchVertex(G, f). Let s be a node of D
Xe =0 e =1 computing SearchVertex(H, g) labeled by
" 3§ Xe. Then the children of s compute

u v u v SearchVertex(H — e, go) and

SearchVertex(H — e, g1).

12/19

Structure of a 1-BP computing SearchVertex

» Let D be a minimum-size 1-BP computing

(V. E) L~'7‘-/ SearchVertex(G, f). Let s be a node of D
Xe =0 e =1 computing SearchVertex(H, g) labeled by
" 3§ Xe. Then the children of s compute

u v u v SearchVertex(H — e, go) and

SearchVertex(H — e, g1).

» Structural lemma. If e is a bridge of H and
H— e = C; U G for two connected

= components C; and G, then the children of
s compute SearchVertex(Cy, go) and
Xe =0 7 Xe=1 " SearchVertex(G,, g1).
+ N\

12/19

Transformation

SearchVertex(G, f) T(G,f")
e & v
Xe = Xe =1 xe=0 Xe=1

13/19

Transformation
SearchVertex(G, f)

u_v
Xe=0/" Txe=1
¥ A
u v u v

(V.E\e) (V,E\e)

o0

xe=0 7 x.=1
" Y
U v

T(G, ")

u_v
xXe=0/" "xe=1
¥ A
u v u v

(V.E\e) (V,E\e)

xe=0

T Xe=1
e N
0-sink ‘ '

Let D be a 1-BP computing SearchVertex(G, f). By induction
(from sinks) for every node s € D computing SearchVertex(H, c)
and every w € V/(H), we construct a node s computing

T(H,c+1y).

13/19

Transformation

0

u v
e
Xe =0 Xe =1
Y
0-sink o
C1 y C2
T(CIUC2)f):T(Claf)/\T(C2)f)

T(Cl, f) A\ T(Cg, f)

(G, f) 1(G, f)

T'g

r

| 2

| 2

Nontrivial case: e is a bridge.

By induction hypothesis we have
node s; computing T(Cy, f) and
sy computing T(Cq,) but we
need a node computing

T(Cl U G, f) =

T(Cl, f) VAN T(Cg, f)

Make a copy of subprogram of
s1 where all edges to 1-sink
redirected to sp.

The necessity to copy one of the
subdiagrams results in a
quasipolynomial

(S - SOUelVD)) blowup.

14/19

Our results

Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),
Plan of the proof

1. If Sreg(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G, f’) of size SOU°eIVI),

2. 1-BP(T(G, f')) > 2(tw(©))

15/19

Our results

Main theorem. S, (T (G, f) > 2%tw(6)/log|VI),
Plan of the proof

1. If Sreg(T(G,f)) =S, then there exists a 1-BP computing
satisfiable Tseitin formula T(G,) of size SO(lgIVI),
2. 1-BP(T(G, f')) > 22(tw(G))
» Minimal 1-BP for (T(G, f)) is OBDD (in every path variables

appear in the same order).
> OBDD(T(G, f)) > 2Utw(6)),

15/19

Number of acc. paths passing a node of 1-BP

» Let s computes T(Gp, ¢2), where
Gy = (V, E2). Hence, there are exactly

. iT(Gy, c2) paths from s to 1-sink.
E G =(V, E)
S
(9]
E G = (V,E)
1 0
@ @
EEUE, =E

16/19

Number of acc. paths passing a node of 1-BP

» Let s computes T(Gp, ¢2), where
Gy = (V, E2). Hence, there are exactly
iT(Gy, c2) paths from s to 1-sink.

()
> .

g, G = (V.E1) Eve.ry path from the source to s is a sat.

S assignment of T(Gy, c1), where

G1 = (V, E1). Hence, there are at most

E G =(V,E) #T(Gi,c1) paths from the source to s.

10

(5 ©]
EEUE, =E

16/19

Number of acc. paths passing a node of 1-BP

@
E G =(V,E)
g
@
E G = (V,E)
1 0
(<])
EEUE, =E

» Let s computes T(Gp, ¢2), where

Gy = (V, E2). Hence, there are exactly
T (G, c2) paths from s to 1-sink.

» Every path from the source to s is a sat.

assignment of T(Gy, c1), where
G1 = (V, E1). Hence, there are at most
#T(Gi, c1) paths from the source to s.

In minimal OBDD all paths starts with
E1, hence all sat. assignments of
T(G1, c1) can be realized. Hence there
are exactly 4T(Gy, c1) paths from the
source to s.

16/19

Number of acc. paths passing a node of 1-BP

@
E G =(V,E)
g
@
E G = (V,E)
1 0
(<])
EEUE, =E

» Let s computes T(Gp, ¢2), where

Gy = (V, E2). Hence, there are exactly
T (G, c2) paths from s to 1-sink.

» Every path from the source to s is a sat.

assignment of T(Gy, c1), where
G1 = (V, E1). Hence, there are at most
#T(Gi, c1) paths from the source to s.

In minimal OBDD all paths starts with
E1, hence all sat. assignments of
T(G1, c1) can be realized. Hence there
are exactly 4T(Gy, c1) paths from the
source to s.

» In 1-BP: at most §T(Gi, c1) x §T(Gz, c2) accepting passing s.

16/19

Number of acc. paths passing a node of 1-BP

» Let s computes T(Gp, ¢2), where
Gy = (V, E2). Hence, there are exactly
T (G, c2) paths from s to 1-sink.

» Every path from the source to s is a sat.

E G =(V, k) .
S assignment of T(Gy, c1), where
G1 = (V, E1). Hence, there are at most
E G =(V,E) #T(Gi,c1) paths from the source to s.
L9 » In minimal OBDD all paths starts with
EUE —E E1, hence all sat. assignments of

T(G1, c1) can be realized. Hence there
are exactly 4T(Gy, c1) paths from the
source to s.

» In 1-BP: at most §T(Gi, c1) x §T(Gz, c2) accepting passing s.

» In minimal OBDD: exactly §T(G, c1) X $T(Ga, cz) accepting
paths passing s.

16/19

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

» Let D be a minimal 1-BP computing T(G, ¢).

» Let a5 be the number of accepting paths passing s.

1

» For an accepting path p we denote by vy(p) = Zsep -

17/19

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

» Let D be a minimal 1-BP computing T(G, ¢).
» Let a5 be the number of accepting paths passing s.
» For an accepting path p we denote by vy(p) = Zsep ;Tls

» Let P be the set of accepting paths in D; |P| = §T(G, c).

17/19

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

» Let D be a minimal 1-BP computing T(G, ¢).

Let as be the number of accepting paths passing s.

1
SEPp a5
Let P be the set of accepting paths in D; |P| = {T(G, ¢).

ID| =1 =3 pepv(p) = [P minpep v(p) = [Plr(p*).

For an accepting path p we denote by v(p) = >

17/19

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

>

vVvYyyVvyy

v

Let D be a minimal 1-BP computing T(G, ¢).

Let as be the number of accepting paths passing s.

1
sEp as”

Let P be the set of accepting paths in D; |P| = {T(G, ¢).

Dl =1=2_ep(p) = [Pl minper y(p) = [Plr(p").
Let D’ be a minimal OBDD for T(G, ¢) in order
corresponding p*.

For an accepting path p we denote by v(p) = >

For D' we define a. and +/(p). a. depends only on the
distance from the source. Hence, 7/(p) does not depend on
accepting path. We know that v(p*) > +/(p*).

17/19

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G, ¢)) > OBDD(T(G, ¢)).

>

vVvYyyVvyy

v

Let D be a minimal 1-BP computing T(G, ¢).

Let as be the number of accepting paths passing s.

1
sEp as”

Let P be the set of accepting paths in D; |P| = {T(G, ¢).

Dl =1=2_ep(p) = [Pl minper y(p) = [Plr(p").
Let D’ be a minimal OBDD for T(G, ¢) in order
corresponding p*.

For an accepting path p we denote by v(p) = >

For D' we define a. and +/(p). a. depends only on the
distance from the source. Hence, 7/(p) does not depend on
accepting path. We know that v(p*) > +/(p*).

D] =1 = [Ply(p*) = 4T(G, c)y(p*) = 4T(G, c)¥'(p*) =
|D'| — 1.

17/19

OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2|EI=IV[+cc(G)

» Fix a spanning forest, take arbitrary values to all edges out of
it. The value of edges from the spanning forest will be
uniquely determined.

18/19

OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

» Consider a node s of a minimal OBDD D computing T(G, f).
The number of nodes on level £ equals

#T(G,f) ATV Iheo(C)—co(Gy) ol G
emiites = 2/ (@) -e@) (&),

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag=6 amn=~06

W O O O
@) @)

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag =6 amn=2>5

o—oO

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag=6 ampp,=4

VARV

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag=6 ampp,=4

VN

18/19

OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).
» Consider a node s of a minimal OBDD D computing T(G, f).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

» Bob plays the following game: Gy = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag =6 amin=23

A

18/19

OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).
» Consider a node s of a minimal OBDD D computing T(G, f).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

» Bob plays the following game: Gy = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag =6 amin=23

LY

18/19

OBDD and component width

» The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).
» Consider a node s of a minimal OBDD D computing T(G, f).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

» Bob plays the following game: Gy = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag =6 amin=23

IERRVAY

18/19

OBDD and component width

| 2

| 2

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ec(G).

Consider a node s of a minimal OBDD D computing T(G,).

The number of nodes on level £ equals
iT(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(GLANT(G2) :

Bob plays the following game: G = G, Gy is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Go. Bob calculates a value oo = cc(Gy) 4 cc(Go). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — «.
The component width of G (compw(G)) is the minimum
possible Bob's payout.

ag=6 amp=3 payout=3

18/19

OBDD and component width

>

>

ag =6 amn=3 payout =3

The number of satisfying assignments of a satisfiable T(G, f)
is 2IEI=|V|+ce(G)
Consider a node s of a minimal OBDD D computing T(G, f).

The number of nodes on level £ equals
i#T(G,f) — 2l VI+ee(G)—ce(Gr)—ce(G2)
1T(G1,A)IT(G2,f2))

Bob plays the following game: Gy = G, G, is the empty graph
on V. Every his move, Bob remove one edge from G; and add
it to Gy. Bob calculates a value o = cc(Gy) 4 cc(Gp). Initially
ag = |V| + cc(G). Bob pays the maximal value of ag — .
The component width of G (compw(G)) is the minimum
possible Bob’s payout.

> Proposition. |E|200mPv(C) >

¢ o o OBDD(T(G, f)) > 200mpw(C)
» Theorem. pw(G) +1 >
° ° compw(G) > 1(tw(G) — 1).

18/19

Open problems

> Is it possible to prove that Sp(T(G, c)) > 2tw(6))?

» Is it possible to prove a similar lower bound for unrestricted
resolution?

> Is it possible to separate Searchr(c) and SearchVertexg
for constant degree graphs?

19/19

